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ABSTRACT: 
Nowadays deep learning has been intensively in spotlight owing to its great victories at major competitions, which undeservedly 
pushed ‘shallow’ machine learning methods, relatively naive/handy algorithms commonly used by industrial engineers, to the 
background in spite of their facilities such as small requisite amount of time/dataset for training. We, with a practical point of view, 
utilized shallow learning algorithms to construct a learning pipeline such that operators can utilize machine learning without any 
special knowledge, expensive computation environment, and a large amount of labelled data. The proposed pipeline automates a 
whole classification process, namely feature-selection, weighting features and the selection of the most suitable classifier with 
optimized hyperparameters. The configuration facilitates particle swarm optimization, one of well-known metaheuristic algorithms 
for the sake of generally fast and fine optimization, which enables us not only to optimize (hyper)parameters but also to determine 
appropriate features/classifier to the problem, which has conventionally been a priori based on domain knowledge and remained 
untouched or dealt with naïve algorithms such as grid search. Through experiments with the MNIST and CIFAR-10 datasets, 
common datasets in computer vision field for character recognition and object recognition problems respectively, our automated 
learning approach provides high performance considering its simple setting (i.e. non-specialized setting depending on dataset), small 
amount of training data, and practical learning time. Moreover, compared to deep learning the performance stays robust without 
almost any modification even with a remote sensing object recognition problem, which in turn indicates that there is a high 
possibility that our approach contributes to general classification problems. 
 
 

                                                                 
*  Corresponding author 
 
 

1. INTRODUCTION 

In recent years, deep learning has become a prominent class of 
methods for complex learning tasks including remote sensing 
(Krizhevsky et al., 2012; Basu et al., 2015). The key advantage 
of deep learning is that it can automatically learn suitable data 
representations, principally enabling these methods to surpass 
the performance of traditional approaches, which in turn 
requires a lot of labelled data and computational resources to 
train such flexible models. In contrast, traditional remote 
sensing approaches combine feature generators that are defined 
before the machine learning phase with shallow classifiers. 
Since these approaches essentially impose prior knowledge, 
they considerably reduce the learning requirements, such as the 
amount of labelled data and the computation resources, 
compared to deep learning. However, as a matter of fact, most 
studies in traditional shallow learning algorithms domain have 
focused only on learning algorithms or feature generators 
separately, and fail to jointly optimize the combination, 
resulting in suboptimal performance.  
 
To facilitate rapid prototyping on novel data sets, we enhanced 
these traditional learning pipelines by investigating the potential 
of jointly determining feature generators, their corresponding 
weights and subsequent classifiers in a fully automated way. 

Some researchers have approached this type of automation 
using Bayesian optimization methods (Martinez-Cantin, 2014; 
Komer, 2014), which on the other hand require good prior 
distributions on free hyperparameters, which are difficult to 
obtain. Therefore, we specifically optimize the generalization 
performance of a full learning approach using particle swarm 
optimization (PSO), which is not overly sensitive to its own 
configuration.  
 

2. PROPOSED METHOD 

Two main processes in image recognition, feature extraction 
and classification, necessitate time-consuming tasks: 
establishing the model by combining them and tuning 
parameters of features and hyperparameters of a classifier. In 
order to realize a configuration such that operators are free from 
such a special tuning skill, we propose a whole learning 
pipeline which optimize those tuning phases automatically. 
 
2.1 Automatic Optimization 

Automatic (hyper)parameter optimization which optimizes these 
steps jointly is essential, where technical knowledge and 
experiments in machine learning are determined by itself. 
Considering the current state-of-practice: (i) people tend to 
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optimize hyperparameters of classifier while leaving the features 
untouched and (ii) hyperparameters of classifier are typically 
optimized using grid search or random search, which perform 
quite poorly, we automate the joint optimization of learning 
algorithms and their respective (hyper)parameters by means of a 
meta-heuristic optimization algorithm, which performs fast and 
well in general. According to the level of automation, we design 
three levels of configuration as illustrated in Figure 1. The 
search space of the configurations consists of three types of 
parameters: (i) Feature parameters: parameters of feature 
extraction, (ii) Feature weight: weights over a set of features, 
and (iii) Classifier parameters: selection of classifier and 
respective hyperparameters. In the first basic configuration 
(Config.1), only one defined feature is used for feature 
extraction at each experiment, for which parameters are set 
manually by users, while hyperparameters of classifiers are 
automatically optimized, which includes determining the most 
suitable classifier. With this configuration, we will discuss how 
each feature works, how hyperparameters of classifiers are 
optimized, and how the optimization affects results. In the 
second configuration (Config.2), all features are concatenated 
and used as features. The weights over sets of features are 
optimized in addition to tuning hyperparameters of classifiers, 
from which we discuss how weighting works and conclude if 
weighting is effective or not. Finally, in the last configuration 
(Config.3), we optimize all parameters automatically including 
feature parameters, which in turn requires users neither to select 
parameters nor to a good combination of features and classifier.  
 
Figure 2 illustrated a search space associated to the fully 
optimized configuration (Config.3), where feature parameters, 
weights of features and hyperparameters of classifiers are 
automatically optimized given box constraints. At each iteration, 
one classifier is selected (i.e. using indices likewise a discrete 
parameter) and only its hyperparameters are optimized. This 
search space regarding classifiers indicates that a classifier with 
less hyperparameters is more likely to be selected, since there is 
a higher probability of detecting the optimal point in a small 
search space (caused by less hyperparameters) than in a larger 
one. In other words, the number of hyperparameters implies the 
speed of convergence. Moreover, the effective range of 
hyperparameters also plays an important role in selecting 
classifier. 
 
2.2 Optimization Algorithm  

Not only with deep learning, but also with shallow learning 
algorithms, hyperparameter tuning has been challenging. 
Practically, hyperparameter tuning has been commonly 
performed manually or by naive methods such as grid search, 
which is intuitively understandable but cannot scale up to many 
dimensions. Aside from naive methods, there are two major 

classes of dedicated approaches to tackle this problem: Bayesian 
optimization and metaheuristic optimization. We eventually 
select a metaheuristic algorithm, PSO, which is a well-known 
meta-heuristic optimization algorithm with several useful 
properties for this task: (i) it can deal with complex objective 
functions (i.e. the learning pipeline), (ii) is easily parallelizable 
as each particle can be evaluated independently and (iii) is not 
overly sensitive to its own configuration. We utilized the 
Optunity library (Claesen et al., 2014) for implementations. 
 
The main configuration parameters of PSO are the number of 
particles and the number of generations, which define a trade-
off between the probability to find a good solution and 
computation time. In our experiments we use 10 particles and 
10 generations, resulting in 100 objective function evaluations 
in total. Candidate solutions are evaluated through 2-fold cross-
validation and 10 iterations. Regarding the loss function, we 
take the area under the receiver operating characteristic curve 
(AUROC), where ROC curves represent the ratio between the 
false positive rate and true positive rate at each level of 
confidence of a classifier.  
 
2.3 Feature Extraction 

Feature extraction is a pre-processing phase, which extracts 
characteristics from input data. We incorporate a several 
features to the configuration which are handy and commonly 
used in computer vision domain. Specifically, nine different 
features are incorporated to the proposed learning pipeline: 
PCA (principal component analysis) as a baseline, bilateral filter 
and Gabor filter to emphasize data characteristics, 8-Freeman’s 
chaincode, Canny edge detector and HOG (histogram of 
oriented gradients) to enlarge a different view of datasets. Note 
that 4 different HOG features are incorporated since the HOG 
parameters indicates the size of features in images which is 
difficult to expect beforehand. Given that our goal is to 
construct a robust configuration, we do not modify these 
features according to problems. Eventually the parameters to be 
optimized sum up to 13 as shown in Table 1. In Config.1 and 2, 
these parameters are fixed manually, and in Config.3 they are 
optimized automatically. Note that extracted features are 
normalized between 0 and 1 over training and test data in order 
to reduce the impact of the absolute range value. 
Implementations for image processing are based on OpenCV 
(Bradski, 2000) and scikit-image (Walt et al., 2014). 
 
 
 
 
 
 
 

Figure 1. Three levelled configurations 

 

Figure 2. Optimization over a whole learning pipeline 

Table 1. The number of parameters of features 
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2.4 Classifiers 

By use of extracted features as input data, classification is 
executed subsequently in the configuration. Specifically, we 
incorporate three commonly-used classifiers: naive Bayes, 
random forest, and SVM (linear, polynomial, and RBF kernel), 
some of which have hyperparameters that operators have to deal 
with.  
 
Naive Bayes: a classifier based on Bayes theorem, which is 
easy to implement, has no hyperparameters, and is simple to 
calculate so that it is often used as a baseline algorithm. Note 
that we use Gaussian naive Bayes which assumes Gaussian 
distribution for input data. 
 
Random forest: one of the ensemble learning methods which 
generate multiple weak models and unify their results to obtain 
a good prediction (Breiman, 2001). Although there is a 
profusion of parameters, the main parameters to be adjusted are 
the number of trees and the number of features used at each 
split point. With regard to the number of trees, the larger the 
number of trees the better since we essentially increase samples 
to take average, consequently reducing the variance by creating 
many trees, though the improvement is said to even out quickly. 
Next to that, the larger the estimator the longer it takes to 
compute so that we set the search space from 10 to 30. As for 
the number of features used for each split, a suitable value is 
such that the resulting trees are as uncorrelated to each other as 
possible. However, there is no rule of thumbs to find this value 
as it depends on data characteristic. That is, a smaller value is 
better if each feature is relevant, and a bigger value if each 
feature is irrelevant. Therefore, to be robust, not specific to the 
data, we follow the convention, which is the square root of the 
number of features. 
 
Support vector machine (SVM): a classifier to separate two 
classes by means of maximizing margin between them (Cortes 
et el., 1995; Vapnik, 1999). Before the main flow of deep 
learning, SVM has occupied the domain of computer vision, so 
that we consider this algorithm as a common handy shallow 
algorithm, and incorporate it with three kernels: linear kernel, 
polynomial kernel and RBF kernel. For linear kernel, 
regularization parameter c is just optimized, resulting in a fast 
calculation. Linear kernel is essentially used for linearly 
separable problems though it is said to work well as the number 
of features increases. As the regularization parameter c 
increases, the decision boundary can be more complicated to 
tolerate/avoid classification as well. In addition to regularization 
parameter, also present in both polynomial and RBF, the degree 
(for polynomial kernel) and the width of Gaussian function γ 
(for RBF kernel) should be optimized. As for γ, the smaller the 
value the more naive the boundary. Note that the optimization 
of γ is difficult since γ is more sensitive to create the boundary. 
Next to that, Figure 3 tells us that there is no obvious rule to 
return the optimal parameters. As such we set the range of c and 
γ in log scale so as to deal with larger range.  
 
As a whole, the classification problem is defined as a binary 
problem as SVM can exclusively deal with it. Particularly, we 
take the one-vs-rest approach since one-vs-one requires making 
more classifiers therefore resulting in more computation. All 
implementations about classification are based on scikit-learn 
(Pedregosa et al., 2011). 
  
 
 

 
 
 
 
 
 
 
 
 
 
 
 

3. DEEP LEARNING 

Aside from the proposed pipeline, we execute experiments with 
deep learning to compare the performance. Specifically, we use 
LeNet network (LeCun et al., 1998), which is known to be a 
common deep convolutional neural network architecture 
especially for a handwritten digit recognition. It consists of a 
convolutional layer followed by a pooling layer, another 
convolution layer followed by a pooling layer, and then two 
fully-connected layers. The first convolutional layer computes 
32 features for each 5x5 patch, and the second layer has 64 
features for each 5x5 patch. The first fully-connected layer with 
524 neurons, follows the second fully-connected, and applied to 
a softmax function. The activation function is the Rectified 
Linear Unit (ReLU) function. We apply dropout before the 
readout layer to reduce overfitting. Note that all of these settings 
follow a Google tensorflow (Abadi et al., 2015) tutorial. 
 

4. DATASETS 

Our automated shallow learning approach is targeted for 
computer vision tasks. Specifically, we focus on a handwritten 
character recognition problem with the MNIST dataset (LeCun 
et al., 1998), object recognition problem with the CIFAR-10 
dataset (Krizhevsky, 2009), and also object recognition problem 
with the UC Merced land use dataset (Yang et al., 2010) which 
is a remote sensing data. As our goal is to construct the learning 
approach which work with small dataset, we intentionally apply 
the method to 200 images for test and train each. 
 
MNIST dataset: the MNIST database contains a large volume 
of handwritten digits (0-9) and was collected from American 
Census Bureau employees and American high-school students. 
It contains 10000 examples for training and 50000 examples for 
testing. Each digit is normalized into a grayscale image and 
centred in a 28x28 image so that the dimension of data is 784 
features (pixels). The previous researchers (Larochelle et al., 
2007) built variations of the MNIST basic dataset by imposing 
various types of noise. To evaluate the model with a different 
dataset, we utilize one of these noisy versions: the MNIST 
background images (hereafter the MNIST background). The 
MNIST background dataset has natural various images as 
backgrounds. The state of the arts of the MNIST basic goes as 
low as 0.21% acquired by neural network with dropout in 
ICML2013 (Wan et al., 2013).  
 
CIFAR-10:  the CIFAR-10 dataset contains tiny images 
belonging to one of 10 categories. The dataset comprises 5000 
training images and 1000 test images per class. Each image has 
32x32 cells with 3 colour bands. In this paper, we convert these 
images into grayscale to use this dataset in the same way as the 
MNIST dataset. Figure 4 illustrates that the CIFAR-10 dataset 
has distinct characters from the MNIST dataset. Objects that we 
predict have different shape and size within each category so  

Figure 3. Hyperparameters with respect to ROC 
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that characterizing features would be difficult. In fact, the best 
result is 96.53% accuracy with fractional max-pooling (Graham, 
2014), which is far less compared to the MNIST basic dataset. 
 
UC Merced land use dataset: a remote sensing dataset called 
UC Merced dataset is tested to confirm robustness of the 
proposed method. The images were extracted from the USGS 
National Map Urban Area Imagery collection for various urban 
areas around the country. The dataset has originally 21 classes 
and 100 images for each class, from which we draw 10 classes. 
Although original images are RGB bands and consist of 
256x256 pixels, we convert them to grayscale, and resample to 
60x60 pixels to adjust the order of input dataset to the MNIST 
and CIFAR-10 datasets. The main difference between this 
dataset and the CIFAR-10 one is that its classes do not always 
relate to a specific shape, such as agriculture and scrub classes. 
The current state-of-the-art for this dataset is 94.3% (Negrel et 
al., 2014) acquired by aggregating tensor products of local 
descriptors. 
 

5. RESULTS 

In this chapter, we present our results, through which three 
levelled optimization configurations are executed successively. 
Additionally, the results with deep learning are compared to our 
results to discuss the accuracy and time complexity. 
 
5.1 Configuration. 1 

Under Config.1, a classifier is automatically selected with 
optimal hyperparameters while one feature is manually defined 
at a feature extraction phase. In order to figure out the 
characteristics of datasets, feature extractors, and classifiers, we 
executed several analysis as below. 
 
Feature characteristics: the performance through 10 
experiments (e.g. digit 0-9) shown in Figure 5 describes that the 
MNIST basic dataset returns mostly over 90% AUROC value 
for each feature except Canny edge detection. Although Canny 
edge detection normally performs excellent when the edge is 
clear, handwritten characters in this case sometimes include too 
thin or light strokes so that edge detection cannot recognize 
them properly. The performance degrades a lot with the CIFAR-
10 dataset. The highest AUROC just records around 75%, 
showing object recognition in natural image is a more difficult 
problem. On the other hand, Canny edge detector performs 
better than with the MNIST datasets where the AUROC is 
almost 50%. This is because natural images are blurred with 
bilateral filter well so that Canny edge detector can extract 
object edges well. Gabor filter and HOG generally return better 
results than other feature extractors, where four HOGs do not 

necessarily perform at the same level since HOG parameters 
essentially represent the window size, which should correspond 
to datasets. In case of the UC Merced dataset, the result is 
highly dispersed within each feature. Indeed, none of the 
features are effective for all categories, meaning it is difficult to 
say which feature works well for each category. Hence, 
selecting an appropriate feature beforehand requires deep 
insight into the domain. 
 
Regarding the result of cross validation (i.e. the optimal value) 
and test data, the AUROC value of test data often exceeds the 
optimal. This is because the amount of training and test data is 
so small (i.e. 200 images) that the contained data is biased. If 
we use more training data and the larger number of fold for 
cross validation, the optimal value should be better. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From left to right over x-axis, features consists of Org (raw data), PCA, 
Chaincode, Gabor filter, Bilateral filter, Canny edge detector, HOG1, HOG2, 
HOG3, HOG4. Optimal AUROC is obtained through cross validation, and test 
data value is calculated with test data. Boxes represent the first and third quartile, 
a black line inside them is a median value, and plus signs are outliers. Namely, 
the larger the box is, the more different performance among digits we obtain. 
 

 
 
Comparison among classifiers: in Config.1, one classifier is 
selected eventually through the optimization process. In order to 
understand how each classifier performs, we evaluated it 
statistically following the previous work (Demsar, 2006), where 
Friedman test (Friedman, 1937) and the Nemenyi test (Nemenyi, 
1963) are used. Briefly speaking, we compared classifiers head-
to-head by means of identifying whether their distance of rank 
is statically significant. At first, we executed Friedman test of 
which null hypothesis is all the classifiers are equivalent (i.e. 
their ranks are equal). Since the p-value was 2.06 e −39 < 0.05, 
we rejected null hypothesis, meaning at least one classifier has a 
significantly different rank. Then, we used the Nemenyi post-

From left to right, the MNIST basic, MNIST background, CIFAR-10, UC Merced dataset 

Figure 5. Performance by each features with Config. 1 

Figure 4. Datasets  
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hoc test for pairwise comparisons between all classifiers. 
Critical distance between each classifier is calculated as below: 
 
 
 
where the number of approaches k are the number of classifiers 
(i.e. 5), the number of samples N is the number of experiments 
which is for each digit for each feature for each of the datasets 
(i.e. 10 · 9 · 4), and the critical values qα is driven from the 
Studentized range statistic divided by √ 2 (≈2.728). If the 
difference of the average rank between two classifiers is more 
than critical difference, we can conclude that their performance 
is statistically different. Note that the difference in this diagram 
is just a difference of rank so that the effect size (i.e. the 
difference in ROC curve) cannot be judged here. In other words, 
the goal here is just to compare the rank of classifiers but not to 
compare their actual empirical performance. Figure 6 illustrates 
the rank distance visually, indicating SVM polynomial is the 
best classifier significantly whereas the difference between all 
the other classifiers is not significantly different. This result is 
already different from a general opinion that SVM RBF often 
works better than SVM polynomial. Hence, selecting the best 
classifier that works for each dataset/digit properly is not 
necessarily easy. 
 
 
 
 
 

 
Value represents the average rank of the classifier. CD: critical distance, RF: 

random forest, NB: naive Bayes, SVMR: SVM with RBF kernel, SVMP: SVM with 
polynomial kernel, SVML: SVM with linear kernel. 

 

Figure 6: Comparison of classifiers over all MNIST experiments 
 
Classifier Selection: our experiments indicate that SVM 
polynomial is best, despite SVM RBF being more popular in 
literature of the computer vision domain. To assess the best 
possible performance of SVM with RBF kernel, we performed 
another round of tuning using only SVM-RBF (i.e. c and γ) on 
a trial basis, by which we attempt to see if the performance of 
SVM-RBF is indeed less than SVM-polynomial. Figure 7 
shows that the results driven with SVM-RBF is the same or less 
than those with polynomial kernel described in Figure 5. As 
such, we can conclude that the configuration brings us 
unexpected better classifier for this problem (i.e. SVM with 
polynomial kernel). 
 

 
 
 
 
5.2 Configuration. 2 

As shown in the previous section, ’trial and error’ to find an 
appropriate feature specific to the dataset is cumbersome. Thus, 
in the second configuration, all 9 features (i.e. PCA, chaincode, 
Gabor filter, bilateral filter, Canny edge detection, and 4 HOGs) 
are weighted and used at the same time. Specifically, three types 
of experiments are executed as variants: (1) All; just 

concatenating all features and optimizing hyperparameters of 
classifiers (i.e. no weighting), (2) All_w; concatenating all 
features and optimizing weights over a set of features in 
addition to hyperparameters of classifiers, and (3) All_pca; 
executing PCA over all filter banks and optimizing 
hyperparameters of classifiers.  
 
In Figure 8, the results with these three settings are shown, in 
which the performance is generally better than the previous 
configuration. The improved performance indicates that the data 
representations induced by different features carry 
complementary information which can be exploited by the 
subsequent classifiers. On the other hand, although the 
performance with all weighted features is high in general, the 
difference between the three settings is not so large. In case of 
CIFAR-10 and UC Merced datasets, the performance with 
weighted features is even worse compared to just concatenating 
features or PCA with concatenated features. This is because the 
final classifier is mostly random forest or naïve Bayes as shown 
in Figure 9, which are agnostic to individual feature scales yet 
the number of parameters to be optimized increases, meaning 
optimization for weighting eventually is useless for this problem. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
X-axis represents digits, under which the selected classifier is noted. NB: naïve 
Bayes, RF: random forest, linear: SVM linear, poly: polynomial, rbf: RBF 

 
 
5.3 Configuration. 3 

Although the previous section described that concatenating 
features clearly improves performance, leading to save time to 
select an appropriate feature, it is still painful for operators that 
they are required to tune parameters of features manually (e.g. 

Figure 7. Performance by each feature only with SVM-RBF 

The values on x-axis represent median  

Figure 8. Performance with Config.2 for each digit/category 

Figure 9. Weight value on features for each digit/category 
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the window size of bilateral filter). Therefore, in the 
configuration 3, we offer a fully optimized configuration, where 
parameters of features and classifiers are optimized jointly. Note 
that we just use one HOG feature in this configuration instead 
of 4 HOG features generated with different parameters since 
PSO would choose the most appropriate parameters for HOG. 
 
Figure 10 shows that the performance is almost the same as 
Config.2. That is, the fully optimized configuration provides us 
the feature parameters comparable to those brought by human 
beings. On the other hand, there are more parameters to 
optimize in the full optimization, resulting in more runtime.  
 
 
 
 
 
 
 
 
 
 
 
 
5.4 Deep Learning 

So far we have reported that our fully automated pipeline 
brought a good performance with shallow algorithms over small 
datasets. Given the fact that deep learning algorithms, known to 
work well with big data, have been in spotlight these days, we 
applied them to the same small datasets, composed of 200 
images each, for comparison. As shown in Table 2, the 
performance is far lower than the one with Config.2 and 3, 
meaning a basic deep learning network is not capable of 
compensating the lack of prior knowledge with a small dataset. 
Additionally, given the network architecture is designed to the 
MNIST basic initially, we can conclude that the deep learning 
network architecture is specific to the dataset while our 
approach is robust. 
 
 
 
 
 
 
 
 
5.5 Time Complexity 

Practically speaking, time complexity is a big concern as well as 
performance and the required size of sample. Table 3 shows that 
all algorithms except Config.3 run in a realistic time. Config.3 
is the equivalent of deep learning in a sense that it requires no 
prior knowledge for feature extraction and classifiers, resulting 
in extraordinary runtime. As such, our pipeline provides two 
different levelled configurations according to user’s demand. 
That is, in Config.2, users can save time to run optimization but 
still have to tune feature parameters themselves and in Config.3 
users do not select parameters for features, but need more time 
to run. Next to that, depending on the priority, we can save time 
by removing random forest or Gabor filter which mainly takes 
time to calculate. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

CONCLUSION 

We proposed a whole learning pipeline where shallow 
classifiers and feature extraction are optimized jointly by 
Particle Swarm Optimization algorithm. The proposed method 
acquired high performance over four small different datasets, 
showing that the pipeline performs well (1) over different kinds 
of datasets, with (2) no specific tuning experience/domain 
knowledge, (3) small amount of labelled data, and (4) cheap 
hardware, all of which exceeds the prerequisites of deep 
learning algorithms. Additionally, the characteristic that we can 
incorporate another features to the configuration would also 
extend our approach to different fields. Taking an example, we 
can even incorporate the filter banks driven by deep learning. 
On the other hand, classification of cifar-10 and remote sensing 
dataset have not achieved the performance up to a practical 
usage mostly because of their various shape and texture. We can 
improve them simply by using 3 bands instead of a grey scale. 
Moreover, discussion about features which deal with rotated 
images such as SIFT is left for the future work. 
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