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ABSTRACT: 

 

In recent years, with the development of the high resolution data acquisition technologies, many different approaches and algorithms 

have been presented to extract the accurate and timely updated 3D models of buildings as a key element of city structures for 

numerous applications in urban mapping. In this paper, a novel and model-based approach is proposed for automatic recognition of 

buildings’ roof models such as flat, gable, hip, and pyramid hip roof models based on deep structures for hierarchical learning of 

features that are extracted from both LiDAR and aerial ortho-photos. The main steps of this approach include building segmentation, 

feature extraction and learning, and finally building roof labeling in a supervised pre-trained Convolutional Neural Network (CNN) 

framework to have an automatic recognition system for various types of buildings over an urban area. In this framework, the height 

information provides invariant geometric features for convolutional neural network to localize the boundary of each individual roofs. 

CNN is a kind of feed-forward neural network with the multilayer perceptron concept which consists of a number of convolutional 

and subsampling layers in an adaptable structure and it is widely used in pattern recognition and object detection application. Since 

the training dataset is a small library of labeled models for different shapes of roofs, the computation time of learning can be 

decreased significantly using the pre-trained models. The experimental results highlight the effectiveness of the deep learning 

approach to detect and extract the pattern of buildings’ roofs automatically considering the complementary nature of height and RGB 

information. 
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1. INTRODUCTION 

Nowadays reconstruction of 3D building models is one of the 

most challenging and widely studied topics in remote sensing 

and photogrammetric research institutions. Automatic detection 

and extraction of buildings in urban areas using remotely sensed 

data are fundamental tasks for 3D reconstruction in various 

applications such as urban mapping, 3D city generation, 

geographic information system updating and monitoring and 

navigation. So far, many methods and techniques are proposed 

to extract and recognize the different objects in optical images 

which can be analysed based on different aspects such as the 

type of implemented data, the available primary knowledge, and 

the selected applicable algorithm.  

In recent photogrammetry and remote sensing applications, 

laser scanning and optical imaging technologies are two widely 

used data sources for 3D building extraction. Aerial laser 

scanners record 3D point clouds as well as intensity of objects 

as their raw outputs. Aerial or satellite sensors, on the other 

hand, provide some grey scale images in a 2D plane. Each of 

these technologies has their own advantages and disadvantages 

(Haala, et al., 1999; Kim and Habib, 2009). For instance, the 

optical sensors acquire intensity images with high resolution 

and high information content but only in 2D space and 

therefore, the extraction of 3D data from these images are 

usually difficult. On the other hand, the 3D coordinates of 

points are recorded very fast and accurate using the laser 

scanners, but without photometric information of objects. Due 

to the weaknesses and strengths of each individual data, the 

combination of 2D optical and 3D laser data is served as 

complementary information for building detection (Vu, et al., 

2009; Salah, et al., 2009; Hermosilla, et al., 2011; Zhou, et al., 

2014).  

In recent years several methods have been developed for 

building detection and recognition which can be categorized 

into three general methods based on the degree of contextual 

knowledge as model driven, data driven and hybrid methods 

(Schwalbe, et al., 2005; Wichmann, et al., 2015). In the model 

driven or top-down approaches, based on the primary 

knowledge about the shape of buildings in the area of interest, a 

set of predefined models is created as a library of parameterized 

shapes and fitted into extracted points of buildings to evaluate 

the best 3D model. The main advantage of the model driven 

approaches is robustness especially in case of insufficient 

building points due to incomplete data (Sohn, et al., 2007) and 

also the final models have correct topology (Wichmann, et al., 

2015). In model driven approach, since the library might not be 

included the knowledge for all types of buildings, some 

buildings especially with complex structures may be not 

modelled completely. In the data driven or bottom-up 

approaches, the points related to the roof top are extracted based 

on a set of building measurements and are grouped into 

different roof planes with 2D topology and are used for 3D 

modelling (Zhang, et al., 2012). The main advantage of the data 

driven approach is that there is no need to have a prior 

knowledge of specific building structure, however this method 
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requires very dense collection of building’s points to 

reconstruct the 3D models correctly (Sohn, et al., 2007). In the 

third group of modelling approaches, the combination of model 

driven and data driven algorithms is used to have an optimal 

method for compensating the weakness of each methods.   

According to our study, current methodologies and algorithms 

on building detection and extraction problem can be divided 

into four groups as; plan fitting based methods (Mongus, et al., 

2014); filtering and thresholding based methods (Maltezos, et 

al., 2015;  Hermosilla, et al., 2011) such as morphological 

methods (Yu, et al., 2010); segmentation based methods such as 

binary space partitioning (Wichmann, et al., 2015), shadow 

based segmentation (Singh, et al., 2015; Ngo, et al., 2015), and 

region growing based algorithms (Matikainen, et al., 2010; 

Awrangjeb, et al., 2013); and finally the latest group, different 

supervised classification methods (Hermosilla, et al., 2011; 

Guo, et al., 2011; Karantzalos, et al., 2015; Vakalopoulou, et. 

al, 2011).  

A model based approach using the combination of LiDAR data 

and aerial images can be used to extract buildings. For this, a 3-

D primitives’ library from buildings is created which includes 

the aspects of buildings. Then, a graph is constructed to 

represent the face aspects and attributes of buildings obtained 

by the formulated coding regulations. So the buildings can be 

extracted based on the aspect graph at a successful rate of 93% 

(Zhou, et al., 2014). Instead of using LiDAR data, the height 

information of objects presented a DTM/DSM can be extracted 

from multi view images for model based building detection 

techniques. The extracted buildings from DSM and rule-based 

classification results are fused to reconstruct the building 

models by a grammar-based approach at 88% detection rate 

(Karantzalos, et al., 2015). Moreover, the problem of model 

based building detection can be solved using a DSM generated 

from satellite images and stereo matching techniques. For this, 

segmentation is performed inside each footprint boundary of 

buildings to generate the quadrilateral primitives and then the 

best fitted models are calculated to reconstruct the buildings 

(Partovi, et al., 2014). A data driven method based on modified 

grab cut partitioning algorithm can be developed for automatic 

building extraction from satellite images. The initial locations of 

buildings are estimated by shadow analysis and then buildings’ 

pixels are separated from other objects in an optimization 

solution (Khurana, 2015). Another data driven method for 

building detection using LiDAR data was developed based on 

multi-scale data decomposition. In this method, planar points 

can be extracted using a new algorithm for local fitting surfaces 

(LoFS). Next, regions with similar geometrical and surface 

properties but with different contexts are separated by analysing 

of planar ground and non-ground regions. The result with the 

completeness, correctness and quality values of about 94.0%, 

94.3% and 88.9% for each area has been reached respectively 

(Mongus, et al., 2014).  

One of the state-of the-art supervised classification methods is 

based on Convolutional Neural Networks (CNNs) which is 

widely employed in many computer vision and machine 

learning applications such as pixel level classification and 

automatic object detection and recognition (Zeiler, et al., 2014; 

Bengio, 2009; Deng, et al., 2009; Liu, et al.,  2015). A scalable 

detection algorithm called Region based CNN (R-CNN) is 

developed by Girshick, et al. (2015) to detect the objects in 2D 

computer vision images automatically. In this method, the 

selective search algorithm (Uijlings, et al., 2013) is used to 

localize the objects as candidate regions and then these regions 

feed to the CNN to extract a fixed-length feature vector for each 

region. These feature vectors are then compared to a fine-tuned 

pre-trained model to score regions and find the best class for 

each object (Girshick, et al., 2015). Zhang, et al. (2015) 

proposed two search algorithms to localize objects with high 

accuracy based on Bayesian optimization and also a deep 

learning framework based on a structured SVM objective 

function and CNN classifier. The results on PASCAL VOC 

2007 and 2012 benchmarks highlight the significant 

improvement on detection performance (Zhang, et al., 2015). A 

3D object recognition method based on CNNs is developed by 

Alexandre (2016) using RGB-Depth data. In this methods, a 

CNN is trained for each image band (red, green, blue and depth) 

separately such that the weights vector for each CNN will be 

initialized with the weights vector of the trained CNN for 

another image band. In another word, the knowledge is 

transferred between CNNs for RGB-D data (Alexandre, 2016). 

A supervised classification procedure based on deep CNNs is 

proposed by Vakalopoulou, et al. (2015) to detect buildings 

from high resolution satellite images. In this method, the 

extracted feature vector by CNN is used for training a binary 

SVM classifier to separate building and non-building objects. 

Then, an MRF model is employed to obtain the final labels for 

each class of objects (Vakalopoulou, et al., 2015). To extract 

the buildings from aerial images, Yuan, et al. (2016) designed a 

CNN by combining multi-stage feature maps and used the 

signed distance function for boundary representation. The CNN 

model is trained from scratch (with random initialization) for 

2000 images with 7400 buildings. The CNN training is based 

on Theano library with high computational time and high-

volume computing (Yuan, 2016).  

With the high variation of building appearances and even 

locations in urban areas, the development of an automatic 

method for detection and recognition the different types of 

buildings with high accuracy and precision as well as with 

effectiveness and robustness have become increasingly 

important. Up to now, there are not existing many researches on 

3D building detection and recognition based on CNNs and 

other deep learning algorithms using remotely sensed data. In 

this paper, the building detection as well as the 3D recognition 

of roof top models such as flat, gable, hip, pyramid hip and 

mansard roofs models is investigated using a LiDAR DSM and 

aerial ortho-photos.  

 

2. CONVOLUTIONAL NEURAL NETWORK (CNN) 

The summary of deep learning concept and convolutional 

networks are described in this section. Deep Learning (DL) 

refers to a new area of machine learning and Artificial Neural 

Network (ANN) with multilayer perceptron concept and 

hierarchical learning structure (Bengio, 2009; Deng, et al., 

2009; Liu, et al., 2015). Deep Learning is based on the learning 

multiple levels of representation to present a more efficient 

solution and is currently used in many applications including 

object detection (Girshick, et al., 2015), scene classification 

(Zou, et al., 2015), semantic labeling (Long, et al., 2015), 

speech recognition (Dahl, et al., 2012), and Natural Language 

Processing (NLP) (Socher, et al., 2013). Convolutional Neural 

Networks (CNN) is a kind of deep learning approach which 

consists a number of convolutional and subsampling layers in 

an adaptable structure based on the human visual system 

(Filipe, et al., 2014). CNN usually accepts the image data with 

optional dimension as an input layer and generates a vector of 

highly distinguishable features related to object classes as an 

output layer. The hidden layers include the convolutional layers, 

sampling layers (pooling layers) and the fully connected layers 

(Phung, et al., 2009; Liu, et al., 2015). Typical CNN 

architecture is shown in Figure 1. The convolutional layer 

consists of different learnable weights and biases which are 
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applied to sample windows of the input layer like filters with 

different sizes and depths based on convolution algorithm and a 

feature map is generated for each sample and each filter. These 

feature maps are stacked to each other to form a convolutional 

layer (Phung, et al., 2009). The sampling layer is a non-linear 

down sampling function such as maximum pooling, average 

pooling or even L2-norm pooling that causes to progressively 

reduce the spatial size of the input layer (Phung, et al., 2009). 

The fully connected layer is the final layer of the network with 

high-level features and each neuron of this layer is connected to 

exactly one of the previous feature map (Phung, et al., 2009). 

 

 
 

Figure 1. Architecture of LeNet-5, a CNN (Lecun, et al., 1998) 

 

Generally, there are two common approaches for training a 

CNN model as training from scratch with random values of 

weights, as well as fine-tuning of a pre-trained model (Maitra, et 

al., 2015; Girshick, et al., 2015). In first method, a large 

collection of data in various classes should be used to train the 

several million parameters of a CNN model based on the 

random values of the weight and bias vectors which needs a 

high capacity of memory and time as well as a large number of 

repetition rate to converge the training process and achieve high 

accuracy. Since there is a small and insufficient training dataset 

in many applications, the CNNs cannot train from the scratch 

and random initializations due to over fitting problem. In this 

case, an existence pre-trained model is utilized as a start point 

for training the dataset with optional number of classes. For 

this, the Stochastic Gradient Descent (SGD) (Girshick, et al., 

2015) as a back propagation algorithm is employed to adapt the 

weight and bias values of each CNN layer to small dataset with 

acceptable training accuracy.  

 

3. METHODOLOGY 

Pattern recognition of buildings’ roofs is an important issue to 

generate an accurate 3D model of buildings. In this paper, the 

2D image data is enriched with height information of buildings 

using a CNN framework which is particular useful to have an 

automatic and robust detection of buildings in urban areas. The 

main steps of this approach are as follows (cf. Figure 2): 

I. Data Preparing Step 

II. Data Training Step 

III. Data Testing Step 

As shown in Figure 2, three strategies are proposed to combine 

the optical images (RGB bands) and height data (high 

resolution DSM) to evaluate the effect of input layers of CNN 

on the final classification results. As a first strategy, a CNN 

model is trained from RGB images and DSM separately based 

on a pre-trained model. Next, these fine-tuned models are 

applied on the roof segments and two feature vectors are 

extracted for each segment. Finally the feature vectors are 

combined to define the optimal label for each segment. In the 

second strategy which is inspired from (Alexandre, 2016), the 

fine-tuned model of RGB images is used as a starting point of 

training a CNN for DSM data in order to transfer the knowledge 

between models which it causes to improve the final accuracy 

and reduce the training time (Alexandre, 2016). In final 

strategy, the Principal Component Analysis (PCA) is applied to 

a RGB-D data for whitening it. So, the first three PCA 

components are used for training a CNN model in training step 

and also for extracting the feature vectors in data testing step. 

The summary of each step and their main components are given 

in the next sub-sections and the comparison between different 

results of each strategy are presented accordingly. 

 

3.1 Data Preparing Step 

In order to detect and classify different building types in urban 

area, a library of roofs should be created randomly based on 

ground truth data which is included different classes of roofs 

such as flat, gable, hip, pyramid hip, and mansard shapes. Each 

class contains tiles centered on top view of buildings with 

different scales and rotations from both RGB images and DSM 

data. Also two classes as complex roofs and non-roof objects 

are created to consider the classes of complex roofs with 

unusual shapes and other detected objects such as trees or cars 

in segmentation step. All images need to be pre-processed 

before being submitted to a CNN. There are three common 

forms of pre-processing of a matrix data such as resizing, mean 

subtraction and normalization (Girshick, et al., 2015). The final 

library is then used as the training dataset to train a CNN model. 

 

3.2 Data Training Step 

A deep representation of CNN have been trained on a large 

dataset (ca. several million images) using different toolboxes 

such as Caffe (Jia, 2013), Theano library (Bastien, et al., 2012), 

and MatConvNet toolbox (beta17) (Vedaldi and Lenc, 2015) 

over several weeks using multiple GPUs. This network is 

named as the pre-trained model. The available pre-trained 

models can be found online in a Model Zoo of Caffe library 

(Jia, 2013). On the other hand, to use a deep network for a 

specific application with a small training dataset and different 

classes of objects, the network training from scratch are not 

applicable appropriately and cannot reach to a desired accuracy. 

Therefore, a pre-trained model which is learnt from a large 

dataset, can be used as a powerful image descriptor applicable 

to other datasets (Chatfield, et al., 2014). In this method, the last 

fully-connected layer of pre-trained model is removed and a 

layer with random weights is replaced based on classes of small 

dataset. Then, the weights of pre-trained network are fine-tuned 

by continuing the back propagation based on gradient descent 

algorithm. In this paper, an existing pre-trained model is 

employed to learn the CNN for RGB images, DSM data and 

PCA images, separately. On the other hand, the fine-tuned RGB 

model is used to learn CNN for DSM data. As a final result of 

this step, four fine-tuned models are created as; the fine-tuned 

RGB model, the fine-tuned DSM model (type I), the fine-tuned 

DSM model (type II) and the fine-tuned PCA model based on 

above mentioned strategies which are employed to predict the 

classes of objects in next step. 

 

3.3 Data Testing Step 

After training a deep network using the roof library, a test data 

is used to evaluate the performance of the trained model.  For 

this, three sub-steps should be performed as follows: 

I. Building Segmentation  

II. CNN Features Extraction 

III. Feature Labeling 

The details of each step are described in the next sub-sections. 
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3.3.1 Building Segmentation: Unlike image classification, 

object detection requires localizing objects within an image 

(Girshick, et al., 2015). Using the DSM over the urban area, the 

bounding boxes of roofs can be extracted based on height 

thresholding and generation of binary masks for different height 

values. Next, the test data including the RGB images, DSM data 

and PCA components of the combination RGB and DSM data 

are cropped using the extracted bounding boxes and a set of 

candidate tiles is prepared for the CNN detector. To improve 

the candidate tiles and remove non-roof objects from each tiles, 

an image reconstruction technique is employed which is 

inspired from Arefi, et al. (2013). Also, the pre-processing step 

which contains resizing, mean subtraction and normalization is 

applied on each tile in order to convert a candidate tile into a 

compatible form with the CNN.  

 

3.3.2 CNN Features Extraction: The RGB image tiles are 

used as an input layer for the fine-tuned RGB model and a fixed 

length vector of features with dimension of 1×7 (7 is the 

number of roof classes) extracted for each tile using 

MatConvNet toolbox (beta17) (Vedaldi and Lenc, 2015). For 

all of tiles in all data (RGB, DSM, and PCA), the feature 

vectors are extracted using related the CNN model which is 

created at the training step.  

 

3.3.3 Features Labeling: The feature vector represents the 

scores of image tiles for each roof class. If the image tile 

belongs to a specific class, the score of the class is maximum 

value. For first and second mentioned strategies, two feature 

vectors of RGB and DSM data are combined to compute the 

maximum score of each tile and find the optimal label of related 

roof class. For third strategy, the label of class is calculated 

based on the maximum value of feature vectors extracted from 

PCA components. 

 
4. EXPERIMENTS AND RESULTS 

In this study, a knowledge based approach is proposed to detect 

the buildings and recognition of 3D models of various 

building’s roof types over an urban area based on a hierarchical 

learning of the combination of spectral and geometrical 

features. For this, a novel RGB-D architecture is used to design 

a convolutional neural network for feature learning and label 

prediction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1 Case Study 

The main dataset is consist of aerial images and LiDAR data of 

Stuttgart, in Germany. The DSM is created by LiDAR first 

range measurement in 1 m ground sampling distance, and it is 

used to generate the ortho-photo in 20 cm ground resolution. 

Based on the different types of buildings in the area of interest, 

six classes of flat, gable, hip, pyramid hip, mansard and 

complex roof are selected to create a library of different roofs. 

Also an additional class as non-roof class is created for 

classification of other objects. For each class, about 100 tiles of 

top view roofs are generated randomly from the training data. 

Two images covering areas excluded from the training data are 

selected for testing the model. Based on three proposed 

strategies, the training and testing data can be consist of the 2D 

tiles with three channels including three red, green and blue 

channels, or three repeating channels which are created by 

DSM, or three channels of the first three PCA components 

applied on the RGB-D data.  

 

4.2 Model Training 

The selected convolutional network is inspired by the success of 

the CNN of Krizhevsky et al. (2012). This network have been 

trained on a large dataset called ImageNet ILSVRC benchmark 

data (Deng, et al., 2009) of 1,000 different categories using 

MatConvNet toolbox (Vedaldi and Lenc, 2015). Since the CNN 

architecture requires inputs of a fixed 224×224×3 pixel size, all 

700 tiles in the training dataset are resized and also subtracted 

from mean image.  Then, to adapt the CNN for seven classes of 

roofs, the fine tuning of ImageNet model is performed for 200 

iterations and 0.01 learning rate using CPU processor with 5 

cores and 8 GB of RAM. The comparison parameters for the 

trained models such as the learning time, the top 1 error and the 

accuracy are presented for the last iteration in Table 1. The top 

1 error means how often the highest scoring estimation is wrong 

(Krizhevsky, et al., 2012).  

 

Dataset CNN model 
Time 

(h) 

Top1 

error 

Accuracy 

(%) 

RGB ImageNet 4.3 0.0529 94.7 

DSM ImageNet 8.2 0.0843 91.6 

DSM Fine-tuned RGB 6.6 0.0486 95.1 

PCA ImageNet 4.4 0.0886 91.1 

 

Table 1. The comparison parameters of fine-tuned models 

 
 

Figure 2. Three strategies for 3D recognition of building roof models 
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Figure 3. The rate of convergence of training on different 

models (I: DSM dataset trained by the ImageNet, II: DSM 

dataset trained by the fine-tuned RGB model) 

 

Also Figure 3 shows how the accuracy of training improves 

with more iterations. According to Table 1, the performance of 

training on the DSM dataset based on fine-tuned RGB model is 

better than others with the lowest top 1 error and higher 

accuracy (0.0486 and 95.1 %, respectively). Moreover, when 

the fine-tuned RGB model is employed as the initial model for 

training on the DSM dataset, the top 1 error decrease about two 

times. Also, third strategy based on PCA does not show any 

significant improvement on learning accuracy. To have an 

accurate assessment on the training performance, the maximum 

scores of validation tiles in each class of roofs can be compared 

with other classes as Figure 4 for different models. 

 

  
a b 

  
c d 

 

Figure 4. Comparison of maximum scores for validation data in 

each class based on different trained models: a: fine-tuned RGB 

model, b: PCA model, c: fine-tuned DSM model, d: fine-tuned 

DSM model initialized by RGB model, (1: Complex, 2: Flat, 3: 

Gable, 4: Hip, 5: Pyramid Hip, 6: Mansard, 7: Non roof) 

 

Based on the visual assessments on plots in Figure 4, the RGB 

tiles can be more distinguishable for each class, however the 

mis-classification errors exist in some classes especially in 

complex and hip roofs. Moreover, the PCA tiles have some 

noises on complex and mansard classes, and the maximum 

score of these tiles are not in own classes. Also, if the DSM 

training dataset is fine-tuned based on the fine-tuned RGB 

model, the performance of the classification improves a little 

especially in the hip roof class.  

 

4.3 Model Testing 

For testing the trained models, two datasets are used out of 

training area consist of different types of roofs and other 

objects. The bounding boxes of each candidate regions are 

generated based on the segmentation results using the 

thresholding operation. The test datasets are cropped for each 

bounding box and similarly to the training pipeline, the pre-

processing operations are applied on each extracted region. 

Next, the results are entered into CNN process to extract feature 

vectors. In Figure 5, the final results of extracted bounding 

boxes and the final labels for each detected roof are shown. The 

standard quality measures of Completeness, Correctness, and 

Quality (Vakalopoulu, et al., 2015) have been calculated for all 

three stated strategies as given in Equation 1. 

 

   
FPFNTP

TP
Qual

FPTP

TP
Corr

FNTP

TP
Coml








 .;.;.       (1) 

 

where TP is True Positive, FP is False Positive, and FN is False 

Negative. Tables 2 and 3 show the standard measures for two 

test datasets in three strategies, respectively. Also, the final 

results of building detection and roofs types’ recognition are 

shown in Figure 5. 

 
Feature vector Test dataset 1 

 Compl. Corr. Qual. 

RGB+DSM (I) 84.2 % 48.5 % 44.4 % 

RGB+DSM (II) 88.9 % 70.6 % 64.9 % 

PCA 81.2 % 39.4 % 36.1 % 

 

Table 2. Quantitative evaluation results for test dataset 1 

 

Feature vector Test dataset 2 

 Compl. Corr. Qual. 

RGB+DSM (I) 92.3 % 40.0 % 38.7 % 

RGB+DSM (II) 95.7 % 70.9 % 68.8 % 

PCA 91.7 % 37.19 % 36.7 % 

 

Table 3. Quantitative evaluation results for test dataset 2 

 

As shown in the Tables 2 and 3, in the second strategy (the 

DSM dataset is trained based on the fine-tuned RGB model) the 

average of correctness and completeness rates are about 71 % 

and 96 %, respectively. These values are higher than the rates of 

other strategies. There is no significant difference between first 

and third strategies in completeness and correctness rates. 

Moreover, the third strategy based on PCA does not show a 

promising result according to the correctness and completeness 

values. On the other hand, the quality of detection for second 

strategy is higher than others and it is about 69 %. It could be 

also concluded that, there are some factors which have direct 

effect on the final quality of detection and recognition as: 

 Shadow of buildings: occluded areas by shadows of 

other higher buildings on the specific roof lead to 

wrong classification results. 

 The details of roofs: some small structures on the 

roofs such as chimneys and windows can effect on the 

final results of classification. 
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 Very complex roofs: one of the disadvantages of 

model driven approaches is that some complex 

models might not be included in the library. 

Therefore, the whole complex roofs might not be 

classified or classified correctly. 

 Noise of data: noise of data especially in DSM is an 

important element which has significant effect on the 

accuracy of detection. 

It should be also concluded that the DSM provides 

complementary information to enrich the building knowledge 

which is used for more accurate detection and recognition of 

buildings, although the pre-processing of data and the 

segmentation results are also important to obtain a desired 

result. 

 

5. CONCLUSION 

One of the most important issues in 3D city model generation is 

the automated detection of buildings and recognition of roof 

types from remotely sensed data. In this paper, three strategies 

based on the combination of spectral (RGB) and geometrical 

(DSM) information are produced to be employed in a 

convolutional neural network based recognition approach. Our 

implementation is based on the MatConvNet toolbox and a pre-

trained ImageNet model. At the first strategy, the pre-trained 

model is used to fine-tune and extract features from LiDAR 

DSM and RGB images separately. At the second strategy, the 

knowledge is transferred from the fine-tuned RGB model for 

learning the network related to the DSM training dataset. At the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

final step of both strategies, the feature vectors are combined to 

find the optimal label of roofs for the extracted buildings. In the 

third strategy, the combination of LiDAR DSM and RGB 

images is performed based on PCA algorithm. The qualitative 

and quantitative assessments indicate that quite promising 

results with significant high completeness and correctness rates 

for the second strategy are obtained. Since the DSM data 

provides a rich source of geometrical information, the height 

values of roofs can be embedded into a CNN using the raw 

RGB images for learning the CNN and therefore, extracting 

more accurate and distinguishable features to improve accuracy 

of roofs’ pattern recognition. Moreover, since the segmentation 

results have a direct effect on the final detection performance 

significantly, an important focus in the future work will be on 

improving the automatic segmentation results. 
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