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ABSTRACT: 

 

We propose an image labeling method for LIDAR intensity image obtained by Mobile Mapping System (MMS) using K-Nearest 

Neighbor (KNN) of feature obtained by Convolutional Neural Network (CNN). Image labeling assigns labels (e.g., road, cross-walk 

and road shoulder) to semantic regions in an image. Since CNN is effective for various image recognition tasks, we try to use the 

feature of CNN (Caffenet) pre-trained by ImageNet. We use 4,096-dimensional feature at fc7 layer in the Caffenet as the descriptor of 

a region because the feature at fc7 layer has effective information for object classification. We extract the feature by the Caffenet from 

regions cropped from images. Since the similarity between features reflects the similarity of contents of regions, we can select top K 

similar regions cropped from training samples with a test region. Since regions in training images have manually-annotated ground 

truth labels, we vote the labels attached to top K similar regions to the test region. The class label with the maximum vote is assigned 

to each pixel in the test image. In experiments, we use 36 LIDAR intensity images with ground truth labels. We divide 36 images into 

training (28 images) and test sets (8 images). We use class average accuracy and pixel-wise accuracy as evaluation measures. Our 

method was able to assign the same label as human beings in 97.8% of the pixels in test LIDAR intensity images.  

 

 

1. INTRODUCTION 

 

It is important to properly make and update the Fundamental 

Geospatial Data for the maintenance of road (Hasegawa et al, 

2013). A lot of attention has been paid to advanced driver 

assistance in nearest years. To realize it, we need to maintain the 

Fundamental Geospatial Data with high accurately and low cost. 

 

Fundamental Geospatial Data of road is made by human now. 

However, manual process has some problems. Human cannot 

treat a large amount data, and there is the possibility of human 

error. In addition, since many people are required to make the 

Fundamental Geospatial Data of road, a lot of costs are required. 

Thus, automatic creation of the Fundamental Geospatial Data of 

road is required to reduce human burden and cost.  

 

In this paper, we propose an automatic recognition method from 

LIDAR Intensity Image obtained by MMS (Novak, 1993). If this 

method is realized, we will convert the LIDAR intensity images 

into Fundamental Geospatial Data of road in the future. To create 

a map from LIDAR intensity images automatically, we need to 

recognize objects at each pixel in LIDAR intensity images. Thus, 

we propose an image labeling method which assigns label to each 

pixel in LIDAR intensity image using KNN (LeCun et al, 1998) 

of feature obtained by CNN (Dudani, 1976). We extract the 

feature by the Caffenet from semantic regions cropped from 

LIDAR intensity images, and we select top K similar regions 

cropped from training samples with a test region. Then, we vote 

the labels attached to top K similar regions to the test region. 

 

In experiments, we use 36 LIDAR intensity images obtained by 

the MMS with ground truth labels. Those images include 9 

categories. We use both class average accuracy and pixel-wise 

accuracy as evaluation measures. Our proposed method achieves 

97.63% in class average accuracy and 74.96% in pixel-wise 

accuracy.  

 

This paper is organized as follows. We explain the details of the 

proposed method using KNN of feature obtained by CNN in 

section 2. Evaluation results of our method are shown in section 

3. Section 4 is for conclusions and future works. 

 

 

2. PROPOSED METHOD 

 

We automatically assign class labels to each pixel in LIDAR 

intensity images. Figure 1 shows the overview of our method. 

Since CNN is effective for various image recognition tasks, we 

try to use the feature obtained by CNN. We extract the feature 

obtained by CNN from semantic regions (e.g. 64x64 pixels) 

cropped from LIDAR intensity images. Since the similarity 

between features reflects the similarity of contents of regions, we 

can select top K similar regions cropped from training samples 

with a test region. Since regions in training images have 

manually-annotated ground truth labels, we vote the labels 

attached to top K similar regions to the test region. The class label 

with the maximum vote is assign to each pixel in the test image.  

 

We explain feature extraction by CNN in section 2.1. Image 

labeling using KNN is explained in section 2.2. 
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Figure 1. The overview of our method. 

 

 

2.1. Feature extraction by CNN 

 

CNN is a kind of deep leaning method, and it is reported that high 

accuracy is obtained by CNN in various image recognition tasks 

(Krizhevsky et al, 2012). CNN consists of the convolution layers, 

pooling layers and fully connected layers. Convolution layers in 

CNN extract feature by filters obtained automatically through 

training. Pooling layers in CNN downsize the resolution to be 

robust to slight translation. Fully connected layers are the same 

as classical multi-layered perceptron (Jonathan et al, 2015). 

 

In this paper, we use the Caffenet as CNN (Jia et al, 2014). 

Caffenet contains five convolution layers, three pooling layers 

and two fully connected layers. Caffenet was pre-trained by the 

ImageNet which contains 1,000 object categories. Caffenet gave 

top-1 accuracy 57.4% and top-5 accuracy 80.4% on the ImageNet. 

In this paper, we use the Caffenet as a feature extractor.  

 

Since the Caffenet was optimized for the ImageNet (Deng et al, 

2015), we optimize it for LIDAR intensity images by fine-tuning 

(Reyes et al, 2015). Since the number of neurons in the original 

Caffenet is 1000, we change the number of neurons at output 

layer to 9. In general, a large number of training samples is 

required to train CNN. Thus, we use 40,000 images for fine-

tuning. If we crop the regions randomly, the number of road is 

large. Thus, we adjust the number of regions in each class to be 

nearly equal. The class label is put to each region manually. We 

confirmed that the classification accuracy improved by fine-

tuning.  

 

We use 4,096-dimensional feature at fc7 layer in the fine-tuned 

Caffenet as the descriptor of a region because the feature at fc7 

layer has effective information for object classification. We 

extract the feature from all semantic regions cropped from 

LIDAR intensity images. Figure 2 shows the overview of feature 

extraction by CNN. 

 

 

 
 

Figure 2. The overview of feature extraction by CNN. 

 

 

2.2. Image labeling by KNN 
 

Since the similarity between features reflects the similarity of 

contents of regions, we can select top K similar regions cropped 

from training samples with a test region by KNN. In addition, we 

know the distance of the regions with similar features. If we 

obtain K semantic regions from training samples, we also obtain 

the ground truth labels attached to the top K regions. Our method 

votes the ground truth labels of the K regions to the test region. 

In order to use the similarity for voting process, we use weighted 

vote according to the distance of region as  

 

𝑤𝑚 =  
𝑑𝑘−𝑑𝑚

𝑑𝑘−𝑑1
, 

 

where 𝑑𝑚 is the distance of the m-th nearest neighbour, 𝑑1 is the 

distance of the most similar semantic region and 𝑑𝑘  is the 

distance of the K-th nearest neighbor. Namely, the weight of the 

most similar region is 1 and the most unsimilar region is 0. We 

vote the weight to each pixel in test image. The voting process is 

performed with overlapped manner in the test image. The class 

label with the maximum vote is assigned to the pixel in the test 

images. Figure 3 shows the overview of Image labeling by KNN. 

 

 
 

Figure 3. The overview of image labeling by KNN. 
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3. EXPERIMENTS 

 

3.1. Dataset 

 

In experiments, we use 36 LIDAR intensity images with ground 

truth labels obtained by the MMS. The size of the image is 2000 

× 1500 pixels, and one pixel represents four centimetres. 

Therefore, each LIDAR intensity image covers 80 ×60 meters. 

Figure 4 shows the examples of our dataset. Those images 

include 9 categories (pedestrian crossing, catchment basins, 

roadside tree, gutter, gore area, road, median, pedestrian path and 

road shoulder). We divide 36 images into training (28 images) 

and test sets (8 images). We cropped semantic regions of various 

sizes from training and test images. Caffenet resize an image to 

256×256 pixels automatically. Thus, we try to use 48×48, 64

×64 and 96×96 pixels on the basis of 64×64 pixels that is 

quarter of 256×256 pixels.  

 

 
Figure 4. Example of our dataset. Left: LIDAR intensity image, 

Right: Ground truth label 

 

 

3.2. Results 

 

We use both class average accuracy and pixel-wise accuracy as 

evaluation measures. Class average accuracy is the average of 

classification accuracy of each class, and it is influenced by the 

classes with small area such as catchment basins. Pixel-wise 

accuracy is the percent of correctly labeled pixels in all pixels of 

test images, and it is influenced by the classes with large area 

such as road. We consider that class average accuracy is more 

important than pixel-wise accuracy because the purpose of this 

study is for making the Fundamental Geospatial Data of road 

automatically. Thus, it is better to recognize classes with small 

area such as catchment basins with higher accuracy. Parameter K 

in KNN is set to 2 by the experiment shown in Figure 5 because 

class average accuracy gave the best. A small K gave better 

accuracy than a large value because almost regions contain road. 

 
Figure 5. Class average accuracy while changing K． The 

horizontal axis represents the parameter K and the vertical axis 

represents the class average accuracy. 

 

 
Table 1. Accuracy of our method. Left: 48 ×48 pixels, middle: 64 

×64 pixels, Right: 96 ×96 pixels 

 

Table 1 shows the accuracy at K=2. Our proposed method obtains 

97.63% in class average accuracy and 74.96% in pixel-wise 

accuracy when we use regions with 64 ×64 pixels. Road, 

pedestrian path, roadside tree and road shoulder are classified 

with high accuracy. Surprisingly, we do not use the knowledge 

about structure of road. We just use the similarity of features 

obtained by CNN. The accuracy of catchment basins and gutter 

is quite low. It is difficulty to classify these classes because the 

region size of catchment basins is small. The size is just 16 x 12 

pixels. Figure 7 shows the example of catchment basins in the 

test image. On the other hand, reason of low accuracy in gutter 

class is ambiguous boundary between road and gutter. Figure 8 

shows the example of gutter.  

 

 
Figure 6.  Example of catchment basins in the test image 
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Figure 7.  Example of gutter in the test image 

 

Next, we combine the results with different region sizes. We find 

top K similar regions separately for each region size, and voting 

is performed independently. The class label with the maximum 

vote is assigned to each pixel. Table 2 shows the results when we 

combine the results with different region sizes. 

 

The combination of 64×64 pixels and 48×48 pixels gave the 

highest class average accuracy. Table 2 shows that we can obtain 

high accuracy if we select appropriate region size. Figure 8, 9, 

and 10 shows our labeling result.  Effectiveness of our method is 

demonstrated. 

 

 
Table 2. Accuracy of our method using different region sizes. 

Left: only 48 × 48 pixels. Middle: combination of 64 × 64 pixels 

and 48 × 48 pixels. Right: combination of all sizes. 

 

 
Figure 8. Example of our labeling results. Upper left: input image. 

Upper right: ground truth label. Lower left: only 48×48 pixels. 

Lower right: combination of 64×64 pixels and 48×48 pixels. 

 
Figure 9. Example of our labeling results. Upper left: input image. 

Upper right: ground truth label. Lower left: only 48×48 pixels. 

Lower right: combination of 64×64 pixels and 48×48 pixels. 

 

 
Figure 10. Example of our labeling results. Upper left: input 

image. Upper right: ground truth label. Lower left: only 48×48 

pixels. Lower right: combination of 64×64 pixels and 48×48 

pixels. 

 

Figure 8, 9 shows that we can assign correct labels on almost all 

pixel. Figure 10 shows that labels of pedestrian crossing is cannot 

assign to ground truth position. The cause of this issue is blurred 

section of white line. There is no blurred white line in train 

images. Thus, we can resolve this issue if we can increase train 

images. 

 

 

4. CONCLUSIONS 

 

In this paper, we proposed the image labeling method for LIDAR 

intensity images obtained by MMS using the similarity of the 

feature obtained by CNN. Our method assigned the same label as 

human beings in 97.8% of the pixels in all test images. The results 

demonstrate that the proposed image labeling method is effective 

for LIDAR intensity images.  

 

However, we must improve the accuracy of the classes with low 

accuracy such as catchment basis and gutter. We consider that 

each class has the adequate region size for extracting feature by 

CNN. For example, the feature catchment basis should be 

extracted from small region and the adequate size of cross walk 

should be large. Thus, we consider selecting the adequate region 

size for each class. This is a subject for future works. 
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