
A FULLY AUTOMATED PIPELINE FOR CLASSIFICATION TASKS
 WITH AN APPLICATION TO REMOTE SENSING

K. Suzuki a*, M. Claesen b, H. Takeda a, B. De Moor b

a Dept. of R&D, KOKUSAI KOGYO CO.,LTD., 2-24-1 Harumi-cho, Fuchu-shi,Tokyo,183-0057, JAPAN -

(kumiko_suzuki, hiroshi1_takeda)@kk-grp.jp
b Dept. of Electrical Engineering, KU Leuven, STADIUS Kasteelpark Arenberg 10, 3001 Leuven, Belgium, -

(marc.claesen, bart.demoor)@esat.kuleuven.be

ICWG III/VII

KEY WORDS: Automated Machine Learning, Feature Generation, Classification, Meta-heuristic Hyperparameter Optimization,
Particle Swarm Optimization, UC Merced Land Use data set

ABSTRACT:
Nowadays deep learning has been intensively in spotlight owing to its great victories at major competitions, which undeservedly
pushed ‘shallow’ machine learning methods, relatively naive/handy algorithms commonly used by industrial engineers, to the
background in spite of their facilities such as small requisite amount of time/dataset for training. We, with a practical point of view,
utilized shallow learning algorithms to construct a learning pipeline such that operators can utilize machine learning without any
special knowledge, expensive computation environment, and a large amount of labelled data. The proposed pipeline automates a
whole classification process, namely feature-selection, weighting features and the selection of the most suitable classifier with
optimized hyperparameters. The configuration facilitates particle swarm optimization, one of well-known metaheuristic algorithms
for the sake of generally fast and fine optimization, which enables us not only to optimize (hyper)parameters but also to determine
appropriate features/classifier to the problem, which has conventionally been a priori based on domain knowledge and remained
untouched or dealt with naïve algorithms such as grid search. Through experiments with the MNIST and CIFAR-10 datasets,
common datasets in computer vision field for character recognition and object recognition problems respectively, our automated
learning approach provides high performance considering its simple setting (i.e. non-specialized setting depending on dataset), small
amount of training data, and practical learning time. Moreover, compared to deep learning the performance stays robust without
almost any modification even with a remote sensing object recognition problem, which in turn indicates that there is a high
possibility that our approach contributes to general classification problems.

* Corresponding author

1. INTRODUCTION

In recent years, deep learning has become a prominent class of
methods for complex learning tasks including remote sensing
(Krizhevsky et al., 2012; Basu et al., 2015). The key advantage
of deep learning is that it can automatically learn suitable data
representations, principally enabling these methods to surpass
the performance of traditional approaches, which in turn
requires a lot of labelled data and computational resources to
train such flexible models. In contrast, traditional remote
sensing approaches combine feature generators that are defined
before the machine learning phase with shallow classifiers.
Since these approaches essentially impose prior knowledge,
they considerably reduce the learning requirements, such as the
amount of labelled data and the computation resources,
compared to deep learning. However, as a matter of fact, most
studies in traditional shallow learning algorithms domain have
focused only on learning algorithms or feature generators
separately, and fail to jointly optimize the combination,
resulting in suboptimal performance.

To facilitate rapid prototyping on novel data sets, we enhanced
these traditional learning pipelines by investigating the potential
of jointly determining feature generators, their corresponding
weights and subsequent classifiers in a fully automated way.

Some researchers have approached this type of automation
using Bayesian optimization methods (Martinez-Cantin, 2014;
Komer, 2014), which on the other hand require good prior
distributions on free hyperparameters, which are difficult to
obtain. Therefore, we specifically optimize the generalization
performance of a full learning approach using particle swarm
optimization (PSO), which is not overly sensitive to its own
configuration.

2. PROPOSED METHOD

Two main processes in image recognition, feature extraction
and classification, necessitate time-consuming tasks:
establishing the model by combining them and tuning
parameters of features and hyperparameters of a classifier. In
order to realize a configuration such that operators are free from
such a special tuning skill, we propose a whole learning
pipeline which optimize those tuning phases automatically.

2.1 Automatic Optimization

Automatic (hyper)parameter optimization which optimizes these
steps jointly is essential, where technical knowledge and
experiments in machine learning are determined by itself.
Considering the current state-of-practice: (i) people tend to

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B3-923-2016

923

optimize hyperparameters of classifier while leaving the features
untouched and (ii) hyperparameters of classifier are typically
optimized using grid search or random search, which perform
quite poorly, we automate the joint optimization of learning
algorithms and their respective (hyper)parameters by means of a
meta-heuristic optimization algorithm, which performs fast and
well in general. According to the level of automation, we design
three levels of configuration as illustrated in Figure 1. The
search space of the configurations consists of three types of
parameters: (i) Feature parameters: parameters of feature
extraction, (ii) Feature weight: weights over a set of features,
and (iii) Classifier parameters: selection of classifier and
respective hyperparameters. In the first basic configuration
(Config.1), only one defined feature is used for feature
extraction at each experiment, for which parameters are set
manually by users, while hyperparameters of classifiers are
automatically optimized, which includes determining the most
suitable classifier. With this configuration, we will discuss how
each feature works, how hyperparameters of classifiers are
optimized, and how the optimization affects results. In the
second configuration (Config.2), all features are concatenated
and used as features. The weights over sets of features are
optimized in addition to tuning hyperparameters of classifiers,
from which we discuss how weighting works and conclude if
weighting is effective or not. Finally, in the last configuration
(Config.3), we optimize all parameters automatically including
feature parameters, which in turn requires users neither to select
parameters nor to a good combination of features and classifier.

Figure 2 illustrated a search space associated to the fully
optimized configuration (Config.3), where feature parameters,
weights of features and hyperparameters of classifiers are
automatically optimized given box constraints. At each iteration,
one classifier is selected (i.e. using indices likewise a discrete
parameter) and only its hyperparameters are optimized. This
search space regarding classifiers indicates that a classifier with
less hyperparameters is more likely to be selected, since there is
a higher probability of detecting the optimal point in a small
search space (caused by less hyperparameters) than in a larger
one. In other words, the number of hyperparameters implies the
speed of convergence. Moreover, the effective range of
hyperparameters also plays an important role in selecting
classifier.

2.2 Optimization Algorithm

Not only with deep learning, but also with shallow learning
algorithms, hyperparameter tuning has been challenging.
Practically, hyperparameter tuning has been commonly
performed manually or by naive methods such as grid search,
which is intuitively understandable but cannot scale up to many
dimensions. Aside from naive methods, there are two major

classes of dedicated approaches to tackle this problem: Bayesian
optimization and metaheuristic optimization. We eventually
select a metaheuristic algorithm, PSO, which is a well-known
meta-heuristic optimization algorithm with several useful
properties for this task: (i) it can deal with complex objective
functions (i.e. the learning pipeline), (ii) is easily parallelizable
as each particle can be evaluated independently and (iii) is not
overly sensitive to its own configuration. We utilized the
Optunity library (Claesen et al., 2014) for implementations.

The main configuration parameters of PSO are the number of
particles and the number of generations, which define a trade-
off between the probability to find a good solution and
computation time. In our experiments we use 10 particles and
10 generations, resulting in 100 objective function evaluations
in total. Candidate solutions are evaluated through 2-fold cross-
validation and 10 iterations. Regarding the loss function, we
take the area under the receiver operating characteristic curve
(AUROC), where ROC curves represent the ratio between the
false positive rate and true positive rate at each level of
confidence of a classifier.

2.3 Feature Extraction

Feature extraction is a pre-processing phase, which extracts
characteristics from input data. We incorporate a several
features to the configuration which are handy and commonly
used in computer vision domain. Specifically, nine different
features are incorporated to the proposed learning pipeline:
PCA (principal component analysis) as a baseline, bilateral filter
and Gabor filter to emphasize data characteristics, 8-Freeman’s
chaincode, Canny edge detector and HOG (histogram of
oriented gradients) to enlarge a different view of datasets. Note
that 4 different HOG features are incorporated since the HOG
parameters indicates the size of features in images which is
difficult to expect beforehand. Given that our goal is to
construct a robust configuration, we do not modify these
features according to problems. Eventually the parameters to be
optimized sum up to 13 as shown in Table 1. In Config.1 and 2,
these parameters are fixed manually, and in Config.3 they are
optimized automatically. Note that extracted features are
normalized between 0 and 1 over training and test data in order
to reduce the impact of the absolute range value.
Implementations for image processing are based on OpenCV
(Bradski, 2000) and scikit-image (Walt et al., 2014).

Figure 1. Three levelled configurations

Figure 2. Optimization over a whole learning pipeline

Table 1. The number of parameters of features

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B3-923-2016

924

2.4 Classifiers

By use of extracted features as input data, classification is
executed subsequently in the configuration. Specifically, we
incorporate three commonly-used classifiers: naive Bayes,
random forest, and SVM (linear, polynomial, and RBF kernel),
some of which have hyperparameters that operators have to deal
with.

Naive Bayes: a classifier based on Bayes theorem, which is
easy to implement, has no hyperparameters, and is simple to
calculate so that it is often used as a baseline algorithm. Note
that we use Gaussian naive Bayes which assumes Gaussian
distribution for input data.

Random forest: one of the ensemble learning methods which
generate multiple weak models and unify their results to obtain
a good prediction (Breiman, 2001). Although there is a
profusion of parameters, the main parameters to be adjusted are
the number of trees and the number of features used at each
split point. With regard to the number of trees, the larger the
number of trees the better since we essentially increase samples
to take average, consequently reducing the variance by creating
many trees, though the improvement is said to even out quickly.
Next to that, the larger the estimator the longer it takes to
compute so that we set the search space from 10 to 30. As for
the number of features used for each split, a suitable value is
such that the resulting trees are as uncorrelated to each other as
possible. However, there is no rule of thumbs to find this value
as it depends on data characteristic. That is, a smaller value is
better if each feature is relevant, and a bigger value if each
feature is irrelevant. Therefore, to be robust, not specific to the
data, we follow the convention, which is the square root of the
number of features.

Support vector machine (SVM): a classifier to separate two
classes by means of maximizing margin between them (Cortes
et el., 1995; Vapnik, 1999). Before the main flow of deep
learning, SVM has occupied the domain of computer vision, so
that we consider this algorithm as a common handy shallow
algorithm, and incorporate it with three kernels: linear kernel,
polynomial kernel and RBF kernel. For linear kernel,
regularization parameter c is just optimized, resulting in a fast
calculation. Linear kernel is essentially used for linearly
separable problems though it is said to work well as the number
of features increases. As the regularization parameter c
increases, the decision boundary can be more complicated to
tolerate/avoid classification as well. In addition to regularization
parameter, also present in both polynomial and RBF, the degree
(for polynomial kernel) and the width of Gaussian function γ
(for RBF kernel) should be optimized. As for γ, the smaller the
value the more naive the boundary. Note that the optimization
of γ is difficult since γ is more sensitive to create the boundary.
Next to that, Figure 3 tells us that there is no obvious rule to
return the optimal parameters. As such we set the range of c and
γ in log scale so as to deal with larger range.

As a whole, the classification problem is defined as a binary
problem as SVM can exclusively deal with it. Particularly, we
take the one-vs-rest approach since one-vs-one requires making
more classifiers therefore resulting in more computation. All
implementations about classification are based on scikit-learn
(Pedregosa et al., 2011).

3. DEEP LEARNING

Aside from the proposed pipeline, we execute experiments with
deep learning to compare the performance. Specifically, we use
LeNet network (LeCun et al., 1998), which is known to be a
common deep convolutional neural network architecture
especially for a handwritten digit recognition. It consists of a
convolutional layer followed by a pooling layer, another
convolution layer followed by a pooling layer, and then two
fully-connected layers. The first convolutional layer computes
32 features for each 5x5 patch, and the second layer has 64
features for each 5x5 patch. The first fully-connected layer with
524 neurons, follows the second fully-connected, and applied to
a softmax function. The activation function is the Rectified
Linear Unit (ReLU) function. We apply dropout before the
readout layer to reduce overfitting. Note that all of these settings
follow a Google tensorflow (Abadi et al., 2015) tutorial.

4. DATASETS

Our automated shallow learning approach is targeted for
computer vision tasks. Specifically, we focus on a handwritten
character recognition problem with the MNIST dataset (LeCun
et al., 1998), object recognition problem with the CIFAR-10
dataset (Krizhevsky, 2009), and also object recognition problem
with the UC Merced land use dataset (Yang et al., 2010) which
is a remote sensing data. As our goal is to construct the learning
approach which work with small dataset, we intentionally apply
the method to 200 images for test and train each.

MNIST dataset: the MNIST database contains a large volume
of handwritten digits (0-9) and was collected from American
Census Bureau employees and American high-school students.
It contains 10000 examples for training and 50000 examples for
testing. Each digit is normalized into a grayscale image and
centred in a 28x28 image so that the dimension of data is 784
features (pixels). The previous researchers (Larochelle et al.,
2007) built variations of the MNIST basic dataset by imposing
various types of noise. To evaluate the model with a different
dataset, we utilize one of these noisy versions: the MNIST
background images (hereafter the MNIST background). The
MNIST background dataset has natural various images as
backgrounds. The state of the arts of the MNIST basic goes as
low as 0.21% acquired by neural network with dropout in
ICML2013 (Wan et al., 2013).

CIFAR-10: the CIFAR-10 dataset contains tiny images
belonging to one of 10 categories. The dataset comprises 5000
training images and 1000 test images per class. Each image has
32x32 cells with 3 colour bands. In this paper, we convert these
images into grayscale to use this dataset in the same way as the
MNIST dataset. Figure 4 illustrates that the CIFAR-10 dataset
has distinct characters from the MNIST dataset. Objects that we
predict have different shape and size within each category so

Figure 3. Hyperparameters with respect to ROC

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B3-923-2016

925

that characterizing features would be difficult. In fact, the best
result is 96.53% accuracy with fractional max-pooling (Graham,
2014), which is far less compared to the MNIST basic dataset.

UC Merced land use dataset: a remote sensing dataset called
UC Merced dataset is tested to confirm robustness of the
proposed method. The images were extracted from the USGS
National Map Urban Area Imagery collection for various urban
areas around the country. The dataset has originally 21 classes
and 100 images for each class, from which we draw 10 classes.
Although original images are RGB bands and consist of
256x256 pixels, we convert them to grayscale, and resample to
60x60 pixels to adjust the order of input dataset to the MNIST
and CIFAR-10 datasets. The main difference between this
dataset and the CIFAR-10 one is that its classes do not always
relate to a specific shape, such as agriculture and scrub classes.
The current state-of-the-art for this dataset is 94.3% (Negrel et
al., 2014) acquired by aggregating tensor products of local
descriptors.

5. RESULTS

In this chapter, we present our results, through which three
levelled optimization configurations are executed successively.
Additionally, the results with deep learning are compared to our
results to discuss the accuracy and time complexity.

5.1 Configuration. 1

Under Config.1, a classifier is automatically selected with
optimal hyperparameters while one feature is manually defined
at a feature extraction phase. In order to figure out the
characteristics of datasets, feature extractors, and classifiers, we
executed several analysis as below.

Feature characteristics: the performance through 10
experiments (e.g. digit 0-9) shown in Figure 5 describes that the
MNIST basic dataset returns mostly over 90% AUROC value
for each feature except Canny edge detection. Although Canny
edge detection normally performs excellent when the edge is
clear, handwritten characters in this case sometimes include too
thin or light strokes so that edge detection cannot recognize
them properly. The performance degrades a lot with the CIFAR-
10 dataset. The highest AUROC just records around 75%,
showing object recognition in natural image is a more difficult
problem. On the other hand, Canny edge detector performs
better than with the MNIST datasets where the AUROC is
almost 50%. This is because natural images are blurred with
bilateral filter well so that Canny edge detector can extract
object edges well. Gabor filter and HOG generally return better
results than other feature extractors, where four HOGs do not

necessarily perform at the same level since HOG parameters
essentially represent the window size, which should correspond
to datasets. In case of the UC Merced dataset, the result is
highly dispersed within each feature. Indeed, none of the
features are effective for all categories, meaning it is difficult to
say which feature works well for each category. Hence,
selecting an appropriate feature beforehand requires deep
insight into the domain.

Regarding the result of cross validation (i.e. the optimal value)
and test data, the AUROC value of test data often exceeds the
optimal. This is because the amount of training and test data is
so small (i.e. 200 images) that the contained data is biased. If
we use more training data and the larger number of fold for
cross validation, the optimal value should be better.

From left to right over x-axis, features consists of Org (raw data), PCA,
Chaincode, Gabor filter, Bilateral filter, Canny edge detector, HOG1, HOG2,
HOG3, HOG4. Optimal AUROC is obtained through cross validation, and test
data value is calculated with test data. Boxes represent the first and third quartile,
a black line inside them is a median value, and plus signs are outliers. Namely,
the larger the box is, the more different performance among digits we obtain.

Comparison among classifiers: in Config.1, one classifier is
selected eventually through the optimization process. In order to
understand how each classifier performs, we evaluated it
statistically following the previous work (Demsar, 2006), where
Friedman test (Friedman, 1937) and the Nemenyi test (Nemenyi,
1963) are used. Briefly speaking, we compared classifiers head-
to-head by means of identifying whether their distance of rank
is statically significant. At first, we executed Friedman test of
which null hypothesis is all the classifiers are equivalent (i.e.
their ranks are equal). Since the p-value was 2.06 e −39 < 0.05,
we rejected null hypothesis, meaning at least one classifier has a
significantly different rank. Then, we used the Nemenyi post-

From left to right, the MNIST basic, MNIST background, CIFAR-10, UC Merced dataset

Figure 5. Performance by each features with Config. 1

Figure 4. Datasets

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B3-923-2016

926

hoc test for pairwise comparisons between all classifiers.
Critical distance between each classifier is calculated as below:

where the number of approaches k are the number of classifiers
(i.e. 5), the number of samples N is the number of experiments
which is for each digit for each feature for each of the datasets
(i.e. 10 · 9 · 4), and the critical values qα is driven from the
Studentized range statistic divided by √ 2 (≈2.728). If the
difference of the average rank between two classifiers is more
than critical difference, we can conclude that their performance
is statistically different. Note that the difference in this diagram
is just a difference of rank so that the effect size (i.e. the
difference in ROC curve) cannot be judged here. In other words,
the goal here is just to compare the rank of classifiers but not to
compare their actual empirical performance. Figure 6 illustrates
the rank distance visually, indicating SVM polynomial is the
best classifier significantly whereas the difference between all
the other classifiers is not significantly different. This result is
already different from a general opinion that SVM RBF often
works better than SVM polynomial. Hence, selecting the best
classifier that works for each dataset/digit properly is not
necessarily easy.

Value represents the average rank of the classifier. CD: critical distance, RF:

random forest, NB: naive Bayes, SVMR: SVM with RBF kernel, SVMP: SVM with
polynomial kernel, SVML: SVM with linear kernel.

Figure 6: Comparison of classifiers over all MNIST experiments

Classifier Selection: our experiments indicate that SVM
polynomial is best, despite SVM RBF being more popular in
literature of the computer vision domain. To assess the best
possible performance of SVM with RBF kernel, we performed
another round of tuning using only SVM-RBF (i.e. c and γ) on
a trial basis, by which we attempt to see if the performance of
SVM-RBF is indeed less than SVM-polynomial. Figure 7
shows that the results driven with SVM-RBF is the same or less
than those with polynomial kernel described in Figure 5. As
such, we can conclude that the configuration brings us
unexpected better classifier for this problem (i.e. SVM with
polynomial kernel).

5.2 Configuration. 2

As shown in the previous section, ’trial and error’ to find an
appropriate feature specific to the dataset is cumbersome. Thus,
in the second configuration, all 9 features (i.e. PCA, chaincode,
Gabor filter, bilateral filter, Canny edge detection, and 4 HOGs)
are weighted and used at the same time. Specifically, three types
of experiments are executed as variants: (1) All; just

concatenating all features and optimizing hyperparameters of
classifiers (i.e. no weighting), (2) All_w; concatenating all
features and optimizing weights over a set of features in
addition to hyperparameters of classifiers, and (3) All_pca;
executing PCA over all filter banks and optimizing
hyperparameters of classifiers.

In Figure 8, the results with these three settings are shown, in
which the performance is generally better than the previous
configuration. The improved performance indicates that the data
representations induced by different features carry
complementary information which can be exploited by the
subsequent classifiers. On the other hand, although the
performance with all weighted features is high in general, the
difference between the three settings is not so large. In case of
CIFAR-10 and UC Merced datasets, the performance with
weighted features is even worse compared to just concatenating
features or PCA with concatenated features. This is because the
final classifier is mostly random forest or naïve Bayes as shown
in Figure 9, which are agnostic to individual feature scales yet
the number of parameters to be optimized increases, meaning
optimization for weighting eventually is useless for this problem.

X-axis represents digits, under which the selected classifier is noted. NB: naïve
Bayes, RF: random forest, linear: SVM linear, poly: polynomial, rbf: RBF

5.3 Configuration. 3

Although the previous section described that concatenating
features clearly improves performance, leading to save time to
select an appropriate feature, it is still painful for operators that
they are required to tune parameters of features manually (e.g.

Figure 7. Performance by each feature only with SVM-RBF

The values on x-axis represent median

Figure 8. Performance with Config.2 for each digit/category

Figure 9. Weight value on features for each digit/category

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B3-923-2016

927

the window size of bilateral filter). Therefore, in the
configuration 3, we offer a fully optimized configuration, where
parameters of features and classifiers are optimized jointly. Note
that we just use one HOG feature in this configuration instead
of 4 HOG features generated with different parameters since
PSO would choose the most appropriate parameters for HOG.

Figure 10 shows that the performance is almost the same as
Config.2. That is, the fully optimized configuration provides us
the feature parameters comparable to those brought by human
beings. On the other hand, there are more parameters to
optimize in the full optimization, resulting in more runtime.

5.4 Deep Learning

So far we have reported that our fully automated pipeline
brought a good performance with shallow algorithms over small
datasets. Given the fact that deep learning algorithms, known to
work well with big data, have been in spotlight these days, we
applied them to the same small datasets, composed of 200
images each, for comparison. As shown in Table 2, the
performance is far lower than the one with Config.2 and 3,
meaning a basic deep learning network is not capable of
compensating the lack of prior knowledge with a small dataset.
Additionally, given the network architecture is designed to the
MNIST basic initially, we can conclude that the deep learning
network architecture is specific to the dataset while our
approach is robust.

5.5 Time Complexity

Practically speaking, time complexity is a big concern as well as
performance and the required size of sample. Table 3 shows that
all algorithms except Config.3 run in a realistic time. Config.3
is the equivalent of deep learning in a sense that it requires no
prior knowledge for feature extraction and classifiers, resulting
in extraordinary runtime. As such, our pipeline provides two
different levelled configurations according to user’s demand.
That is, in Config.2, users can save time to run optimization but
still have to tune feature parameters themselves and in Config.3
users do not select parameters for features, but need more time
to run. Next to that, depending on the priority, we can save time
by removing random forest or Gabor filter which mainly takes
time to calculate.

CONCLUSION

We proposed a whole learning pipeline where shallow
classifiers and feature extraction are optimized jointly by
Particle Swarm Optimization algorithm. The proposed method
acquired high performance over four small different datasets,
showing that the pipeline performs well (1) over different kinds
of datasets, with (2) no specific tuning experience/domain
knowledge, (3) small amount of labelled data, and (4) cheap
hardware, all of which exceeds the prerequisites of deep
learning algorithms. Additionally, the characteristic that we can
incorporate another features to the configuration would also
extend our approach to different fields. Taking an example, we
can even incorporate the filter banks driven by deep learning.
On the other hand, classification of cifar-10 and remote sensing
dataset have not achieved the performance up to a practical
usage mostly because of their various shape and texture. We can
improve them simply by using 3 bands instead of a grey scale.
Moreover, discussion about features which deal with rotated
images such as SIFT is left for the future work.

ACKNOWLEDGEMENTS

STADIUS members are supported by Flemish Government:
FWO: projects: G.0871.12N (Neural circuits), IWT: TBM
Logic Insulin (100793), TBM Rectal Cancer (100783), TBM
IETA (130256); PhD grant #111065, Industrial Research fund
(IOF): IOF Fellowship 13-0260; iMinds Medical Information
Technologies SBO 2015, ICON projects (MSIpad,
MyHealthData) VLK Stichting E. van der Schueren: rectal
cancer; Federal Government: FOD: Cancer Plan 2012-2015
KPC-29-023 (prostate); COST: Action: BM1104: Mass
Spectrometry Imaging.

REFERENCES

Abadi, M., et al., and Zheng, X., 2015. TensorFlow: Large-
scale machine learning on heterogeneous systems, Software
available from tensorflow.org.

Basu, S., Ganguly, D., Mukhopadhyay, S., DiBiano, R., Karki,
M., and Nemani, R., 2015. DeepSat - A Learning framework for
Satellite Imagery. CoRR abs/1509.03602.

Bradski, G., 2000. Opencv. Dr. Dobb’s Journal of Software
Tools.

Breiman, L., 2001. Random forests. Machine Learning,
45(1):5–32.

Cortes, C., and Vapnik, V., 1995. Support-vector networks.
Machine Learning, pp.273–297

Figure 10. Performance with Config.3

Table 2. Performance with Deep learning

MNIST basic MNIST back Cifar-10 UC Merced
Deep learning 0.90 0.75 0.55 0.66

Config.2 1.00 0.92 0.71 0.82
Config.3 1.00 0.87 0.69 0.80

MNIST basic MNIST back Cifar-10 UC Merced
Config.1 7.3 11.3 10.9 7.0
Config.2 All 18.9 46.5 33.0 83.7

 All_w 20.9 13.8 29.3 20.1
 All_pca 7.7 43.8 8.7 134.1

Config.3 18h 18h 25h 36h
9.7 9.8 12.9 40.2Deep learining

Table 3. Median of running time (sec/hour) per digit/category
of the proposed methods and deep learning

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B3-923-2016

928

Claesen, M.,Simm, J., Popovic, D., Moreau, Y., and De Moor,
B., 2014. Easy hyperparameter search using Optunity. arXiv
preprint arXiv:1412.1114.

Demsar, J., 2006. Statistical comparisons of classifiers over
multiple data sets. J. Mach. Learn. Res., 7:1–30.

Friedman, M., 1937. The use of ranks to avoid the assumption
of normality implicit in the analysis of variance. j-J-AM-STAT-
ASSOC, 32(200):675–701.

Graham, B., 2014. Fractional Max-Pooling, CoRR, 1412.6071.

Komer, B., Bergstra, J., and Eliasmith, C., 2014. Hyperopt-
sklearn: Automatic hyperparameter configuration for scikit-
learn. In ICML 2014 AutoML Workshop, pp. 8.

Krizhevsky, A., 2009. Learning multiple layers of features from
tiny images. Technical report, Computer Science Department,
University of Toronto.

Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and
Bengio, Y., 2007. An empirical evaluation of deep architectures
on problems with many factors of variation. In Proceedings of
the 24th International Conference on Machine Learning
(ICML), pp.473–480

LeCun, Y., Bottou, L., Bengio, Y., and Haner, P., 1998.
Gradient-based learning applied to document recognition. In
Proceedings of the IEEE, pp. 2278-2324.

Martinez-Cantin, R., 2014. Bayesopt: A bayesian optimization
library for nonlinear optimization, experimental design and
bandits. Journal of Machine Learning Research, Vol.15, pp.
3735-3739.

Mnih, V., and Hinton, G., 2010. Learning to detect roads in
high-resolution aerial images. In Proceedings of the 11th
European Conference on Computer Vision (ECCV), pp. 210-
223.

Negrel R., Picard, D., and Gosselin, P., 2014. Evaluation of
second-order visual features for land-use classification. In 12th
International Workshop on Content-Based Multimedia Indexing,

Nemenyi, P., 1963. Distribution-free multiple comparisons.
Technical report, Princeton University

Pedregosa, F., et al., 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, pp. 2825–2830.

Vapnik, V., 1999. An overview of statistical learning theory.
Trans. Neural Network, pp.988–999.

Walt, S., et al., 2014. scikit-image: image processing in Python.
PeerJ, 2:e453.

Wan, L., Zeiler, M., Zhang, S., LeCun, Y., and Fergus, R., 2013.
Regularization of neural networks using dropconnect. In
Proceedings of the 30th International Conference on Machine
Learning (ICML 2013), pp. 1058–1066.

Yang,Y., and Newsam, S., 2010. Bag-of-visual-words and
spatial extensions for land-use classification. In Proceedings of

the 18th SIGSPA-TIAL International Conference on Advances
in Geographic Information Systems, pp. 270-279.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B3-923-2016

929

