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ABSTRACT:

Advances in unmanned aerial vehicles (UAV) and especially micro aerial vehicle (MAV) technology together with increasing quality
and decreasing price of imaging devices have resulted in growing use of MAVs in photogrammetry. The practicality of MAV mapping
is seriously enhanced with the ability to determine parameters of exterior orientation (EO) with sufficient accuracy, in both absolute and
relative senses (change of attitude between successive images). While differential carrier phase GNSS satisfies cm-level positioning
accuracy, precise attitude determination is essential for both direct sensor orientation (DiSO) and integrated sensor orientation (ISO) in
corridor mapping or in block configuration imaging over surfaces with low texture. Limited cost, size, and weight of MAVs represent
limitations on quality of onboard navigation sensors and puts emphasis on exploiting full capacity of available resources. Typically
short flying times (10-30 minutes) also limit the possibility of estimating and/or correcting factors such as sensor misalignment and
poor attitude initialization of inertial navigation system (INS). This research aims at increasing the accuracy of attitude determination
in both absolute and relative senses with no extra sensors onboard. In comparison to classical INS/GNSS setup, novel approach is
presented here to integrated state estimation, in which vehicle dynamic model (VDM) is used as the main process model. Such system
benefits from available information from autopilot and physical properties of the platform in enhancing performance of determination
of trajectory and parameters of exterior orientation consequently. The navigation system employs a differential carrier phase GNSS
receiver and a micro electro-mechanical system (MEMS) grade inertial measurement unit (IMU), together with MAV control input
from autopilot. Monte-Carlo simulation has been performed on trajectories for typical corridor mapping and block imaging. Results
reveal considerable reduction in attitude errors with respect to conventional INS/GNSS system, in both absolute and relative senses.

This eventually translates into higher redundancy and accuracy for photogrammetry applications.

1. INTRODUCTION

A novel autonomous navigation for unmanned aerial vehicles
based on vehicle dynamic model recently introduced by the au-
thors in (Khaghani and Skaloud, 2016), focused on reducing nav-
igation error in GNSS outage conditions. This contribution ex-
plores the possibility of using that method in presence of high
accuracy GNSS solution to improve attitude determination accu-
racy for photogrammetry applications, compared to conventional
INS/GNSS integration. A shortened introduction on principles
of the proposed method is presented in Section 2 and Section 3,
while the main part of the contribution is presented in Section 4
and focuses on results and discussions related to attitude determi-
nation accuracy in block and corridor mapping scenarios.

1.1 Motivation

Employing UAVs for photogrammetry is very popular nowadays
(Colomina and Molina, 2014). Using MAVs has considerably de-
creased cost and effort needed for photogrammetry tasks during
the filed operations. On the other hand, observation of camera
position/attitude can facilitate the post processing tasks once the
photos are taken. In order to achieve ground errors under ground
sampling distance (GSD) levels, the level of required accuracy
for EO parameters is rather demanding. This is more crucial for
DiSO, since any error on EO parameters directly translates into a
ground error. For example, an error of 0.05° in roll or pitch for a
flight altitude of 150 m means a ground error as big as 13 cm.

With high accuracy carrier-phase differential GNSS positioning,
the requirements on positioning accuracy are usually met (Rehak
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et al., 2013). However, achieving the accuracy requirements on
attitude is still challenging with MEMS IMUs typically found on
MAVs. Any improvement on attitude determination accuracy is
directly reflected in the accuracy of final ortho-photo product in
case of DiSO, and can reduce the number of required ground con-
trol points (GCP) in case of ISO, especially in corridor mapping
scenario (Rehak and Skaloud, 2015). For this reason, a novel
VDM based navigation method is employed in this research to
improve attitude determination for a MAV. Attitude control is ab-
solutely necessary for sensors such as LiDAR and pushbroom
scanners, and it is useful/necessary for frame cameras in case of
low or no lateral overlap, low number of GCPs, and over low
surface texture (i.e., low number of tie points).

Using relative attitude and position data is a rather new approach
in airborne mapping (Bldzquez, 2008) that has practical applica-
tion in MAVs (Skaloud et al., 2014). In ISO, it brings some ad-
vantages such as elimination of the need for camera-to-IMU bore-
sight calibration and removing the effect of positioning biases if
present. For this reason, the simulation results are presented for
both absolute and relative attitude determination approaches in
current paper.

1.2 Proposed approach

The proposed navigation system in (Khaghani and Skaloud, 2016)
integrates VDM with inertial navigation for its autonomous part,
and GNSS or other aids when available. The main idea behind
this concept is to benefit from the available information on vehi-
cle dynamic model and control input within the navigation sys-
tem that implicitly rejects the physically impossible motions sug-
gested by IMU due to its errors. The proposed solution requires
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no additional sensors compared to conventional INS/GNSS setup.
Therefore, its employment represents no additional cost and
weight on the platform, which is an important aspect in small
UAVs.

The VDM needs to be fed with the control input to the UAV.
This information is already available in the control/autopilot sys-
tem, but it needs to be put in correct time relations with IMU and
other measurements in real life implementation. The other input
to VDM is the wind velocity. The proposed solution makes it
possible to estimate the wind velocity within the navigation filter
itself, even in absence of air pressure sensors. This adds certain
redundancy to the system in case of air pressure sensor misbe-
havior or failure when employed.

The VDM requires a proper structure based on the host platform
type (fixed wing, multicopter, etc.) and its control actuators,
which is well described in the literature (Cook, 2013) (Ducard,
2009). The model parameters depend on the specific platform.
They can be either identified and pre-calibrated, or estimated in-
flight. This capability for online parameter estimation (dynamic
model identification) that does not require pre-calibration, mini-
mizes the effort required in design and operation.

The proposed navigation system was shown to significantly im-
prove the accuracy and mitigate the drift of position, velocity,
and attitude uncertainty during GNSS signal reception absence
(2 orders of magnitude for positioning and 1 to 2 orders of mag-
nitude for attitude determination) (Khaghani and Skaloud, 2016).
However, the benefits of employing this system are not limited to
GNSS outage conditions. Therefore, we investigate attitude de-
termination improvements provided by this approach when high
accuracy GNSS solution is available over the entire trajectory as
a potential impact on the quality of ISO and especially DiSO with
small UAVs.

2. VEHICLE DYNAMIC MODEL

A brief description of the model is presented here, along with
the key definitions and equations. More details can be found
in (Ducard, 2009) and (Khaghani and Skaloud, 2016).

2.1 Definitions

Three coordinate frames are considered in this research, “nav-
igation”, “body”, and “wind” frames. The navigation frame is
a local-level frame oriented in north, east, and down directions
denoted by (%n,Yn, 2n) O (xN,ZE,ZD), and considered to be
inertial. Definitions of body frame and wind frame (s, ys, 25)
can be perceived from Figure 1. The rotation matrix to transform
vectors from body frame to navigation frame is defined as a func-
tion of roll (¢), pitch(#), and yaw (7)) angles.

R}, = Ri1(¢) Ra2(0) Rs(v)
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The wind frame has its first axis in direction of airspeed V', and is
defined by two angles with respect to body frame, angle of attack
« and sideslip angle 8. Velocity of airflow that is due to UAV’s
inertial velocity v and wind velocity w is denoted by airspeed
vector V' as
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Figure 1: Navigation, body, and wind frames with airspeed (V'),
wind velocity(w), and UAV velocity (v), as weel as roll (¢), pitch
(0), and yaw (¢))

The rotation matrix from body frame to wind frame is defined as
a function of angle of attack and sideslip angle as

Ry = Rs(B) R; (a)
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The density of the air is calculated based on the International
Standard Atmosphere model as a function of local pressure and
temperature, which can be expressed as functions of the altitude
as detailed in (Khaghani and Skaloud, 2016).

2.2 Dynamic model

The VDM employed in this research is based on rigid body dy-
namics for a fixed wing UAV, considering polynomial models
for aerodynamic forces and moments (Ducard, 2009). The state
vector X,, = [;tN,xE, zp,v5,vh,08, 8,0, w,wx,wy,wz,n]T,
control input vector U = [nc, daq, Je, 5T]T, and wind velocity
vector w = [wn,Wg, w D]T are related via the dynamic model
of the form X ,, = f(X,,, U, w). Components of UAV velocity
vector v in body frame are represented by v8 ,vz, and v8, while
wb ,wz, and w? denote the rate of change for roll, pitch, and yaw,
respectively. Deflections of aileron, elevator, and rudder are de-
noted by dq, de, and d,, respectively. Propeller speed is denoted
by n, where n. shows the commanded value for that, and 7, is
the time constant for its dynamics. Kinematic equations, New-
ton’s equations of motion, and a first order model for propeller
dynamics form the vehicle dynamic model as

TN v,
ip| =Ry v} )
Tp | v

gsin¢cosf | +
g cos ¢ cos b |
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where m and I° denote mass and moments of inertia matrix of
the UAV, respectively. The four aerodynamic forces and the three
aerodynamic moments are expressed as polynomial functions of
navigation states, control inputs, wind velocity, and physical prop-
erties of the UAV called dynamic model parameters hereafter.
The aerodynamic forces include:

o “thrust force” as Fr = f(p,V,D,n,Cry...)
e “drag force” as F' = f(p,V,S,Cp,...,a, )
e “lateral force” as Fy’ = f(p,V, S,Chr,..., 8)
e “lift force” as F’ = f(p,V,S,CF,...,a)

The aerodynamic moments include:

e “rollmoment” as M2 = f(p,V,S,b,Cur,..., 60, B, We,wz)
e “pitch moment” as M; = f(p,V,5,¢,Cm,..., 0c, w0y
o “yaw moment” as M? = f(p,V, S,b,Cur....,0r,wz, )

Propeller diameter is denoted by D, and S, b, and ¢ represent
wing surface, wing span, and mean aerodynamic chord, respec-
tively. Density of air is shown by p, and C'..’s represent aerody-
namic coefficients for associated force and moment components.
The vehicle dynamic model parameters are collected in (9).

3. FILTERING METHODOLOGY

An extended Kalman filter (Gelb, 1974) is chosen to serve as the
navigation filter in this research, which is detailed in this section.

3.1 Scheme

The proposed navigation system utilizes VDM as main process
model within a differential navigation filter. As depicted in Fig-
ure 2, VDM provides the navigation solution, which is updated
by the navigation filter based on available measurements. Hence,
IMU output is treated as a measurement within the navigation
filter, just the way GNSS observations are, whenever they are
available. Any other available sensory data, such as altimeter or
magnetometer output, can also be integrated within the naviga-
tion filter as additional observations. VDM is fed with the con-
trol input of the UAV, which is commanded by the autopilot and
therefore available. Other needed input is the wind velocity as
an input, which can be estimated either by the aid of airspeed
sensors, or within the navigation system with no additional sen-
sors needed. The latter approach is investigated here. Finally,
the parameters of VDM are required within the navigation filter.
Pre-calibration of these parameters as fixed values is an option.
However, to increase the flexibility, as well as the accuracy of the
proposed approach while minimizing the design effort, an on-
line parameter estimation/refinement is implemented. Last but
not least, IMU errors are also modeled and estimated within the
navigation system as additional filter states.

3.2 State space augmentation

The augmented state vector includes the navigation states X,
the UAV dynamic model parameters X ,, excluding mass (m) and
moments of inertia (I, Iy, ., I5.), the IMU error terms X,
and the wind velocity components X o, .
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Figure 2: Navigation system architecture

The dynamic model parameters are included in a 26 x 1 state
vector as in (9), and modeled as constant parameters with initial
uncertainties. Description of these parameters is provided in the
nomenclature, and the numerical values used in simulation can
be found in (Ducard, 2009).

S, c, b, D, Crr,

CFTQ, CFT37 CFZI, Conm CF:(:17

X,= . ngm ngam CCEIB% ngh ngm
- Onm,y, OMpays OMpon, Omyr, COmge,

- Cuya, Cmyoys Cms.y, COmipy Cumion, -
Tn
©)
Mass and moments of inertia are not included in this vector, since
they appear as scaling factors in equations of motion and there-
fore they are completely correlated with the already included co-
efficients of aerodynamic forces and moments.

The error in each accelerometer and gyroscope inside the IMU
is modeled as a random walk (b;:;,) process. Therefore, the IMU
error terms vector is defined as

Xo=[bok, be2, b3, boL, b22, B3], (10)

where az and g¢ superscripts denote the ¢-th accelerometer and
gyroscope, respectively. This model has been found sufficient
for the low-cost IMU in consideration, but can be extended as
needed.

The wind velocity is stated as a vector in local (navigation) frame
consisting of the three components of wind velocity in north, east,
and down directions.

X, = [wn,wg, wp]” (11)
Wind velocity is also modeled as a random walk process.
3.3 Errors and uncertainties

For the purpose of simulation, a MEMS-grade IMU is consid-
ered. Random biases with standard deviations of 8 mg for ac-
celerometers and 720°/hr for gyroscopes are considered, ac-
companied by white noise and first order Gauss-Markov pro-
cesses. GNSS error is modelled as independent white noise sig-
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nals for each channel (north, east, down), with standard devia-
tions of 3 ¢m for horizontal components and 5 cm for vertical
one. The sampling frequency is 100 H z for IMU and 5 H z for
GNSS measurements.

In terms of initialization errors, random errors are considered for
different runs of the Monte-Carlo simulations with standard devi-
ations of 1 m for each position component, 1 m /s for each veloc-
ity component, 3° for roll and pitch, 5° for yaw, 1° /s for rotation
rates, and 15 rad/s for propeller speed. The errors considered
for the UAV dynamic model parameters (X ,,) are randomly dis-
tributed with a standard deviation of 10%.

More details on the process model noise, observation noise, and

initial uncertainties can be found in (Khaghani and Skaloud, 2016).

4. MONTE CARLO SIMULATIONS

Proof of the proposed concept is performed via Monte Carlo sim-
ulation study in several different situations. To make the simula-
tions realistic, errors are introduced to all the a-priori information
available to the navigation system, such as initial values of states,
dynamic model parameters, and error statistics of IMU and GNSS
measurements. Also, real 3D wind velocity data (KNMI and Al-
terra, 2012) is used in simulations. Results of Monte Carlo sim-
ulations on two sample trajectories are presented and analyzed in
this paper, one for block imaging and the other for corridor map-
ping. The reference trajectories for block imaging and corridor
mapping are depicted in Figure 3 and Figure 4, respectively.
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Figure 3: Block imaging trajectory

The Monte Carlo simulation on each trajectory consists of 100
individual runs with different realizations of random errors in
sensor data, initialization, and VDM parameters. Table 1 sum-
marizes the results of attitude determination for both trajectories.
The attitude errors are calculated based on taking the root mean
square (RMS) of errors for all the 100 runs, which is then aver-
aged over the whole trajectory. The numbers on top in each cell
show the values for absolute attitude errors, while the numbers
in parenthesis show the values for relative ones. The time step
between consecutive images for relative attitude calculations is
considered to be 2 s. In order to get more realistic results and get
closer to real application scenarios in case of block imaging, the
data on “turning parts” of trajectory are excluded from averaging
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Figure 4: Corridor mapping trajectory

process as the optical instrument would not be used during such
maneuvers. Also, a short part at the beginning of each of the two
trajectories is omitted as it is predominately influenced by initial-
ization errors and yet unstable gain within the filter. There are a
number of interesting facts that can be concluded from the results
in Table 1, some of which are discussed in the rest of this section.

Mean error [deg]
absolute (relative)
Roll [ Pitch | Yaw
Block imaging:
0.026 0.026 0.047
INS/GNSS (0.039) | (0.039) | (0.017)
0.003 0.019 0.026
VDM/INS/GNSS (0.006) | (0.006) | (0.013)
Corridor mapping:
0.026 | 0.026 | 0.146
INS/GNSS (0.039) | (0.039) | (0.037)
0.003 0.021 0.034
VDM/INS/GNSS (0.004) | (0.007) | (0.013)

Table 1: Mean error in attitude determination

First thing to notice here is the improvement in attitude estima-
tion provided by VDM/INS/GNSS integration compared to con-
ventional INS/GNSS. Table 2 reveals error reductions in percent-
ages. The combined effect of roll and pitch errors, which is cal-
culated as the norm of the two (\/ (roll error)2 + (pitch error)?),
has been reduced by 47% and 41% for absolute case in block
imaging and corridor mapping, respectively. At the flight altitude
of 150 m, the ground error in DiSO due to this combined effect
is equivalently reduced from 9.6 cm to 5.1 cm for block imag-
ing, and from 9.6 cm to 5.6 cm for corridor mapping. The error
reduction for yaw has been 45% and 77% for block imaging and
corridor mapping, respectively.

For relative attitude determination, the error reduction in com-
bined roll and pitch effect is almost two times greater, being 85%
for both trajectories. For yaw on the other hand, the error reduc-
tion is less in both cases, namely 22% for block imaging and 66%
for corridor mapping.

As can be expected, accurate estimation of yaw is more challeng-
ing in corridor mapping compared to block imaging. The reason
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Block imaging Corridor mapping

absolute (relative) | absolute (relative)
Roll 87 (85) 88 (91)
Pitch 27 (85) 19 (81)
Roll+Pitch 47 (85) 41 (85)
Yaw 45 (22) 77 (66)

Table 2: Percentage of improvement in attitude determination by
VDM/INS/GNSS integration compared to INS/GNSS

is lack of enough maneuvers and trajectory dynamic, which di-
minishes the opportunity of correcting yaw based on GNSS ob-
servations within the navigation filter. = For conventional
INS/GNSS integration, yaw error for corridor mapping is 3.1
times bigger than block imaging, while this ratio is only 1.3 for
VDM/INS/GNSS, which reveals much less sensitivity to maneu-
vers in yaw estimation accuracy. This can be especially important
for DiSO, since any error on yaw directly degrades the accuracy
of final ortho-photos. For roll and pitch, both INS/GNSS and
VDM/INS/GNSS methods show little or no sensitivity to maneu-
vers.

In ISO, provided that there is sufficient forward overlap between
consecutive images and there is enough texture visible in images,
image measurements can control pitch and yaw errors to a good
extent. Therefore, in applications where there is low side over-
lap, such as corridor mapping, the most important contribution of
aerial attitude control is in roll angle (Rehak and Skaloud, 2015).
The proposed VDM/INS/GNSS integration has reduced the roll
error 8.2 times for absolute and 10.8 times for relative approach
in corridor mapping.

Finally, for both integration methods and for both trajectories, the
real value of relative attitude estimation becomes evident in esti-
mation of yaw with 2 to 3.9 times improvements. However, one
should notice that in real implementation, the relative approach is
capable of removing camera-to-IMU boresight, therefore further
improvement in all the three attitude parameters may be expected
compared to simulated results in this paper.

5. CONCLUSION AND PERSPECTIVES

A novel method to perform autonomous navigation and sensor in-
tegration for UAVs was recently introduced by the authors. This
method is based on integrating vehicle dynamic model within
navigation system, and has been already proven to be very effec-
tive in reducing navigation solution drift during GNSS outages.
In current paper, the application of this method for photogramme-
try applications has been investigated, estimating attitude param-
eters, while considering the availability of high accuracy GNSS
positioning in two trajectories, one for block imaging and another
for corridor mapping.

Results of 100 realizations in a Monte Carlo simulation showed
considerable error reductions for both absolute and relative at-
titude determination and for both trajectories. For example, at
flight altitude of 150 m and in case of absolute attitude determina-
tion, the improved attitude determination through
VDM/INS/GNSS integration would reduce the ground error in
DiSO due to combined effect of roll and pitch errors from 9.6 cm
to 5.1 ¢m for block imaging, and from 9.6 ¢m to 5.6 cm for cor-
ridor mapping. This reduction was almost two times more for roll
and pitch in case of relative attitude estimation, but less for yaw.

In conventional INS/GNSS integration, yaw determination is
highly sensitive to maneuvers and trajectory dynamic in hori-
zontal plane, as it needs enough dynamic to become observable

within the navigation filter. For the two trajectories in this paper,
the error in yaw estimation by INS/GNSS was 3.1 times more for
corridor mapping compared to block imaging. Such sensitivity is
noticeably less for VDM/INS/GNSS, with the same ratio being
only 1.3, which can be considered as an important advantage of
this method, especially for DiSO.

Based on simulation results in this paper, the benefit of relative at-
titude estimation compared to absolute attitude estimation is more
evident for yaw. This holds for both conventional and proposed
integration methods, and for both trajectories. However, further
improvements are expected from relative approach for all EO pa-
rameters in real implementation, since it is capable of removing
camera-to-IMU boresight, uncertainty of which is not included in
simulations within this paper.

Further development of current work will include studies on pro-
posed navigation system in real scenarios. Technical and per-
haps scientific challenges can be expected in real implementation.
Proper time stamping of all sensor observations and scaling the
control input signals are examples of technical challenges. On
the scientific part, the main challenges will probably be related to
unmodeled dynamics and disturbances, and the inclusion of addi-
tional effects, such as sensor misalignments, actuator dynamics,
UAV body elasticity, and asymmetric mass distribution.
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