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ABSTRACT:

In optical remote sensing, spatial resolution of images is crucial for numerous applications. Space-borne systems are most likely to be
affected by a lack of spatial resolution, due to their natural disadvantage of a large distance between the sensor and the sensed object.
Thus, methods for single-image super resolution are desirable to exceed the limits of the sensor. Apart from assisting visual inspection of
datasets, post-processing operations—e.g., segmentation or feature extraction—can benefit from detailed and distinguishable structures.
In this paper, we show that recently introduced state-of-the-art approaches for single-image super resolution of conventional photographs,
making use of deep learning techniques, such as convolutional neural networks (CNN), can successfully be applied to remote sensing
data. With a huge amount of training data available, end-to-end learning is reasonably easy to apply and can achieve results unattainable
using conventional handcrafted algorithms.
We trained our CNN on a specifically designed, domain-specific dataset, in order to take into account the special characteristics of
multispectral remote sensing data. This dataset consists of publicly available SENTINEL-2 images featuring 13 spectral bands, a ground
resolution of up to 10 m, and a high radiometric resolution and thus satisfying our requirements in terms of quality and quantity.
In experiments, we obtained results superior compared to competing approaches trained on generic image sets, which failed to reasonably
scale satellite images with a high radiometric resolution, as well as conventional interpolation methods.

1. INTRODUCTION

As resolution has always been a key factor for applications using
image data, methods enhancing the spatial resolution of images
and thus actively assist in achieving better results are of great
value.

In contrast to classical super resolution approaches, using multiple
frames of a scene to enhance their spatial resolution, single-image
super resolution algorithms have to solely rely on one given input
image. Even though earth observation missions typically favor
orbits allowing for acquisition of the same scene on a regular basis,
the scenes still change too fast in comparison to the revisit time,
e.g., due to shadows, cloud or snow coverage, moving objects or,
seasonal changes in vegetation. We hence tackle the problem, as
if there was no additional data available.

Interpolation methods, like bicubic interpolation, are straight-
forward approaches to solve the single-image super resolution
problem. Recent developments in the field of machine learning,
particularly computer vision, favor evidence-based learning tech-
niques using parameters learned during training to enhance the
results in the evaluation of unknown data. By performing end-
to-end learning with vast training datasets for optimizing those
parameters, deep learning techniques, most prominently convo-
lutional neural networks (CNNs) are actually able to enhance the
data in an information-theoretical sense. CNN-based single-image
super resolution methods therefore are not bound to the same
restrictions as common geometric interpolation methods exclu-
sively working on the information gathered in a locally restricted
neighborhood.

Applications include but are not restricted to tools aiding the
visual inspection and thus try to improve the subjective quality

∗Corresponding author

(a) Source image (b) Enhanced image

Figure 1: Enhancement of spatial resolution through single-image
super resolution

as to be seen in Figure 1. Single-image super resolution methods
can be efficiently used as pre-processing operations for further
manual or automatic processing steps, such as classification or
object extraction in general. As a wide range of remote sensing
applications use such operations, the adaption of state-of-the-art
single-image super resolution methods is eminently valuable.

The natural disadvantage regarding spatial resolution in satellite
imagery, caused by optical hardware and sensor limitations cou-
pled with the extreme distance between sensor and sensed object,
further increase the need for solutions to the super resolution
problem. Multispectral satellite images, let alone hyperspectral
datasets, however vary from generic images in terms of their prop-
erties to the point that CNNs trained on generic images fail notably
when confronted with remote sensing images (cf. Section 4.3).

In this paper we show how re-training a CNN designed for single-
image super resolution using an appropriate dataset for training
can yield better results for multispectral satellite images. Our
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experiments furthermore revealed system-inherent problems when
applying deep-learning-based super resolution approaches to mul-
tispectral satellite images and thus give indications on how to
successfully adapt other related methods for remote sensing appli-
cations as well.

The remainder of this paper is structured as follows: Section 2
introduces essential concepts and puts our work in the context of
other existing approaches. In Section 3, starting from a detailed
analysis of the problem, we present our methods, especially our ap-
proach to address the identified problems. Extensive experiments
to implement and prove our approach are described in Section 4.
For this purpose, the generation of an appropriate dataset is shown
in Section 4.2. The training process as well as results for a ba-
sic and an advanced approach are presented in Section 4.3 and
Section 4.4. Based on our experiments, we discuss the method
and its results in Section 5 and compare them to other approaches
followed by a concluding summary containing further thoughts
on potential extensions in Section 6.

2. RELATED WORK

The term super resolution is commonly used for techniques using
multiple frames of a scene to enhance their spatial resolution.
There is however a broad variety of approaches to super resolution
using single frames as their only input as well. Those can be
divided into several branches, according to their respective general
strategy.

As a first step towards super resolution, interpolation methods like
the common bicubic interpolation and more sophisticated ones,
like the Lanczos interpolation proposed by Duchon (1979), proved
to be successful and therefore serve as a solid basis and reference
for quantification.

Dictionary-based approaches, prominently based prominently on
the work of Freeman et al. (2000) and Baker and Kanade (2000)
focus on building dictionaries of matching pairs of high- and low-
resolution patterns. Yang et al. (2008, 2010) extend these methods
to be more efficient by using sparse coding approaches to find
a more compact representation of the dictionaries. Recent work
in this field, like (Timofte et al., 2013), further improve these
approaches to achieve state-of-the-art performance in terms of
quality and computation time.

Solving problems using deep learning has recently become a
promising tendency in computer vision. A successful approach to
single-image super resolution using deep learning has been pro-
posed by Dong et al. (2014, 2016). They present a CNN, which
they refer to as SRCNN, capable of scaling images with better
results than competing state-of-the-art approaches.

CNNs were first proposed by LeCun et al. (1989), in the context
of an application for handwritten digit recognition. LeCun et
al. (1998) further improved their concept, but it only became a
striking success when Krizhevsky et al. (2012) presented their
exceptionally successful and efficient CNN for classification of
the IMAGENET dataset (Deng et al., 2009). Especially the ability
to train CNNs on GPUs and the introduction of the rectified linear
unit (ReLU) as an efficient and convenient activation function
for deep neural networks (Glorot et al., 2011), enabled for work
featuring deep CNNs as outlined by LeCun et al. (2015). Soft-
ware implementations like the CAFFE framework (Jia et al., 2014)
further simplify the process of designing and training CNNs.

The following section contains detailed information about the
work of Dong et al. (2014, 2016) and the SRCNN.

(a) High-resolution (source) (b) Low-resolution (simulation)

Figure 2: Low-resolution simulation

3. A CNN FOR MULTISPECTRAL SATELLITE IMAGE
SUPER RESOLUTION

As shown in Section 2, there are promising CNN-based approaches
available in the computer vision research field to tackle the single-
image super resolution problem. In this section we examine prob-
lems of utilizing a pretrained network to up-scale multispectral
satellite images in Section 3.1 and further present our approach to
overcome the identified problems in Section 3.2.

3.1 Problem

As motivated in Section 1, single-image super resolution methods
focus on enhancing the spatial resolution of images with using
one image as their only input.

Multispectral satellite images, as acquired by satellite missions
like SENTINEL-2, differ significantly from photographs of objects
recorded with standard hand-held cameras, henceforth referred
to as conventional images. Particularly with regard to resolution,
there is a big difference between those types of images.

Despite the rapid development of spaceborne sensors with amaz-
ingly low ground sampling distance (GSD), and thus high spatial
resolution, the spatial resolution of satellite images is still limited
and very low in relation to the dimensions of the sensed objects. A
244× 244 px cut-out detail of a SENTINEL-2 image as prepared
for our dataset (cf. Section 4.2) may cover the area of a whole
town, while an equally sized image from the ImageNet dataset
will typically depict a single isolated object in a much lower scale
and therefore in superior detail.

This turns out to be a serious problem for deep learning approaches
as training data consisting of pairs of matching low- and high-
resolution images is needed in order to learn an optimal mapping.
There is obviously no matching ground truth if the actual images
are used as the low-resolution images to be up-scaled, since this
would acquire images of even higher resolution. The only way
to get matching pairs of training data therefore is to simulate
a low-resolution version of the images. Looking ahead at the
approach described in the following section, this is done through
subsequently sampling the images down and up again.

Consequently, the simulated GSD, i.e., spatial resolution further
decreases in the low-resolution part of the training set, depending
on the chosen scale denominator and thus yields a substantial
loss of information. This causes another problem, as the sam-
pling theorem is not guaranteed to be satisfied for low-resolution
simulations of satellite images in many cases, while this is more
likely in datasets consisting of conventional images, due to the
relation of object size and GSD. Smaller structures will moreover

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B3-883-2016

 
884



10 m

20 m

60 m

Visible

500 1000 1500 2000

Wavelength [nm]

S
p
a
ti
a
l 
R

es
o
lu

ti
o
n

Figure 3: SENTINEL-2 bands adapted from Sentinel-2 User Hand-
book (2013)

be significantly harder to distinguish because of increasing blur.
Figure 2 exemplary shows a cropped image of an urban scene
with noticeable aliasing effects on the left side and heavily blurred
areas especially observable on the right side, where former dis-
tinct details become completely indistinguishable. Nevertheless,
reconstruction might still be possible using evidence-based end-
to-end learning methods, while the quality of results will be most
certainly affected negatively. Since this issue applies to testing
as well, results on the other hand might actually be even better
than the quantification in Section 4 suggests, due to the lack of
appropriate testing data.

Using a dataset as briefly described above will yield an optimal
parameter set for the up-scaling of images from the simulated to
the original spatial resolution. As this is certainly not the actual
use case, we have to explicitly assume similar changes in low-level
image structures while scaling from simulated low-resolution to
the original resolution and from original resolution to the desired
high-resolution.

Regarding spectral resolution, the large number of channels ac-
quired simultaneously is a defining property of multispectral im-
ages. SENTINEL-2 datasets, for instance, contain 13 channels,
as shown in Figure 3 and characterized in detail in Section 4.2.
Conventional images, in contrast, typically consist of exactly three
channels (RGB), covering the visible spectrum exclusively.

Radiometric resolution, describing the number of discrete inten-
sity values for each band, is a key difference between the images
of the mentioned datasets. Unlike most standard camera sen-
sors, acquiring images with a sampling depth of 8 bit/px, sensors
for multispectral remote sensing usually feature a much higher
dynamical range. For instance, the sensors aboard the SENTINEL-
2 satellites acquire images with a sampling depth of 12 bit/px
(Sentinel-2 User Handbook, 2013).

In our experiments (cf. Section 4), we analyzed the impact of the
mentioned differences for a CNN trained on conventional images
and evaluated for SENTINEL-2 singleband images.

3.2 Approach

The SRCNN is designed to perform single-image super resolution
of monochrome 8 bit/px luminance channel images. They con-
vert RGB images to YCbCr color space and apply SRCNN scaling
to the Y-channel exclusively, while scaling the chrominance chan-
nels by bicubic interpolation. Evaluated on common datasets
containing conventional ImageNet-like images like SET5 used by
Wang et al. (2004) and SET14 used by Zeyde et al. (2010), their
approach achieved results superior to competing state-of-the-art
methods.

Designed to work similar to autoencoders, extracting low-reso-
lution patches and mapping them to high-resolution patches, the

Input

data label

Convolution 1
Kernel Size: 9 px

conv1 ReLU

Convolution 2
Kernel Size: 1 px

conv2 ReLU

Convolution 3
Kernel Size: 5 px

conv3

Loss
Type: Euclidean

loss

64

32

1

Figure 4: SRCNN Architecture

network topology as shown in Figure 4 consists of three inner
layers. In addition to those intermediate layers, there are layers
for data input and loss calculation.

Dong et al. (2014) analyze several networks with varying kernel
sizes for the convolutional layers. We use the 9-1-5 version, as
shown in Figure 4 and described later.

All of the inner layers are convolutional layers with a kernel
size of 9× 9 px in the first, 1× 1 px in the second and 5× 5 px
in the third layer. Apart from the layers, represented by blue
rectangles, Figure 4 also shows the temporary storage elements
used by Caffe, so-called blobs, represented by grey octagons. The
first convolution is applied to the “data” blob, populated by the
input layer with a low-resolution version of the source image. As
the network itself will not change the size of the input image, the
input images are scaled to the desired output size using bicubic
interpolation and a fixed scale.

Since the individual convolutions are applied consecutively to the
output of the preceding layer, the number of filters learned in each
layer is equal to the number of input channels to the following
layer. Consequently, the output of the last convolutional layer
is the final upscaled version of the low-resolution source image.
Finally, the upscaled source image is compared to the ground-
truth provided by the “label” blob. Thus, the number of filters
learned in the last convolutional layer has to be equal to the number
of channels in the ground-truth image. In addition to the filter
weights, an additive bias is optimized for each filter.
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A convolution with a kernel size of 1 px might seem confusing
at first, but considering the number of input and output channels,
the filters learned are actually 3D filters with a dimensionality of
1× 1× 64. This is equivalent to a non-linear mapping between
the low-resolution patterns extracted by the first convolution and
the high-resolution patterns reconstructed by the third convolution
in terms of the autoencoder analogy used by Dong et al. (2014).

The network can handle input image pairs, i.e., source image and
ground-truth images, of arbitrary size, as long as their dimensions
match each other in the loss computing layer. Due to the bound-
ary treatment of the network, the source image will be cropped
by 12 px in width and height during a forward pass through the
network. To compensate for this, the ground-truth image has to be
smaller than the low-resolution source image.

The loss layer computes a loss value, quantifying the discrep-
ancy or distance between the two input images. The precise loss
function, called Euclidean loss, evaluated by the loss layer in the
SRCNN is

lEucl(θ) =
1

2N

N∑
n=1

‖F (Dn,θ)− Ln‖22 (1)

and provides a distance similar to the mean squared error (MSE).
Here N is the number of images in the currently processed mini
batch, D is the set of low-resolution “data” images and L is the
set of high-resolution “label” images. The parameter vector θ
comprises filter weights and biases applied to the source images
via the mapping function F . During the training phase, a so called
mini batch of training images is evaluated in parallel, where the
number of images in a mini batch is much smaller than the number
of images in the training set.

Dong et al. (2014) propose to train their network on either a
small dataset with 91 images or a larger subset of the ImageNet
with approximately 400 000 images. Since they showed that the
training results of both datasets differ insignificantly, we used the
smaller dataset in our experiments outlined in Section 4.

Given the results of Dong et al. (2014) and our own experiments
in Section 4.3, we assume that it is generally possible to scale
images using this network successfully. However, as shown in
Section 3.1, multispectral satellite images differ from generic
images in several critical properties. We assume scaling remote
sensing images using the same technique is still possible, due to
the fact that the differing properties only affect the parameters
of the network, not the structure of the network itself. In end-to-
end learning, the parameters in turn only depend on the provided
training data. Thus, our approach on single-image super resolution
for multispectral remote sensing data is training a CNN proven to
have the desired capabilities with a suitable dataset. We describe
the generation of such dataset in Section 4.2. With using a dataset,
matching the test dataset in its properties considerably better, we
are able to successfully apply the method to multispectral satellite
imagery, as shown in Section 4.4.

4. EXPERIMENTS

In this section we describe our experiments conducted to verify our
methods introduced in Section 3. The generation of the dataset we
used for our experiments is described in Section 4.2. Section 4.3
and Section 4.4 feature detailed descriptions of the evaluation pro-
cess and the corresponding results for both the basic and advanced
method.

4.1 Quantification Metrics

In order to to quantify the results we mainly rely on the peak
signal-to-noise ratio (PSNR), commonly used for the evaluation
of image restauration quality. Even though we use the PSNR
for evaluation purposes, it is not used as a loss function for the
optimization of any of the CNNs presented in this paper, mainly
due to its higher computational effort. The euclidean loss, cf.
Equation (1), minimized by the solver algorithm, however, is
closely related to the MSE

dMSE =
1

N

N∑
n=1

(ŷn − yn)2 (2)

which in turn favors a high PSNR

dPSNR = 10 · log10

(
vmax

2

dMSE

)
(3)

depending solely on the MSE and vmax = 2b − 1, a constant
representing the upper bound of possible intensity values.

Beside the PSNR we evaluated the structural similarity (SSIM)
index (Wang et al., 2004) for our test dataset. This measure
is designed to be consistent with human visual perception and,
since scaling images for further manual processing is an important
application for single-image super resolution, this metric seems to
be well suited for our evaluation purposes.

4.2 Multispectral Dataset

The availability of suitable images for training in large quantities
is a key requirement deep learning in general and our approach
in particular. In this section we describe the, for the most part
automatic, generation of a multispectral satellite image dataset
for training and testing our network, more specifically the learned
parameters.

The COPERNICUS programme funded by the European Commis-
sion provides free access to the earth observation data of the dedi-
cated SENTINEL missions and the contributing missions (Coper-
nicus Sentinel Data, 2016). The SENTINEL-2 mission is mainly
designed for land and sea monitoring through multispectral imag-
ing. SENTINEL-2A, the first satellite out of two in the planned
constellation was launched in June 2015, SENTINEL-2B is ex-
pected to follow later in 2016. Each of the two carries or will carry
a multispectral imaging sensor, the so called MULTISPECTRAL
INSTRUMENT (MSI), acquiring images with a radiometric resolu-
tion of 12 bit/px. Figure 3 shows the bands acquired by the MSI,
as well as their respective spatial resolution. All areas covered
by the acquisition plan will be revisited at least every five days.
For our dataset, we used Level-1C ortho-images containing top of
atmosphere reflectances, encoded in 16 bit/px JPEG2000 format.

Our dataset is composed of 75 SENTINEL-2 granules, covering
an area of 100 km2 with an image size of 1980× 1980 px each.
We restricted our dataset to five sites mainly located in Europe
with little to no cloud and snow coverage, as shown in Figure 5.
Since our goal is to show that single-image super resolution tech-
niques can successfully applied to remote sensing data rather than
generating an optimal set of parameters for all possible scenes,
this restriction is a reasonable simplification. However to examine
whether or not the parameters learned using our dataset are still
capable of scaling images of scenes with different settings, we
evaluated the learned parameter sets with images from different
locations and present the results in Section 5.
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Figure 5: Source image locations. Background map:
c©OPENSTREETMAP contributors, available under the OPEN

DATABASE LICENSE

We sub-divided the images to 244× 244 px tiles to simplify the
data management and selection process. The resulting set of tiles
contains images with no-data values, due to the discrepancy be-
tween the area covered by the acquired images and the distributed
granule grid, insignificant for the training process. The same
holds true for tiles with little to no structure in their content or
monotonous areas like large water bodies, grassland, and agricul-
tural areas. To remove those unsuited tiles, we used statistical
metrics, e.g., shannon entropy with an absolute threshold and a
check for no-data values. If a tile failed at least one of the tests,
it was omitted from further processing. Out of the remaining set
of tiles, we randomly chose a subset of 4096 tiles for training and
128 tiles for testing.

We generated a low-resolution simulation, as discussed in Sec-
tion 3.1, of the datasets by subsequently sampling the images
down and up again, according to the desired scale factor of 2,
using bicubic interpolation and clipping the results to a range of 0
to 216 − 1.

At this stage of the process, we have got a multi-purpose dataset
consisting of pairs of low- and high-resolution images with 13
channels. Training the CNN, however, requires pairs of normal-
ized monochromatic patches in double- or single-precision, ac-
cording to the capacities of the GPU available.

As converting multispectral images to YCbCr color space, as
proposed by Dong et al. (2014), is neither possible nor desirable
we approach the multichannel dataset as a set of singleband images.
Without loss of generality, we picked the MSI B03 singleband
images, representing the green channel of the dataset, for our
experiments. Tiling once more yields 33× 33 px low-resolution
data patches and 21× 21 px high-resolution label patches with a
stride of 14 px as proposed by Dong et al. (2014). The datasets
are stored as normalized double-precision floats in several files
formatted as HDF5 (The HDF Group, 1997-2016).

4.3 SRCNN

In order to test the results of the original SRCNN network and
dataset combination for remote sensing data, we trained the net-
work using the Caffe configuration files and Matlab functions for
dataset creation provided along with (Dong et al., 2014). We used
the 9-1-5 topology described in Section 3.2. The number of pa-
rameters to be optimized in a network consisting of convolutional

(a) Ground truth
(label)

(b) SRCNN scaling
(PSNR: 51.1962dB)

(c) Bicubic interpolation
(PSNR: 62.5918dB)

(d) msiSRCNN scaling
(PSNR: 63.6252dB)

Figure 6: SENTINEL-2 B03 singleband image scaling

layers as inner layers exclusively can be derived by

|Θ| =
I∑

i=1

ni · ci · hi · wi + ni , (4)

where I is the number of convolutional layers, n is the number of
filters, i.e., output channels to be learned, c is the number of input
channels, and h,w are the kernel height and width, respectively.
As solely square filters are used in the networks evaluated in our
experiments, h = w holds in all cases.

There are approximately 8000 parameters to be optimized in this
version of the SRCNN. The optimization of the network param-
eters was done using a stochastic gradient descent (SGD) solver
with a fixed learning rate of η = 0.001 and a fixed number of
1.5 · 107 iterations. Given a mini batch size of 128 patches, the
optimization was performed through 1.92 · 109 backpropagations.
The training took approximately 20 days on a single NVIDIA
TESLA K40C GPU.

Since Dong et al. (2014) already proved the SRCNN to success-
fully scale 8 bit/px monochrome luminance channel images, we
proceeded to evaluate the learned parameter set with our test
dataset. The quantitative and qualitative results are summarized
in Table 1 and exemplary shown in Figure 6, respectively. Sec-
tion 5 contains a discussion of the results in the context of further
experiments as described in the following section.

4.4 msiSRCNN

As described in detail in Section 3.2, our approach is to find a
set of parameters optimized for multispectral remote sensing im-
ages. Making use of our generated training dataset, described
in Section 4.2, we re-trained the network to achieve better re-
sults for the scaling of multispectral satellite imagery than those
shown in the previous section. We henceforth call this network,
more specifically the network and the optimized parameter set,
msiSRCNN.
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Table 1: Scaling results for our test dataset

Network Measure Absolute (CNN) Difference (CNN − Bicubic)

mean max min mean max min

SRCNN PSNR [dB] 51.2227 52.3962 51.1588 −9.0618 −1.3529 −17.8358
SSIM 0.7673 0.9856 0.4812 −0.2304 −0.0113 −0.5178

msiSRCNN PSNR [dB] 60.6527 69.3490 52.9041 0.3682 1.0334 0.0725
SSIM 0.9979 0.9999 0.9536 0.0002 0.0068 0.0000
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Iterations (à 256 Backpropagations)

Te
st

in
g

L
os

s
(E

uc
lid

ea
n)

Figure 7: Change of loss

Aside the replacement of the dataset, we used an adjusted solver
with a fixed learning rate of η = 0.01 and a mini batch size of 256
patches. In our experiments, we observed faster convergence and a
higher stability of loss for our optimized settings, as opposed to the
original solver settings. The training was conducted on the same
NVIDIA TESLA K40C GPU as before and took approximately
10 days for 3.5 · 106 iterations or 8.96 · 108 backpropagations.
Figure 7 shows the change of loss during the training process. The
results for our set of test images are summarized in Table 1 and
exemplary shown in Figure 6.

As mentioned before (cf. Section 1), the actual use case for super-
resolution techniques usually differs from the experiments con-
ducted, since quantification is impossible without a high resolution
reference. The existence of a high-resolution version of the source
image in turn supersedes the need to up-scale the image in the
first place. Figure 8 shows an example of actual super-resolution
using an input image in original resolution rather than a simulated
low-resolution version, with the msiSRCNN scaling showing less
overall blur compared to the bicubic interpolation.

Section 5 discusses the results in the context of more experiments
as described in the previous section.

We conducted further experiments on scaling all of the channels of
multispectral images. Table 2 and Figure 9 contain results for the
RGB channels exclusively, since they can be interpreted easily.

5. DISCUSSION

We were able to reproduce the results obtained by Dong et al.
(2014) for conventional luminance channel images. Table 1 and
Figure 6, however, suggest that scaling SENTINEL-2 singleband
images using the SRCNN yields unsatisfying results, as the net-
work in fact impairs the quality of the input images, scaled to
desired size using bicubic interpolation during pre-processing (cf.

(a) Bicubic interpolation

(b) msiSRCNN scaling

Figure 8: Actual up-scaling of a high-resolution input image

(a) Bicubic
interpolation

(PSNR: 62.6901dB)

(b) msiSRCNN scaling
(PSNR: 63.2563dB)

(c) Ground truth
(label)

Figure 9: msiSRCNN scaling results for RGB composite
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Table 2: Scaling results for our test dataset in RGB

Channel Measure Absolute (msiSRCNN) Difference (msiSRCNN − Bicubic)

mean max min mean max min

B04 (Red) PSNR [dB] 58.8576 67.8606 52.5745 0.2191 1.4024 −1.7709
SSIM 0.9965 0.9998 0.9545 0.0002 0.0068 −0.0018

B03 (Green) PSNR [dB] 60.6527 69.3490 52.9041 0.3682 1.0334 0.0725
SSIM 0.9979 0.9999 0.9536 0.0002 0.0068 0.0000

B02 (Blue) PSNR [dB] 62.2797 68.7906 52.7989 0.3103 0.7500 0.0641
SSIM 0.9984 0.9998 0.9519 0.0002 0.0067 0.0000

RGB Composite PSNR [dB] 58.2760 68.5833 36.2356 −1.7475 0.5662 −16.3979

(a) Bicubic
interpolation

(PSNR: 59.1391dB)

(b) msiSRCNN scaling
(PSNR: 59.6092dB)

(c) Ground truth
(label)

Figure 10: msiSRCNN scaling results for a scene located outside
the area covered by the training and testing datasets

Section 3. We therefore consider SRCNN scaling for multispectral
satellite images as inadequate even though minor experiments con-
ducted but not described in detail in this paper show that SRCNN
scaling yields acceptable results for RGB composites of chan-
nel satellite images, after extracting the luminance channel and
stretching their dynamic range to 8 bit/px. The results still barely
surpass bicubic interpolation. Further minor experiments imply
problems when scaling images with a much higher dynamic range
than the images used for training.

The optimization of a parameter set gained from re-training the
SRCNN with our generated dataset was successful, as the loss
function converges after a moderate number of training iterations,
as to be seen in Figure 7. The resulting msiSRCNN turned out to
be able to successfully scale SENTINEL-2 singleband images, as
Table 1 and Figure 6 reveal.

The images used in our datasets were acquired from a very lim-
ited number of locations, which raises the questions whether the
msiSRCNN is able to successfully scale images acquired under
different conditions, i.e., generalization is still ensured. In Fig-
ure 10 we present the results for the scaling of an image which
is part of a SENTINEL-2 granule neither included in our training
nor testing dataset. These results suggest that the dataset used for
training is generic enough, although this is, as mentioned before,
not our main goal in this work.

As to be seen in Table 2 and exemplary shown in Figure 9, scal-
ing bands other than the one used for training yields significantly
poorer results. The msiSRCNN outperforms bicubic interpolation
slightly, but clearly using a network optimized for a single band
to scale bands unknown to the network is of moderate success. A
straightforward approach towards compensating this issue is opti-
mizing a dedicated set of parameters per channel. Since training
the network with an appropriate dataset, like the one we prepared
in Section 4.2, without any necessary further changes to the net-
work or the solver is just a matter of a few days of training, we are

confident that this is a proper solution to the problem of scaling
datasets contain multiple bands. We are aware of the fact that this
approach excludes a large portion of the information contained in
multispectral datasets and address this in Section 6.

6. SUMMARY & OUTLOOK

In this paper we showed the steps necessary to successfully adapt a
CNN-based single-image super resolution approach for multispec-
tral satellite images. By generating a dataset out of freely available
SENTINEL-2 images, we were able to re-train the SRCNN in or-
der for it to work on multispectral satellite images with a high
radiometric resolution. Our experiments demonstrated the ability
of our trained CNN to successfully scale SENTINEL-2 singleband
images.

As suggested in Section 5, scaling a multichannel image can safely
be assumed to be possible with specialized sets of parameters for
each channel. However, looking at multispectral images as a batch
of unrelated singleband images is a very restricted view of the
information contained in such datasets. With feeding multichannel
images as a whole to the CNN, optimizing parameters for the
scaling of a complete multispectral dataset at once, this side-
information could be made accessible. Working on such 3D arrays
is well within the scope of the Caffe implementation. In fact, this
is only a minor modification to the network architecture, since only
the input layer and the very last convolutional layer are affected.
The inner layers operate on 3D array of activation images anyway,
as explained in Section 3.2. The only parameter that needs to be
modified regarding network architecture is the number of filters to
be learned in the last convolutional layer. Changing the number
of input channels in the first convolutional layer, as well as the
number of output channels in the last convolutional layer from one
to 13 (cf. Figure 4), will however heavily affect the overall number
of parameters to be optimized. As per Equation (4), this increases
the total number of parameters from approximately 8 · 103 by one
order of magnitude to approximately 8 · 104.

Dong et al. (2016) experimented with a version of their SRCNN
scaling RGB images at once as well. They come to the conclusion
that this approach is of little value, as they achieved results exceed-
ing the results of separate scaling of the luminance channel via
their CNN and the chrominance channels via bicubic interpolation
by 0.07 dB. As noted before, the simplification of the problem
by reducing the dimensionality of the data with converting the
channels to a different color space and henceforth process a single
channel containing most of the usable information only is not
valid for multispectral images. Therefore, the results of Dong et
al. (2016) in their respective experiments do not necessarily apply
to the msiSRCNN.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B3-883-2016

 
889



Au contraire, using the spectral information inherent in each pixel
and utilize, e.g., implicit information about the surface material,
an extended msiSRCNN is assumed to be able to produce better
results due to the cross-band information being available. In order
to implement these modifications, some inherent problems need
to be solved. The SENTINEL-2 datasets used in our experiments
vary in spatial resolution in their singleband images, as to be seen
in Figure 3. Caffe, however, is only able to handle blocks of same-
sized input images. Therefore, approaches to this preprocessing
steps, such as scaling the lower-resolution bands to the highest
resolution appearing in the dataset using standard interpolation
methods, need to be developed.

To ensure convergence during optimization, a bigger dataset should
be used for training, even though our training dataset already out-
ranks the dataset successfully used by Dong et al. (2014) in terms
of quantity. Certainly, the dataset also has to be extended to a
matching number of channels. Our dataset, presented in Sec-
tion 4.2, includes all of the 13 spectral bands, thus only the fully
parameterized automatic patch-preparation is affected.

Early stage experiments showed promising results even though
some of the mentioned problems still need to be resolved.
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