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ABSTRACT:

The explosion of images on the Web has led to a number of efforts to organize images semantically and compile collections of visual
knowledge. While there has been enormous progress on categorizing entire images or bounding boxes, only few studies have targeted
fine-grained image understanding at the level of specific shape contours. For example, given an image of a cat, we would like a system
to not merely recognize the existence of a cat, but also to distinguish between the cat’s legs, head, tail, and so on. In this paper, we
present ShapeLearner, a system that acquires such visual knowledge about object shapes and their parts. ShapeLearner jointly learns this
knowledge from sets of segmented images. The space of label and segmentation hypotheses is pruned and then evaluated using Integer
Linear Programming. ShapeLearner places the resulting knowledge in a semantic taxonomy based on WordNet and is able to exploit this
hierarchy in order to analyze new kinds of objects that it has not observed before. We conduct experiments using a variety of shape
classes from several representative categories and demonstrate the accuracy and robustness of our method.

1. INTRODUCTION

Motivation Over the last decade, we have observed an explosion
in the number of images that are uploaded to the Internet. Sharing
platforms such as Flickr and Facebook have long been driving
forces in turning previously undistributed digital images into an
abundant resource with tens of billions of images. This vast
amount of data holds great potential to revolutionize the way
computers organize and understand images. Deng (Deng et al.,
2009) introduced ImageNet, a hierarchical organization of raw
images, which has enabled major advances in object recognition to
the point of computers outperforming humans in certain respects
in object recognition (Russakovsky et al., 2015).

Still, current object recognition systems mostly operate at the
coarse-grained level of entire images or of rectangular image
bounding boxes, while segmentation algorithms tend to consider
abstract distinctions such as between foreground and background.

In this work, we consider the next level of image understanding,
aiming at a more fine-grained understanding of images by au-
tomatically identifying specific shape contours and the parts of
objects that they portray. Analysis of objects with respect to their
parts draws from cognitive research of the human vision system-
s. Shapes of parts play an important role in the lower stages of
object recognition (Marr, 1976). Given a relatively small object
part, humans can recognize the object when the part is sufficiently
unique (Binford, 1971, Biederman, 1987). Such finer-grained im-
age understanding has remained an open problem in computing, as
it requires considerable background knowledge about the objects.

Contribution We introduce ShapeLearner, a system that learns the
shapes of families of objects, together with their parts and their
geometric realization, making the following contributions.

1. ShapeLearner requires only a small number of manually an-
notated seed shapes for bootstrapping and then progressively
learns from new images. The core operation consists of a joint
shape classification, segmentation, and annotation procedure.
To solve this challenging central task, ShapeLearner automat-
ically transfers visual knowledge of seen shapes to unseen
images, accounting for both geometric and semantic similarity.

2. ShapeLearner can automatically analyse entirely new kinds
of shapes, relying on an inference mechanism based on soft
constraints, such as discrepancies between shape families, part
uniqueness, etc. (see Figure 1). Once such a new shape has
been classified, segmented, and annotated, the newly acquired
knowledge is incorporated into ShapeLearner to further en-
hance its knowledge.

3. Rather than learning mere enumerations, the system acquires
hierarchical knowledge about these parts, which is semanti-
cally more informative (Palmer, 1977, Hoffman and Richards,
1983). Additionally, different object categories are organized
hierarchically as well, following the WordNet taxonomy (Fell-
baum, 1998), e.g. to account for the relationship between a
cup and a glass. This hierarchical organization is critical when
jointly analyzing families of objects, due to the high degree of
geometric variability of shapes at different levels of granularity.

2. RELATED WORK

2.1 Image Knowledge Harvesting

In recent years, several new methods have appeared to organize
the growing amount of images on the Web. The most promi-
nent of these is ImageNet (Deng et al., 2009), a hierarchically
organized image knowledge base intended to serve as the visu-
al counterpart of WordNet (Fellbaum, 1998). While ImageNet
merely provides image-level labels, subsequent research aimed at
localizing individual objects within those images using bounding
boxes (Guillaumin and Ferrari, 2012). In our work, we focus on
the specific shape contours of objects and analyse their subparts.

A semantic infrastructure was introduced by AIM@SHAPE (Fal-
cidieno et al., 2004) to provide a semantic representation of shapes
on the Internet. For a survey on content based 3D shape retrieval
please refer to (Tangelder and Veltkamp, 2008). In this context,
textual taxonomies have been also utilized to constrain interactive
tools and generate consistent segmentations and annotations of 3D
shapes (Robbiano et al., 2007) and images (Russell et al., 2008).
Hierarchical taxonomies have been also used to train classifiers
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Figure 1: The proliferation of images on the Web (a) enables us to extract shapes to train ShapeLearner (b), a 2D shape learning system
that acquires knowledge of shape families, geometrical instances of their inner parts and their inter-relations. Given an unknown shape
(c), the system automatically determines a classification, segmentation, and hierarchical part annotation (d).

and constrain organization of videos from the Internet (Song et
al., 2010). In (Patterson and Hays, 2012, Patterson et al., 2014) a
crowd-sourced taxonomy was introduced for the organization and
classification of a large-scale scene database.

With the arrival of low-cost RGB-D sensors, there has been a
growing demand for classification and organization of large ob-
ject families represented by depth images. Lai et al. (Lai et al.,
2011) present a hierarchical RGB-D knowledge base of 51 classes
organized according to WordNet taxonomy. Similarly, synthetic
3D CAD models have been organized according to WordNet in a
hierarchical base denoted 3DNet (Wohlkinger et al., 2012).

2.2 Segmentations and Semantic Relationships

Zhang (Zhang et al., 2011b) observe that semantic relations of
parts may be typically expressed by a common structure which is
shared among objects in a class. Hence, they learn a set of classi-
fiers for the relation of verb-object in a class of images. Similarly,
graph structures have been introduced for representing semantic
relations of parts which are learned from image sets (Malisiewicz
and Efros, 2009, Chen et al., 2012). Recently Zhang (Zhang et al.,
2014) organized co-occurrences and contextual relationships of
images in a graph which assists annotation and retrieval of Web-
scale images. Nevertheless, these methods focus on processing
general images and scenes while we believe to be the first to focus
on individual shape classes, their inner parts and geometries.

Grammars have been suggested to represent the visual information
in images as high-level generative models (Girshick et al., 2011,
Zhang et al., 2011a). Grammar-like descriptors for visual words
and visual phrases may be defined to enhance image processing
and recognition (Zhang et al., 2011a). Recently, Chen (Chen et
al., 2013) learn object relationships in images from their proba-
bilistic structural patterns and geometrical characteristics. Their
work shares a common goal with us of leveraging semantic object
relations for the construction a large-scale visual knowledge-base.
Nevertheless, our analysis focuses on semantic relations at the sub-
part level, while theirs is at the global scene level and object-object
relations.

Multiple instances of objects and parts within a class, provide
important contextual information which is utilized for joint learn-
ing and segmentation (Rother et al., 2006, Chum and Zisserman,
2007, Batra et al., 2010, Vicente et al., 2011, Chai et al., 2011,
Kang et al., 2011). For example, a consistent segmentation of
similar 2D objects may be achieved from multiple segmentations
which are interconnected with a constrained graph (Kim et al.,
2012) . Similar to us, Huang (Huang et al., 2014) recently pre-
sented a data-driven approach for simultaneous segmentation and

annotation of free-hand sketches. They utilize a database of 3D
objects and parts which are superimposed with the 2D sketch to
infer the best fitting structure. In contrast to us, their input shapes
also contain interior information which provides important hints
in the recognition process, especially for ambiguous shapes.

3. OVERVIEW AND KNOWLEDGE MODEL

3.1 High-Level Perspective

ShapeLearner constructs a relational hierarchy that indexes 2D
shapes by utilizing taxonomic knowledge of object shape classes
and their inner parts. Our goal is to progressively acquire such
knowledge by transferring information about indexed shapes onto
new ones.

We manually index shapes in several categories as seeds (e.g.,
mammals, fowls, home appliances). This involves segmenting
images collected via Google Images to separate the objects from
their environment. Objects are then manually segmented further
into meaningful parts and labeled following the WordNet taxono-
my. ShapeLearner captures this information about parts and their
relations in a tree-like hierarchy by connecting parts to their sib-
lings and ancestors. This can be seen as a knowledge base with
is-a, has-a, has-part, and has-shape relationships.

ShapeLearner includes a knowledge transfer algorithm for under-
standing unknown shapes. ShapeLeaner accounts for both shape
geometry and high-level semantical relations from its previously
acquired knowledge to infer the correct classification and seg-
mentation of the new object shape. This is illustrated in Figure
2: Given an unknown shape, we compute a raw set of segmen-
tation candidates considering merely the shape’s geometry. We
determine additional candidates by matching with geometrically
similar shapes and transferring their segmentation. This yields a
set of segmentation hypotheses about the unknown shape. Shape-
Learner then transfers its knowledge onto the shape by relying on
an inference step to remove false hypotheses and select a valid
segmentation that complies with the shape’s hierarchical taxon-
omy. Finally, ShapeLearner transfers this knowledge back by
indexing the new shape and progressively updating its store of
visual knowledge.

3.2 ShapeLearner’s Knowledge

ShapeLearner is directly linked to the WordNet (Fellbaum, 1998)
taxonomy, which provides a hierarchical semantic organization of
classes.
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Figure 2: Workflow diagram. Given an unknown 2D shape (a), ShapeLearner first determines segmentation candidates by leveraging
short cut and shape matching information (b). The system uses its acquired knowledge to label candidates (c). Finally, it makes use of
reasoning to prune false hypotheses and infer a classification and semantic segmentation of the shape (d).

Figure 3: A snapshot of the knowledge in ShapeLearner’s hierarchy, zooming in on mammals and fowls. We show also a subset of the
relational facts isA, isPartOf and hasShape.

Focusing on a subset of this taxonomy, we take the isA class and
additionally harvest knowledge for isPartOf and hasShape facts
(e.g.isPartOf (Leg, Human), hasShape (Baseball, Round))
Thus, ShapeLearner acquires knowledge of an object’s shape, its
parts, and shape of the parts (see Figure 3).

We begin by defining the four basic concepts that ShapeLearner
relies on:

• Shapes S = {s0, s1, ..., snS} define the contour of indepen-
dent 2D objects in an image.

• Classes C = {c0, c1, ..., cnC} define a category (e.g., species)
of objects in the data base.

• Parts P = {p0, p1, ..., pnP } define a decomposition of a
shape into meaningful components.

• Labels L = {l0, l1, ..., lnL} define the textual annotations
for each part.

Initially, a seed set of parts is manually preprocessed and trans-
ferred into ShapeLearner. In this step, the user manually annotates
parts in shapes with labels from WordNet (e.g. head, tail, etc.) as
well as semantic relations (e.g. hasShape(elephant,elephantShape),
isA(elephant,mammal), isPartOf(tail,elephant)). ShapeLearner s-
tores this information in a hierarchical structure (see Figure 3).

Next, we use ShapeLearner to infer the following knowledge in a
statistical manner:

• Part number: the number of parts per class may be fixed
or bounded (e.g. a horse has 2 front legs, an elephant has 1
trunk).

• Part distinctiveness: Shape classes may have discriminate
parts defined by the frequency of a part in all classes (e.g. the
elephant class has trunks as a distinct part within the class
of mammals). Part distinctiveness is at the core of shape
classification and disambiguation. The part distinctiveness
score for a part p in class c ∈ C is calculated as the inverse
fraction of classes containing this part: |C|

|p∈c| ≥ ε, ε = |C|.

4. SHAPE ANALYSIS

Classification and semantic segmentation of an unknown objec-
t shape typically pose a chicken-egg problem: we may require
information about the one in order to solve the other. Given an
unknown 2D shape, ShapeLearner jointly solves for both clas-
sification and semantic segmentation by relying on an inference
procedure to reason from its knowledge in accordance with statisti-
cal constraints and the shape geometry. In fact, it jointly optimizes
classification, segmentation, as well as part annotation. We next
provide the technical details of this process.

4.1 Shape Segmentation Hypotheses

Given an unknown shape of an object, we compute a set of possible
part candidates specified by different cuts in the shape (see cuts
in Figure 5(c)). Initially, we compute cuts accounting merely
for the shape geometry, applying the short-cut rule of (Luo et
al., 2014), which is motivated by the human vision system. This
method yields somewhat consistent cuts tracking the geometric
features of the shape contour. Nevertheless, our algorithm does
not require an exact segmentation into meaningful parts but only
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a loose approximation. A somewhat reasonable segmentation is
sufficient at this step.

Next, ShapeLearner transfers additional segment hypotheses from
its existing knowledge to further enrich the candidate set. Shape
matching plays an important role in adding new cuts that further
enrich segmentation and compensate when the short-cut geometry-
based method is insufficient. For instance, in Figure 5(a), the
smooth elephant head could not be segmented by the short-cut
method.

To accomplish this, ShapeLearner finds the best matching shapes
in its existing collection and transfers their segmentation onto the
input shape. Shape matching is performed using the inner-distance
similarity metric (Ling and Jacobs, 2007). We found this method
suitable as it is computationally efficient, rotation-invariant, and
robust with respect to other state-of-the-art 2D contour matching
techniques (e.g., (Belongie et al., 2001)).

Following the inner distance metric (Ling and Jacobs, 2007), we
define C(π(A,B)) as the matching cost value for two shapes A
andB. In a nutshell, given two shapesA andB, described by their
contour point sequences p1, p2...pn and q1, q2, ...qm, respectively,
we use the χ2 statistic to compare points histograms similarity
presented the cost value of c(pi, qj). We compute the optimal
matching between A and B, denoted as π : (pi, qπ(i)), using
dynamic programming. We define the minimum cost value by
C(π) =

∑n

i=1
c(i, π(i)) and the number of matching points is

M(π) =
∑n

i=1
δ(i), where δ(i) = 1 if π(i) 6= 0, δ(i) = 0 if

π(i) = 0.

Next, we define a cut, i.e. cutA(pi, pj), as the 2D line connecting
contour points pi,pj in shape A. Thus, to transfer cutA(pi, pj)
from shape A in ShapeLearner onto the input shape B, we simply
use the computed shape matching π and transfer cutA(pi, pj) to
cutB(qπ(i), qπ(j)) (Figure 5(b)).

Figure 4: Cut con-
straints remove all red
cuts.

To reduce noise in the segmentation
candidates, ShapeLearner considers on-
ly the top k1 = 3 best matching shapes
in its collection. Additionally, it relies
on the following constraints to remove
noisy cuts (Figure 4):

• cut should be located in the interi-
or of the shape.

• when cuts intersect each other, on-
ly the one corresponding to the
longest contour is kept.

• if two cuts are too close to-
gether, specifically ‖cutB(d) −
cutB(e)‖2 ≤ ε, where ε = 0.01 × |shape points|, they
are merged together.

4.2 Shape-Class and Part-Label Hypotheses

At this point, ShapeLearner has an unknown shape and a set of un-
labeled segments, so the shape may belong to different classes and
a cut may have different labels. Thus, ShapeLearner next anno-
tates segments with possible label hypotheses from its knowledge
and computes a valid segmentation that conforms to its acquired
knowledge, by cleaning false segments and label hypotheses.

We assign a unique ID for each cut in the shape and denote an
hypothesis as the pair (cut,label)[.]. Additionally, we define class
hypotheses as (shape,class)[.]. A hypothesis may become a fact

(cut,label)[1] or be evaluated as false (cut,label)[0], following
an inference process (e.g. label(cut@9, nose)[1], class(shape@1,
elephant)[0]). Note that each cut corresponds to a part, so la-
bel(cut@9, nose)[1] equals label(part@9, nose)[1]. ShapeLearner
matches the input shape against its knowledge and select the top
k = 5 best matching shapes using the inner distance metric. This
yields multiple class and label assignments for the hypotheses.

We define the cut confidence weight with respect to the top k
resulting set as follows. Given a cut cj , label li, and hypotheses:
label(cut@j, li)[.], the confidence weight of cut cj with label li is
calculated as wcj ,li = α× p1 + (1− α)× p2, (α = 0.6 in our
experiments), based on two factors:

• p1: the confidence of assigning label li to cut cj is hl
k

, where
hl is the frequency of label li in the top k result set.

• p2: if a cut has many possible label hypotheses (say l1, li, . . .,
lm), the confidence for each part is defined by the part shape
matching w′

cj ,li
=Mli(π)/Cli(π). Then p2 =

w′cj,li∑
l
w′cj,l

.

Similarly, we define the class confidence weight with respect to
the top k result set as follows. Given the unknown part shape
sj , class ci and hypothesis class(shape@j, ci)[.], the confidence
of class ci with respect to the top k result set is calculated as
wsj ,ci =

hc
k

, where hc is the number of hits for class ci.

4.3 Shape Inference

ShapeLearner jointly solves for a consistent classification and
labeling by pruning noisy hypotheses and searching for the opti-
mum class and labels assignment with respect to its knowledge
constraints. We formulate this problem as an Integer Linear Pro-
gramming (ILP) that considers both cut labels and shape classes
to yield a consistent set of truth value hypotheses.

We formulate the ILP variables as follows:

• xp,l ∈ {0, 1} denotes label(part, label) hypothesis l ∈ L for
part p ∈ P .

• ys,c ∈ {0, 1} denotes class(shape, class) hypothesis c ∈ C
for shape s ∈ S.

For each shape s, the objective function maximizes the overall con-
fidence of hypotheses (where wxp,l and wys,c are the confidence
weights for cut and class hypotheses respectively, wxp,l = wxc,l
in the previous step):

max
∑

p∈P,l∈L

wxp,l · xp,l +
∑
c∈C

wys,c · ys,c

subject to the following constraints derived statistically from the
knowledge collection.

4.4 Class Constraints.

• A shape s can be assigned to one class at most:∑
c∈C

ys,c ≤ 1

• A shape class assignment should conform to its distinctive
parts (if any). Denoting (l, c) ∈ DPC as the pair set (dis-
tinctive part, class), then:

∀p ∈ P ∧ c ∈ C ∧ (l, c) ∈ DPC, xp,l − ys,c ≤ 0
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Figure 5: Semantic segmentation of an elephant. Given an unsegmented shape, cuts are computed from the geometry (a), as well as
transferred from similar shapes (b). This yields multiple class hypotheses (c) which are prunen, yielding a correct semantic segmentation
and annotation of the shape (d).

• A shape class should not consist of parts that do not belong
to the class (according to isPartOf)

∀p ∈ P ∧c ∈ C∧ (l, c) /∈ isPartOf(p, c), xp,l+ys,c ≤ 1

4.5 Label Constraints.

• Part inclusion should conform to ShapeLearner’s part hierar-
chy. Denoting HP as the set of inclusion part pairs (i.e. iff
(l, l′) ∈ HP, then l′ includes l and isPartOf(p, p′)), and
⊂ refers to ”included by” then:

∀p, p′ ∈ P, l, l′ ∈ L∧(l, l′) ∈ HP∧p 6⊂ p′, xp,l+xp′,l′ ≤ 1

and

∀p, p′ ∈ P, l, l′ ∈ L∧(l, l′) /∈ HP∧p ⊂ p′, xp,l+xp′,l′ ≤ 1

• The number of parts in a shape class should conform to the
class Part number. Denoting the number of parts as nP, then:∑

p∈P

xp,l ≤ nPc, l

Note that we require the number of parts to be less than or
equal to nP due to possible occlusions of the shape in the
image (c.f. the back leg in Figure 5).

After reasoning, the cleaned facts (i.e., label(part, label)[1] and
class(shape, class)[1]) are integrated into ShapeLearner’s knowl-
edge base. The shape of each part is added as hasShape (part,
’part-shape’). Given a shape of a new class not yet in Shape-
Learner, parts of the new class are identified by knowledge transfer.
If the new class name is X, new facts are added as isPartOf (part,
X) and hasShape (part, part-shape).

5. RESULTS

We now present a thorough set of experiments to evaluate Shape-
Learner.

5.1 Labeling Accuracy

To quantify ShapeLearner’s output quality, we rely on a pixel-
based metric to evaluate the parts segmentation (Huang et al.,
2014). Given a segmented part, we measure its overlap with
the ground-truth part as the number of pixels that are correctly
labeled in the overlap vs. the incorrect ones. A part is considered
adequately labeled if a reasonable percentage (precision > 75%)
of pixels are in the overlap. The terminology is as follows.

• True Positive (TP): correct cut/pixel label
• True Negative (TN): correct removed cut/pixel label

• False Positive (FP): a cut/pixel label supposed to be re-
moved but not removed

• False Negative (FN): a cut/pixel supposed to be labeled, but
removed.

Given these, we can use the standard definition of precision as
TP

TP+FP
, recall as TP

TP+FN
, and F1 = 2TP

2TP+FP+FN
.

5.2 Baselines

Given all part hypotheses, we evaluate our method against two
simpler baselines:

• N: the inference includes Part number constraints.
• N+D the influences includes Part number and

Part distinctiveness constraints.

Table 1 provides an evaluation of the segmentation and classifica-
tion for these baselines with respect to precision, recall, and the F1

measure. Our method outperforms these baselines in most cases
(except re call in some cases). Figure 6 provides examples of a
summary of this a subset of this evaluation, illustrating F1 results
of baselines and our method.

In Figure 7(a), we demonstrate the scalability of our method with
respect to the number of initial seeds for classes with size larger
than 50. Note that precision, recall, and F1 of the segmenta-
tion increase as the number of seeds gets larger. After 20 seeds,
ShapeLearner converges and the improvement becomes marginal.
Therefore, 20 seeds appear to be a reasonable threshold in our ex-
periments. This shows that a small number of seeds can represent
a shape-space well and adding more seeds can be redundant. Fig-
ures 7(b) and 7(c) show graphic comparisons between baselines
and our inference mechanism according to the values in Table 1.
We see that even for a small number of seeds, our method out-
performs other baselines and has very good precision, recall, and
F1. Nevertheless, segmentation of the deer and the cow classes is
challenging and stayed below the average due to ambiguities (see
Table 1). Small parts, such as ears and horns, when represented
only as contours are not sufficiently distinct (even for the human
eye).

Our classification (Table 1, bottom part) also outperforms the
baselines on average. Nevertheless, for some classes we did not
improve over baselines since their contour was relatively similar
with no distinctive parts. For example, the small horn of the deer
is similar to the ear of the horse. As horns are distinctive for deers,
a horse shape will be classified as a deer if its ear is labeled as
a horn. Ribs in the skeleton may also be ambiguous since they
are similar to legs in size and orientation. Similarly, the cat’s tail
may be recognized as a back leg in unique situations when the tail
hangs down and the cat’s back legs are occluded.

Similarly for skeletons, classification did not provide excellen-
t results due to the large similarity between skeletons and their
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Ours

N+D

N

8(c) 1.0007(c) 1.0005(c) 0.8001(c) 0.889 9(c) 1.000

8(a) 0.5455(a) 0.4621(a) 0.727

8(b) 0.6007(b) 0.9335(b) 0.5451(b) 0.800

4(a) 0.8242(a) 0.800 9(a) 0.4006(a) 0.667

9(b) 0.0006(b) 0.667

ChairDeer

skeleton
DogDuck ElephantHorse KettleTrex

3(b) 0.615 

3(a) 0.615

3(c) 0.923

Cow

4(c) 1.000

4(b) 0.875

 2(c) 0.933

2(b) 0.800

7(a) 0.824

8(h) 1.000

6(c) 1.000

8(h) 1.000

Figure 6: Representative results by our method and baseline solutions. The F1 measure is shown below each result.

counterpart (living) mammals. Furthermore, the variety of shapes
in the skeleton class is not high, which does not provide distinct
and meaningful recognition knowledge and constraints. Never-
theless, the segmentation of the skeleton was successful for the
same reasons of similarity with mammals and transferring their
knowledge back.

The experiments about knowledge transfer in Table 3 show that
even without seeds from the same class, seeds of classes from the
same category could help for transferring segmentation and anno-
tation. When the seeds from different classes are more similar with
the test shape, the performance is even better than the direct seg-
mentation and annotation (see tiger and bedroom lamp in Table 3).
Morphological differences between tortoise and other reptiles are
quite big. Thus the performance of transfer segmentation is not
very good, compared with other reptiles.

5.3 Evaluation and Comparison

Although our paper has a different aim, we compare our method
with a segmentation algorithm (Huang et al., 2014) aiming at
analysing hand-drawn sketches. The main difference is that their
method is aimed at analysing the brush strokes, which may contain
significant information on the shape’s interior (interior sketches),
while ours considers only the contour. From their dataset, we
select all object classes with contours and compare the average
segmentation and annotation precision (see Table 4). While their
algorithm can resolve many ambiguities due to occlusions based
on the interior brush strokes, our method nevertheless gives supe-
rior results on a majority of classes, demonstrating the effective
power of ShapeLearner’s knowledge. For the airplane and vase
classes, our method was inferior due to the large variety (airplanes)
and non-distinctiveness of parts (vases). Unfortunately, we could
not perform a more in-depth comparison (e.g. w.r.t. occlusions
and a larger variety of classes) since their code is not publicly
available.

Our method can infer a semantically correct segmentation even for
classes that are not currently indexed in ShapeLearner. In Figure 8,
three shapes of new classes (a lion, rhinoceros, and camel), were
properly segmented and annotated (including, for example, the
rhinoceros’ horn) by ShapeLearner without having been given
prior knowledge about these classes.

6. CONCLUSION

We have introduced a novel system that organizes 2D shapes in a
hierarchical structure and learns to process new images and even

Huang Ours Huang Ours

airplane 66.2% 65.8% lamp 89.3% 94.9%

candelabra 56.7% 68.5% rifle 62.2% 67.2%

fourleg 67.2% 80.9% vase 63.1% 51.0%

human 64.0% 94.1%

Table 4: Comparision with Huang et al. [2014] in precision.

(a) Lion (b) Ostrich (c) Alpaca

Figure 8: Semantic segmentation of three new shapes (without
prior indexing of these classes by ShapeLearner).

new shape categories. Our system starts with a seed set of anno-
tated shapes but then augments its knowledge by automatically
processing new images and shapes. We derive a set of statistical
constraints that we apply to correctly classify and segment an
unknown input shape. We transfer hypotheses based on visual
similarity, which we then validate using an integer linear program-
ming reasoning method. Our experiments show that, after seeding,
ShapeLearner is able to collect valuable knowledge about shapes
from uncategorized images.We additionally present several appli-
cations as use-cases of ShapeLearner, showcasing enhanced shape
processing and manipulation.

In future work, we would like to extend ShapeLearner to focus not
only on 2D shapes represented by their contours, but also to anal-
yse the interior textures. While a reduction to 2D shape contours
reduces some of the noise, it results in a minimalist geometric rep-
resentation.We are currently exploring deep learning methods to
analyse interior textures.By going beyond it, ShapeLearner could
thus also be extended to handle object shapes with severe shape
occlusions.
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System Mammals Home Appliances Misc. Artifacts Foods Reptiles Fowls Skeletons All Avg.
N 68.3% 86.0% 88.5% 100.0% 74.5% 65.8% 57.3% 77.2% Pr ec.

N+D 69.2% 90.4% 92.3% 100.0% 74.5% 66.6% 59.8% 79.0%

Ours 79.4% 92.5% 92.6% 100.0% 84.1% 75.6% 71.8% 85.1%

N 85.5% 93.3% 93.7% 100.0% 85.4% 90.4% 76.4% 89.2% R
ecall

N+D 85.1% 92.4% 94.0% 100.0% 85.4% 90.3% 77.1% 89.2%

Ours 86.9% 93.6% 94.4% 100.0% 83.0% 91.4% 80.8% 90.0%

N 74.8% 88.1% 90.2% 100.0% 78.9% 74.3% 64.5% 81.6%

F1N+D 75.3% 90.9% 93.0% 100.0% 78.9% 74.9% 66.4% 82.8%

Ours 82.2% 92.5% 93.3% 100.0% 82.9% 81.1% 74.6% 86.7%

N 65.3% 91.4% 87.8% 93.3% 92.5% 87.8% 61.9% 82.9% C
lass

N+D 72.0% 93.2% 92.6% 93.3% 95.0% 88.9% 58.8% 84.8%

Ours 71.9% 93.7% 92.6% 93.3% 95.0% 89.3% 59.3% 85.0%

Table 1: Experimental results for segmentation and annotation (top) and classification (bottom).

System Mammals Home Appliances Misc. Artifacts Foods Reptiles Fowls Skeletons
Elephant Cow Deer Horse Cat Vase Hairdryer Broom Rifle Axe Mushroom Tortoise Crocodile Duck Bird Mammals Dinosaur

N 74.6% 62.4% 80.6% 64.5% 63.3% 67.8% 96.7% 96.7% 59.1% 93.3% 100.0% 65.6% 68.8% 63.2% 67.4% 62.2% 52.5% Prec.

N+D 75.8% 63.2% 81.7% 64.6% 65.5% 73.3% 96.7% 96.7% 78.2% 93.3% 100.0% 65.6% 68.8% 63.8% 69.2% 64.3% 55.3%

Ours 86.0% 71.4% 87.0% 77.9% 79.6% 73.3% 96.7% 96.7% 79.9% 93.3% 100.0% 78.2% 81.4% 74.4% 79.2% 75.1% 68.4%

N 90.5% 81.3% 87.7% 83.9% 80.3% 80.0% 96.7% 96.7% 85.3% 93.3% 100.0% 80.9% 84.8% 89.5% 90.6% 78.4% 74.5% R
ecallN+D 88.9% 79.6% 87.7% 83.1% 80.6% 78.3% 96.7% 96.7% 86.8% 93.3% 100.0% 80.9% 84.8% 87.5% 92.2% 78.4% 75.9%

Ours 91.1% 84.2% 90.0% 86.2% 84.8% 78.3% 96.7% 96.7% 88.5% 93.3% 100.0% 81.1% 89.9% 86.7% 93.1% 82.8% 78.8%

N 81.2% 69.7% 83.0% 72.0% 70.1% 72.1% 96.7% 96.7% 67.8% 93.3% 100.0% 71.4% 75.4% 72.6% 75.6% 68.3% 60.6% F1N+D 81.3% 69.5% 83.7% 71.8% 71.5% 75.0% 96.7% 96.7% 81.6% 93.3% 100.0% 71.4% 75.4% 72.4% 77.5% 69.6% 63.1%

Ours 88.0% 76.5% 87.8% 81.2% 81.4% 75.0% 96.7% 96.7% 83.3% 93.3% 100.0% 79.2% 84.9% 78.6% 84.1% 77.9% 71.4%
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Ours 94.4% 59.3% 80.9% 75.6% 76.0% 86.7% 100.0% 76.7% 93.1% 70.0% 93.3% 96.6% 100.0% 91.1% 76.7% 38.9% 79.8%

Table 2: Excerpts for segmentation and annotation (top) and classification (bottom).

Method Feline Reptiles Lamp Canine
Cat Leopard Tiger Tortoise Crocodile Lizard Gecko Desk Lamp Floor Lamp Bedroom Lamp Dog Wolf Fox

Precision 79.6% 73.7% 75.1% 78.2% 81.4% 88.2% 88.7% 92.6% 94.6% 85.0% 79.8% 71.5% 77.3% D
ir ectRecall 84.8% 91.1% 78.1% 81.1% 89.9% 78.5% 82.4% 90.7% 96.4% 85.6% 92% 84.6% 84.9%

F1 81.4% 80.3% 76.2% 79.2% 84.9% 82.6% 84.9% 91.4% 95.2% 83.2% 84.5% 76.1% 80.2%

Precision 66.7% 70.1% 86.7% 46.2% 71.3% 78.4% 81.2% 88.9% 92.9% 91.7% 78.0% 69.8% 74.3%

Recall 60.0% 72.6% 70.2% 52.9% 69.5% 71.9% 77.5% 87.0% 100.0% 78.9% 69.2% 77.1% 66.1%

T rans.F1 62.0% 69.6% 76.7% 48.6% 69.8% 74.8% 78.3% 87.7% 95.2% 82.1% 71.6% 71.2% 68.6%

Table 3: Experimental results for with seeds (top) and with only transfer (bottom).

(a) Scalability. (b) Comparison between baselines. (c) Classification results.

Figure 7: Experimental results graphs. In (a) we show the scalability of the average precision, recall and F1, and in (b) the comparison
with other baselines. In (c) we show classification precision comparison with other baselines.
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