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ABSTRACT:

Even non-expert human observers sometimes still outperform automatic extraction of man-made objects from remotely sensed data.
We conjecture that some of this remarkable capability can be explained by Gestalt mechanisms. Gestalt algebra gives a mathematical
structure capturing such part-aggregate relations and the laws to form an aggregate called Gestalt. Primitive Gestalten are obtained
from an input image and the space of all possible Gestalt algebra terms is searched for well-assessed instances. This can be a very
challenging combinatorial effort. The contribution at hand gives some tools and structures unfolding a finite and comparably small sub-
set of the possible combinations. Yet, the intended Gestalten still are contained and found with high probability and moderate efforts.
Experiments are made with images obtained from a virtual globe system, and use the SIFT method for extraction of the primitive
Gestalten. Comparison is made with manually extracted ground-truth Gestalten salient to human observers.

1. INTRODUCTION

Experts in gaining information from remotely sensed imagery,
when performing e.g. map-update tasks on satellite images, use
specific knowledge such as shadow directions, lay-over, and cor-
ner reflection phenomena in SAR, or specific spectral properties
depending on the type of sensor. They are well aware of the spe-
cific type of knowledge they utilize.

On the other hand any non-expert human observer can still see
meaningful part-and-aggregate structure, figure-background sep-
aration, and salient, i.e. probably meaningful, objects. Actu-
ally such observer may well achieve much better recognition per-
formance as compared to our contemporary automatic methods.
Such human beholder strongly relies on her/his capability of per-
ceptual grouping according to Gestalt laws. Such grouping is
very fast and occurs unknowingly to the subject. It also needs no
specific training and works on any kind imagery including unfa-
miliar mapping modes such as SAR or thermal data. And more
than that, since the expert is also a human being, she/he cannot
‘switch off’ Gestalt perception when looking at images, even if
they were deceiving.

2. RELATED WORK

After recalling some approaches for automatic recognition of ur-
ban structure this section will concentrate on related work from
Gestalt grouping, which is an interdisciplinary field between ma-
chine vision and psychology.

2.1 Automatic recognition of urban structure:

Several decades ago work on automatic understanding of urban
aerial images started with knowledge-based approaches (Matsuy-
ama and Hwang, 1990, Narasimham, 1970). Often, syntactic ap-
proaches or production systems were proposed. Also semantic
representations such as semantic-nets were discussed. A good
overview of such work a decade later can be found in the Ascona
workshop volumes of the ETH (Baltsavias et al., 2001, Gruen et
al., 1997, Gruen et al., 1995). More recently there are still some

syntactic approaches (Han and Zhu, 2005). Grammars also re-
main very popular in the field of facade understanding – see e.g.
(Ripperda, 2008). Most often no real distinction is made between
the automation of pre-attentive grouping and the automatic uti-
lization of knowledge – the latter being a process of which the
observer is usually quite aware.

2.2 Perceptual grouping using Gestalt principles:

Wertheimer’s work may be regarded as initial starting point (Wert-
heimer, 1923) – though in the same period there were many im-
portant other names such as Metzger or Koffka, and some fun-
damental ideas are older and date back to Mach, Laplace, and
Helmholtz.

Agnes Desolneux proposed a theory for machine perception of
Gestalten based on statistical a-contrario tests (Desolneux et al.,
2008). Two models – a uniformly distributed background and
some foreground model (e.g. a Gaussian) – compete. If the prim-
itives extracted from the image form an arrangement that is very
unlikely with respect to the background model, the arrangement
will be called an ε-meaningful Gestalt, where ε refers to the test
level. She also introduces the notion of a maximal ε-meaningful
Gestalt. It remains to be shown that the assessment functions de-
fined below in Section 3. can be derived from such a-contrario
testing. Intuitively, the same intention can be seen. Desolneux
is aware that generic repetition of Gestalt formation on rising
scales remains the goal, but up to now, to our knowledge, has
not published any progress in that direction. She refers, however,
to older challenges in that generic direction such as (Bienstock et
al., 1997) and emphasizes that such ideas can even be found in
very old statements of Helmholtz and Laplace.

3. GESTALT ALGEBRA

Standard reference to Gestalt algebra is (Michaelsen and Yashina,
2014) with more practical work being presented in (Michaelsen,
2014). It attempts capturing the laws of Gestalt-grouping in math-
ematical notations opening the way to machine generation as well
as machine analysis - i.e. automatic rendering and recognition of
Gestalten. Gestalt algebra is rather contrary to modern machine
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learning; no example data are needed at all. Thus, the whole
structure can be set up without any learning examples. It is not
dependent on any data being representative or not. The following
subsections briefly recall the basic definitions. First the domain
is given on which the operations are defined, and then two oper-
ations are given namely for mirror symmetry and good continua-
tion in rows. A third operation for rotational patterns introduced
in (Michaelsen and Yashina, 2014) is not used in this work.

3.1 Gestalt domain

The domain G is defined as

G = R2 × R+ × R/Z× [0, 1]× N. (1)

Accordingly, for any Gestalt g ∈ G there are position po(g) ∈
R2 (presented as center of a circle in the figures below), scale
sc(g) ∈ R+ (presented as diameter), orientation or(g) ∈ R/Z
(presented as angle with respect to the horizontal axis), assess-
ment as(g) ∈ [0, 1] and frequency fr(g) ∈ {1, 2, ...} (pre-
sented as number of spokes in the circle) respectively. On the
domain G operations are given. Algebraic closure demands that
for any combination of Gestalten (parts) using any of the opera-
tions of the algebra, the newly constructed Gestalt (aggregate) is
in fact again an element of the same domain. The key idea is that
the operations yield maximal assessment value only for configu-
rations of the parts that fulfill the intended Gestalt-laws perfectly.
Random arrangements of parts have a low probability of causing
high assessments. In fact most configurations lead to assessments
close to zero. But the transition between these two extremes is
continuous. Thus, Gestalt algebra is not a picture grammar be-
cause it does not set any hard geometrical constraints. Also no
arbitrary constraints are allowed; instead very specific laws are
used – the very laws of Gestalt perception.

3.2 Mirror symmetry

A binary operation is defined as | : G × G → G, and the terms
are given in infix notation as g = h1|h2. The components of g
result as follows:

po(g) = 1
2

(po(h1) + po(h2)) (2)

sc(g) = |po(h2)− po(h1)|+
√
sc(h1) · sc(h2) (3)

or(g) = 1
π

arctan
(

pox(h2)−pox(h1)
poy(h2)−poy(h1)

)
(4)

as(g) = 4
√
a|p · a|s · a|o · a|a (5)

fr(g) = 2 (6)

where the function arctan in Equation (4) is set to π/2 if zero ap-
pears in denominator. The components of the geometric mean in
Equation (5) code the intended Gestalt-principle of mirror sym-
metry. They are given as follows:

a|p =
√
e
|po(h2)− po(h1)|√
sc(h1) · sc(h2)

e
− 1

2
|po(h2)−po(h1)|2

sc(h1)·sc(h2) (7)

a|s = e
2− sc(h1)

sc(h2)
− sc(h2)

sc(h1) (8)

a|o =

{
0, if fr(h1) 6= fr(h2)
1
2

+ 1
2

cos (β) , else.
(9)

β = 2π

(
(or(h1) + or(h2))− fr(h1)(or(g) +

1

2
)

)
a|a =

√
as(h1) · as(h2) (10)

In detail: a|p prefers configurations where the parts are not too far
away and not too close to each other (as compared to their scale);

this differs a little from the definition (4) given by (Michaelsen
and Yashina, 2014) having the shape of a Rayleigh distribution
here – and thus less mass on the ratios greater than one; a|s
prefers equal scales of the parts; a|o prefers mirror symmetric
orientations with respect to the perpendicular bisector axis; and
a|a inherits the assessments of the parts.

3.3 Good continuation in rows

An n-ary operation is defined as Σ : Gn → G, and the terms are
notated in prefix notation as g =

∑
hi where 1 ≤ i ≤ n. The

components of g result as follows:

po(g) = 1
n

n∑
i=1

po(hi) (11)

sc(g) = |po(hn)− po(h1)|+ n
√
sc(h1) · · · sc(hn)(12)

or(g) = 1
π

arctan
(

pox(hn)−pox(h1)
poy(hn)−poy(h1)

)
(13)

as(g) = 4
√
aΣp · aΣs · aΣo · aΣa (14)

fr(g) = 2 (15)

For simplicity Equation (13) sets the orientation of the new Gestalt
from the first and last part only. Another – and more adequate –
way would be to set it by regression over all n parts. The compo-
nents of the geometric mean in Equation (14) code the intended
Gestalt-principle of good continuation in a row. They are given
as follows:

aΣp =
√
e
|po(hn)− po(h1)|
scmid(n− 1)

e
− 1

2
|po(hn)−po(h1)|2

scmid(n−1)2 (16)

·

[
n∏
i=1

exp

(
−|po(hi)− seti|

scmid

)] 1
n−2

with

seti = po(g) +
(
i−1
n−1
− 1

2

)
(po(hn)− po(h1)) (17)

aΣs = e
2n−

sc(h1)
scmid

−
scmid
sc(h1)

−···−
sc(hn)
scmid

−
scmid
sc(hn) (18)

aΣo =

(
n∏
i=1

(
1

2
+ 1

2
cos (βi)

))1/n

with

βi = 2π (or(hi)− ao(h1 · · ·hn)) (19)

aΣa = (as(h1) · · · as(hn))1/n (20)

In detail: aΣp prefers configurations where the parts are neatly
aligned in a row. To this end the ideal positions seti of such a row
must be obtained by Equation (17). It also prefers the mid-scale
to be about the same as the spacing (again by use of a Rayleigh
distribution form), aΣs prefers equal scales of the parts. The geo-
metric mean scale scmid of the parts must be calculated for use in
Equation (16) as well as in Equation (18). In Equation (19) aΣo

prefers orientations close to the average orientation ao which is
calculated (using complex numbers) by

ao(h1 · · ·hn) = 1
2π

arg

(
n∑
i=1

exp(2π or(hi))

)
(21)

It makes only sense if the frequencies of all parts are equal. Else
aΣo = 0 is set just like in Equation (9). Finally, aΣa inherits
again the assessments of the parts.

4. RECURSIVE SEARCH FOR GESTALTEN

Given a finite set of primitive Gestalten P ⊂ G and a recognition
level 0 ≤ ε < 1 the recognition task can be formulated as:
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Find all g ∈ G with as(g) ≥ 1 − ε such that g = t
where t is a Gestalt algebra term using only Gestalten
from P and the basic operations |, and Σ.

One obvious algorithmic solution to this task is a recursive enu-
meration of all terms, and testing them for the property as(g) ≥
1−ε. At first glance this enumeration might never stop because in
algebraic terms one p ∈ P may appear multiply. In (Michaelsen
and Yashina, 2014) Lemmas are given stating that repetition will
lead to arbitrary small assessments. And so the main proposition
below follows:

Main Proposition: For any 1 ≥ ε > 0 the set of terms better
than 1 − ε defined by the nested recursion of Algorithms 1 to 4
on a finite set of primitives is finite.

This means that the recursive search surly ends provided there
are enough computational resources. The recursively nested set
given below unfolds again only a sub-set of the possible Gestal-
ten: 1) Usually it will not be useful to list all partial rows of better
assessment than 1− ε of a given long

∑
-Gestalt. In (Desolneux

et al., 2008) the notion of maximal meaningful row-Gestalten is
introduced stating that such rows should be prolonged by adding
more and more parts from the basis-set until a certain evaluation
– in the case of the a-contrario test theory of Desolneux the false
alarm rate FAR, in the case of Gestalt-algebra the assessment –
starts getting worse. Finding this point is the goal of the follow-
ing Algorithm 1. Recall that the algorithm works on sets, so that
the set will not become bigger, if an element is added which is
already present (because it has been constructed by applying a
different sequence of calls on the same parts). 2) The handling
of lists below ensures that only terms of the same operation are
combined. E.g. no mirror-symmetry Gestalt will be formed of a
row-Gestalt on the one hand and a mirror-symmetry on the other
hand. Information on the decomposition is transported from one
part to the others. Again such search only unfolds a very small
subset of the – already finite – sub set of all terms better than
1− ε. The point of this contribution is that the really meaningful
Gestalten are still contained. 3) Obviously, the recursion does not
go deeper when the scale of the Gestalten is larger then the e.g.
input image.

Algorithm 1: main
Input: BasicGestalten
Output: sorted list of recognized Gestalten

1 begin
2 sort BasicGestalten descendingly concerning each

assessment as(g);
3 BasicGestalten← select Gestalten of BasicGestalten with

as(g) < ε;
// recognize initial |-Gestalten.

4 ListMirror← calculateMirror(BasicGestalten,εmirror);
// recognize initial Σ-Gestalten consisting

of two primitives.

5 ListRow← calculate2Row(BasicGestalten,εrow);
// computing recursively Σ-Gestalten.

6 ListRow← calculateRow(BasicGestalten, ListRow, εrow);
// functional recursion

7 Gestalten← recursiveGestalting(ListMirror, ListRow);
8 sort Gestalten descendingly concerning each assessment

as(g);
9 return Gestalten;

Algorithm 2: calculateMirror (Searching for maximal meaning-
ful mirrors)
Input: BasicGestalten,εmirror
Output: ListMirror

1 begin
2 forall gm ∈ BasicGestalten do
3 forall gm2 ∈ BasicGestalten do
4 gmnew ← computeSymmetry(gm, gm2 );
5 if as(gmnew ) < εmirror then
6 ListMirror← ListMirror + gmnew ;

7 return ListMirror;

Algorithm 3: calculateRow (Searching max. meaningful rows)
Input: BasicGestalten, ExtRowGestalten,εrow
Output: ExtRowGestalten

1 begin
2 forall gr ∈ ExtRowGestalten do
3 forall grb ∈ BasicGestalten do
4 grnew ← computeRow(gr, grb );
5 if as(grnew ) < εrow then
6 ExtRowGestalten← ExtRowGestalten + grnew ;

7 if ExtRowGestalten = ∅ then
8 return ∅;
9 else

10 return ExtRowGestalten←
calculateRow(BasicGestalten, ExtRowGestalten,
εrow);

Algorithm 4: recursiveGestalting (Recursive search for Gestal-
ten)
Input: ListMirror, ListRow
Output: Gestalten

1 hasNewGestalten← false;
// generate new |-Gestalten

2 ListMirrorRec← {};
3 ListMirrorRec← calculateMirror(ListMirror,εmirror);
4 ListMirrorRec← ListMirrorRec +

calculateMirror(ListRow,εmirror);
5 if ListMirrorRec 6= ∅ then
6 hasNewGestalten← true;

// generate new Σ-Gestalten

7 ListRowRec← {};
8 ListRowRec← calculateRow(ListMirror,ListRow,εrow);
9 ListRowRec← ListRowRec +

calculateRow(ListRow,ListRow,εrow);
10 if ListRowRec 6= ∅ then
11 hasNewGestalten← true;

12 if hasNewGestalten then
// functional recursion goes even deeper

13 Gestalten← {};
14 Gestalten←

recursiveGestalting(ListMirrorRec,ListRowRec);
15 Gestalten← Gestalten + ListMirrorRec + ListRowRec;
16 return Gestalten;

17 else
// Recursion termination. Returns empty list.

18 return ∅;
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Table 1: Remotely sensed imagery dataset on which the proposed
method is evaluated. In the right three columns the results are
quantitatively listed.

# North East Height False N False P True P

1 33◦ 28′ 14.32′′ -112◦ 02′ 03.80′′ 500m 4 0 0
2 33◦ 28′ 00.42′′ -112◦ 02′ 24.27′′ 500m 4 3 0
3 33◦ 27′ 16.73′′ -112◦ 01′ 38.61′′ 500m 1 13 4
4 33◦ 27′ 20.28′′ -112◦ 02′ 28.48′′ 500m 3 5 0
5 33◦ 37′ 01.86′′ -112◦ 17′ 23.56′′ 500m 6 26 11
6 33◦ 27′ 25.04′′ -112◦ 02′ 25.54′′ 2000m 2 1 1
7 33◦ 36′ 56.11′′ -112◦ 17′ 05.00′′ 2000m 3 240 0
8 33◦ 28′ 49.77′′ -112◦ 03′ 18.06′′ 8000m 5 0 0
9 27◦ 28′ 22.90′′ 89◦ 38′ 15.65′′ 500m 1 0 0

10 27◦ 27′ 52.42′′ 89◦ 38′ 28.88′′ 500m 8 2 0
11 27◦ 26′ 30.81′′ 89◦ 39′ 59.21′′ 500m 2 0 0
12 27◦ 27′ 16.06′′ 89◦ 39′ 17.74′′ 500m 0 7 2
13 27◦ 28′ 40.91′′ 89◦ 37′ 22.24′′ 500m 4 1 10
14 27◦ 28′ 18.72′′ 89◦ 37′ 51.12′′ 2000m 0 0 0
15 48◦ 56′ 18.66′′ 8◦ 57′ 07.97′′ 500m 3 2 0
16 48◦ 56′ 17.38′′ 8◦ 57′ 34.28′′ 500m 2 27 0
17 48◦ 55′ 51.00′′ 8◦ 57′ 36.05′′ 500m 3 5 0
18 48◦ 55′ 32.53′′ 8◦ 57′ 33.52′′ 500m 0 0 0
19 48◦ 55′ 39.09′′ 8◦ 58′ 05.41′′ 500m 0 0 0
20 48◦ 56′ 00.65′′ 8◦ 57′ 45.30′′ 2000m 0 0 0

5. EXPERIMENTS ON REMOTELY SENSED
IMAGERY

In order to demonstrate robustness with respect to geographic
location three cities on three different continents were chosen:
Thimphu (Bhutan), Vaihingen (Germany), and Phoenix (Arizona).
The images where obtained from salient structures there using the
Google Earth virtual globe system - see Table 1 for the geo loca-
tion and Figure 1 for examples. The 3D-features of the virtual-
globe system were deactivated, nadir view direction chosen, and
the camera-to-ground distance was set mostly to 500m, giving a
pixel size of 0.55m on the 1100 × 1040 images. For compari-
son also images of larger scale were included as can be seen from
Table 1.

The images as given by the virtual globe system where cropped so
as to remove the logos for the automatic processing, and only the
intensity is used - not the colors. Preliminarily, the standard SIFT-
key-point detector (SIFT++) was used to extract a set of primitive
Gestalten from the intensity images. The SIFT-key-point detec-
tor fits the Gestalt domain, because it directly gives position, ori-
entation, scale, and assessment. The frequency attribute of all
primitives was set to one.

5.1 Ground truth

A graphical user interface (GUI) was constructed allowing hu-
man observers to mark salient Gestalten on images in accordance
with the definition of the Gestalt domain in Equation 1. The ob-
server may mark one or more mirror Gestalten or row Gestalten
on the image by mouse operations. He or she may also decide not
to mark anything, if nothing salient should appear in the image.
Figure 1(a) shows an example.

5.2 Results

The automatic search outlined above yields Gestalt algebra terms
of arbitrary nesting depth, while the ground truth given by the
GUI described above will only consist of a – possibly empty –
set of Gestalten. For the time being we do not expect very fre-
quent accordance in the part-of tree structure a human would pre-
fer with the corresponding term structure found by the automatic
search. It would also be a question on its own, how to extend the
GUI in such a way that the observer can construct Gestalt hier-
archies, without being too complicated for non-expert users. As
mentioned before, Gestalt perception is unknowingly and very
swiftly performed, and it is a non-expert capability. So for the
time being we only compare the root node of the set of Gestalten
automatically found to be above a suitable threshold with the set
of salient Gestalten obtained via the GUI.

Gestalten will be regarded as matching if the position fits up to
25% of the geometric average of both scales, and if the orien-
tation fits up to 30◦. The last three columns in Table 1 list the
numbers of false negatives, false positives, and true positives for
each picture and thus gives a quantitative estimate on the cur-
rently achieved accordance with human perception.

(a)

(b)

Figure 1: (a) GUI for ground-truth acquisition: Salient row-
Gestalt in blue, salient mirror-Gestalt in yellow. (b) Some result
on image #11: Salient mirror-symmetry-Gestalt in blue, it’s part
row-Gestalten in red.

6. CONCLUSION AND DISCUSSION

Gestalt algebra can be useful in almost any machine recognition
task from pictorial data. Usually it will be applied as an interme-
diate step before domain specific semantics are appropriate. Nei-
ther representative learning data nor domain specific knowledge
is required. In this contribution it is shown that recursive search
for such Gestalten from a finite set of primitives given with an
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image is possible, as long as only objects of a certain minimal
quality count.

Furthermore, again only a subset is of interest, where structural
information is transported from one part inside an aggregate to
the other parts. E.g. starting from the ten small Gestalten dis-
played in Figure 1 (b) the large central mirror-symmetry Gestalt
will be found by the search outlined in Section 4., because both
parts of the intermediate level are in fact row Gestalten. The
assessment of the final mirror-symmetry Gestalt is not getting
smaller because the two rows have a different number of mem-
bers. This is not part of our automatic recognition yet. Thus,
the search yields still a larger set than intended and formalisms
remain to be given for such kind of non-local information trans-
port. Other future work will consider different primitive extrac-
tion methods, such as e.g. super-pixels, and/or the use of spectral
information as additional source of similarity or dissimilarity.
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