
DESIGN AND IMPLEMENT AN INTEROPERABLE INTERNET OF THINGS
APPLICATION BASED ON AN EXTENDED OGC SENSORTHINGS API STANDARD

C. Y. Huang a, *, C. H. Wu a

a Center for Space and Remote Sensing Research, National Central University, Taiwan –

cyhuang@csrsr.ncu.edu.tw, 103322089@cc.ncu.edu.tw

Commission IV, WG IV/6

KEY WORDS: Internet of Things, Interoperable, OGC SensorThings API

ABSTRACT:

The Internet of Things (IoT) is an infrastructure that interconnects uniquely-identifiable devices using the Internet. By
interconnecting everyday appliances, various monitoring and physical mashup applications can be constructed to improve people’s
daily life. However, IoT devices created by different manufacturers follow different proprietary protocols and cannot communicate
with each other. This heterogeneity issue causes different products to be locked in multiple closed ecosystems that we call IoT silos.
In order to address this issue, a common industrial solution is the hub approach, which implements connectors to communicate with
IoT devices following different protocols. However, with the growing number of proprietary protocols proposed by device
manufacturers, IoT hubs need to support and maintain a lot of customized connectors. Hence, we believe the ultimate solution to
address the heterogeneity issue is to follow open and interoperable standard. Among the existing IoT standards, the Open Geospatial
Consortium (OGC) SensorThings API standard supports comprehensive conceptual model and query functionalities. The first
version of SensorThings API mainly focuses on connecting to IoT devices and sharing sensor observations online, which is the
sensing capability. Besides the sensing capability, IoT devices could also be controlled via the Internet, which is the tasking
capability. While the tasking capability was not included in the first version of the SensorThings API standard, this research aims on
defining the tasking capability profile and integrates with the SensorThings API standard, which we call the extended-SensorThings
API in this paper. In general, this research proposes a lightweight JSON-based web service description, the “Tasking Capability
Description”, allowing device owners and manufacturers to describe different IoT device protocols. Through the extended-
SensorThings API, users and applications can follow a coherent protocol to control IoT devices that use different communication
protocols, which could consequently achieve the interoperable Internet of Things infrastructure.

1. INTRODUCTION

1.1 Background

The Internet of Things (IoT) has been attracting attentions from
various fields in recent years. While the Internet provides the
global and pervasive connectivity infrastructure, the IoT
concept was proposed to connect everyday devices to the
Internet. The Internet of Things (IoT) is an infrastructure that
interconnects uniquely-identifiable devices using the Internet.
At its early stage, the IoT concept mainly focused on the
identification and tracking of physical things. Technologies like
the bar code and Radio Frequency Identification (RFID). Many
RFID-based applications were proposed, such as warehouse
management and logistic applications.

However, in recent years, with the advance of communication
and sensor technologies, the Internet of Things is no longer
confined to the applications of object identification. Everyday
appliances (e.g., TV, oven, heater, lamp, door lock) can be
connected to the Internet via different local communicating
technologies (e.g., Wifi, Bluetooth, and Zigbee). By connecting
devices to the Internet, two main IoT capabilities can be
realized, which are the sensing and tasking capabilities.

The sensing capability of IoT devices allows users to monitor
the device status as well as the environmental properties of their
surroundings, such as air temperature, humidity, and air quality.
On the other hand, the tasking capability of IoT devices
provides services for users to control the devices and execute

feasible tasks. Most importantly, since IoT devices are
connected with the Internet, both the sensing and tasking
capabilities can be achieve in a remote and real-time manner.
Because of these two main capabilities of the IoT, many
applications has been proposed or envisioned, such as smart
home, smart city, smart agriculture, industry and logistics
(Atzori, 2010).

1.2 The Internet of Things definition and architecture

Before introducing the target problem of this research, we
define the IoT definition and architecture first to help clearly
explain the scope of this research.

In terms of the definition of IoT, the International
Telecommunication Union (ITU) defined the IoT as “a global
infrastructure for the information society, enabling advanced
services by interconnecting (physical and virtual) things based
on existing and evolving interoperable information and
communication technologies” (ITU 2005). We believe this
definition is clear and general enough to cover different
potential architecture of the IoT. Hence, this paper follows this
IoT definition.

In terms of the IoT architecture, we generalize it into four
layers, including the device, gateway, web service, and
application layers. First of all, the device layer contains the IoT
devices that can provide sensing and/or tasking capabilities.
While some of the devices have enough computation capability
to connect to web services by themselves, most of IoT devices

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B4-263-2016

263

are resource-constraint (in terms of computation and/or power
supply) devices and cannot communicate via the Internet
directly. For the resource-constraint devices, gateways in the
gateway layer can help these devices to communicate with the
web service layers (Bormann et al., 2014). The web services in
the web service layer act as the data services and the
intermediary between the devices and applications. While web
services can host IoT sensor data for applications to retrieve
(i.e., the sensing capability), web services can also forward
tasking commands from applications to the IoT devices (i.e., the
tasking capability). Finally, the application layer contains the
applications that connect with the web service layer to utilize
the sensor data and/or controllable capabilities from IoT
devices.

1.3 Problem and objective

While the IoT is attracting attention from various field and
many manufacturers have produced different Internet-connected
devices. IoT devices created by different manufacturers follow
different proprietary protocols and cannot communicate with
each other. This heterogeneity issue causes different products to
be locked in multiple closed ecosystems, which include
proprietary device, gateway, web service, and applications. We
define these closed ecosystems as the IoT silos.

In order to address this IoT silo issue, a common industrial
solution is the hub approach, which implements multiple
connectors to communicate with IoT devices following different
protocols. Alphabet (or Google) Nest, Apple HomeKit, and
Sentri are some examples of this IoT hub solution.

While the hub approach can effectively address the IoT silo
issue, we argue that this solution still faces serious
heterogeneity problem. With the growing number of proprietary
protocols proposed by different device manufacturers, IoT hubs
need to support and maintain a lot of customized connectors.
Maintaining up-to-date connectors to communicate with every
IoT devices may not be a realistic solution.

Another approach to solve the IoT silo issue is to define and
follow open standards. Among the existing IoT standards, the
Open Geospatial Consortium (OGC) SensorThings API
standard supports comprehensive conceptual model and query
functionalities. The first version of SensorThings API mainly
focuses on connecting to IoT devices and sharing sensor
observations online, which is what we call the sensing
capability. By following open standards, the communication
between layers can be unified to achieve interoperability. To be
specific, with the SensorThings API, IoT devices and gateways
can upload sensor observations to web services by following the
same protocol. Applications can also retrieve observations
generated by different devices from web services only by
following the SensorThings API. In this case, no customized
connectors are required.

However, while the first version of the SensorThings API only
defines the data model and communication protocol for the
sensing capability. This research tries to extend the
SensorThings API by proposing the data model and protocol of
IoT tasking capability. To be specific, this research tries to
propose a solution that can be integrated with the existing
SensorThings API and provide a uniform web service interface
for users to control different IoT devices.

While the nature of the sensing and tasking capabilities are
different, the required functionalities of these two capabilities

are different as well. As the sensing capability can simply serve
as a data service, the tasking capability needs to understand the
communication protocols of different IoT devices in order to
forward the tasking commands to them. One of the key design
decisions this research made is to allow manufacturers to design
device protocols as long as the protocols can be described by a
uniform service protocol description standard. By defining the
service protocol description standard, we can extend the
SensorThings API service to automatically translate users’
tasking commands into device protocol commands.

In general, the proposed solution can achieve two major
contributions: (1) manufacturers can design different IoT device
protocols, and (2) users/applications can control different IoT
devices with a uniform service interface even if the devices
follow different device protocols.

2. METHODOLOGY

2.1 Tasking capability description

As we mentioned earlier, the tasking capability of IoT devices
allow users/applications to remotely control the devices. In this
case, the IoT devices act similar to a web service allowing
clients to communication with the devices via the Internet.
While this research allows manufacturers to design their own
proprietary device protocols, we need a standard description
document that can describe any possible device protocols that
manufacturers may create. In this case, one of the main
objectives of this research is to define a web service protocol
description format, which we call the tasking capability
description.

While most of existing web service descriptions are based on
XML format (Chinnici et al, 2007; Kopecky et al, 2008), they
may not be suitable for resource-constraint IoT devices. Hence,
this research tries to implement a JSON-based tasking capability
document. First, we design the necessary elements to describe
possible device protocols. Table 1 shows the main elements and
their descriptions.

Table 1. The elements of tasking capability description
Element Description
TaskingCapability A Primary key for identifying the

TaskingCapability.
Thing A Primary key for identifying the Thing

that provides the TaskingCapability,
which can be integrated with the
SensorThings API’s Thing entity.

Description A human-readable description for the
TaskingCapability.

Parameters A list of settable parameters for this
TaskingCapability.

Protocols A list of available desvice protocols for
this TaskingCapability.

Actuator A Primary key for identifying the Actuator
that provides the TaskingCapability.

In the Table 1, “TaskingCapability” is to uniquely identify
different tasking capabilities in a web service. While each
tasking capability links to one “Thing”, one “Thing” could have
more than one tasking capabilities. “Description” is a human-
readable description to describe the tasking capability.
“Parameters” are used to describe the accepted parameters for
this tasking capability. The “Protocols” describe the
communication protocols that the IoT device supports for this

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B4-263-2016

264

tasking capability. In the current stage, this research only focus
on the HTTP-based protocols. Finally, the “Actuator” is used to
identify and describe the actuator used to support this tasking
capability.

The “Parameter” of tasking capability contains four main
properties for describing every allowed and settable parameter
for this tasking capability. The details are shown in the Table 2.
The “ParameterID” represents the unique ID of an allowed
parameter, which will be needed to identify the input value in
users’ tasking commands. The “Description” can be used to
describe the meaning of the parameter so that user could
understand the use of it. The “Use” property is used to describe
whether the parameter is “Optional” or “Mandatory”. If the
“Use” of parameter is “Mandatory”, when a user submits a task,
the user must include this parameter in the task. Finally, the
“Definition” defines the allowed values of the parameter while
explaining the data type and the unit of measurement.

Table 2. The properties of “Parameter”	
Property Description
ParameterID A unique identifier for an allowed parameter.
Description A human-readable description for the parameter.

Use The necessity of the parameter, i.e., optional or
mandatory.

Definition The detail definition of the parameter.

Table 3 shows the properties of protocols. In this current study,
we focus on the HTTP-based protocol. The possible properties
of “Protocols” include HTTP method, resource path, header,
message body, query string, and fragment. These properties
allow manufacturers to completely describe their proprietary
device protocols. By integrating the information specified in the
“Protocol”, we can compose an HTTP request following the IoT
device protocol.

Table 3. The properties of “Protocols”	
Property Description
HTTPMethod HTTP method.
AbsoluteResourcePath The path of communication protocol.
MessageBody Message body.
QueryString QueryString.
Headers Headers.
Fragment Fragment.

In addition, for users/applications to submit a controlling
command, we also define the data model for the task. As shown
in Table 4, a task needs to specify the tasking capability ID to
determinate the corresponding IoT device that the user wants to
control. Then, the “Inputs” property allows users to set
acceptable as well as necessary parameters and input values of
the task. Furthermore, the “Time” property allows users to
specify the time that a user wants to execute the task.

Table 4. The properties of “Task”	
Property Description
TaskingCapability The Primary key for identifying the

TaskingCapability
Inputs The parameters and input values
Time The executing time

2.2 Tasking capability workflow

The tasking capability description allows manufacturers to
describe different device protocols in a uniform format. This
description document needs to be understood by a web service
so that the web service knows how to communicate with the
devices. In this research, we try to extend the existing
SensorThings API web service by implementing the proposed
tasking capability profile. In this case, the extended
SensorThings API is able to support both sensing and tasking
capabilities in a uniform manner.

In general, Figure 4 shows the sequence diagram of the tasking
capability procedure. First, users or devices can register IoT
devices to the extend SensorThings API service by using the
proposed tasking capability description. The information
specified in the tasking capability description can help the web
service automatically understand the device protocols.
Users/Applications can then find the registered tasking
capabilities from the web service by following standard
SensorThings API protocol. Therefore, users can know the
details of any available tasking capabilities, including the
TaskingCapabilityID, Description, Parameters, etc.

Users can then create and send a task to the extended
SenosrThings API service by setting up the acceptable input
values. When the web service receives the task, the web service
will parse the task according to the defined tasking capability
description. After retrieving the executing time, input
parameters and corresponding values, the web service will fill
the input values of each parameter into corresponding locations
and compose an HTTP request following the device protocol.
Finally, the web service will send the device request at the user-
specified time.

Figure 4. The sequence diagram of proposed web service

3. RESULT

In order to demonstrate the contribution of the proposed
solution of this research, we implement an application utilizing
the sensing and tasking capabilities provided by the extended
SensorThings API. The demonstration application is an
automatic dehumidifier that can automatically turn on and off
according to the humidity. However, as there have not been any
sensor products that can directly upload sensor observations to a
SensorThings API service, we use the Arduino UNO as the
controller and connect sensors and communication modules to
monitor the humidity and upload the observations to the
extended SensorThings API service.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B4-263-2016

265

On the other hand, regarding the controlling of the
dehumidifier, we use a traditional mechanical dehumidifier and
connect it to the WeMo smart plug. The WeMo smart plug is an
IoT product that can control the provision of electricity for
appliances. Therefore, by controlling the WeMo plug, we can
turn on and off the dehumidifier remotely.

To register the WeMo smart plug to the extended SensorThings
API service, we first identify the device protocol of the WeMo
plug and then create a tasking capability description by
following the proposed solution. After linking the humidity
sensor and WeMo plug to the extended SensorThings API, an
automatic dehumidifier application can be implemented. First,
the application periodically retrieves the humidity observations
from the service, e.g., every 10 minutes. When a new humidity
observation is larger than a predefined higher-bound threshold,
e.g., 80%, the application will automatically create a task
following the properties defined in Table 4 and send the task to
the extended SensorThings API to turn on the dehumidifier.
Then when a new humidity observation is smaller than a
predefined lower-bound threshold, the application will
automatically create and send a task to turn off the
dehumidifier.

While the automatic dehumidifier application is only one
example, the same concept and workflow can be applied to
many IoT applications. The extended SensorThings API not
only can act as a sensor observation data service for sensors to
upload real-time observations, but also can serve as an
intermediary for users/applications to control IoT devices.

4. CONCLUSIONS AND FUTURE WORK

In this research, we propose a solution that can effectively
address the heterogeneous IoT tasking capability issue. To
allow manufacturers to have the flexibility of defining their own
proprietary device protocols, we propose the tasking capability
description standard that can describe any possible protocols in
a uniform format. By combining the proposed solution with the
OGC SensorThings API, the extended SensorThings API
service is able to automatically translate users’ tasks into
requests following device protocols. As a result, end users and
applications do not need to handle the heterogeneous device
protocols and can only follow a single web service interface to
communicate with every IoT device.

In addition, by integrating the proposed solution with the OGC
SensorThings API standard, the extended SensorThings API
can support both IoT sensing and tasking capabilities and
provide a comprehensive solution for the IoT web service
infrastructure. Overall, we believe this extended SensorThings
API has the potential be become the efficient and interoperable
IoT infrastructure and realize the IoT vision.

For our future work, we will promote the proposed solution to
the OGC SensorThings API standard working group. By
collecting opinions from multiple parties, the proposed solution
could be revised and standardized.

REFERENCES

Atzori, L., Iera, A., Morabito, G., 2010. The internet of things:
A survey. Computer Networks, 54(15), pp. 2787–2805

Bormann, C., Ersue, M., Keranen, A., 2014. Terminology for
Constrained-Node Networks. Internet Engineering Task Force,
RFC. 7228.

Chinnici, R., Moreau, J. J., Ryman, A., & Weerawarana, S.,
2007. Web services description language (wsdl) version 2.0 part
1: Core language. W3C recommendation, 26, 19.

ITU-T, 2012. Overview of Internet of Things, Recommendation
ITU-TY.2060.

Kopecky, Jonathon, Karthik, G., and Tomas, V., 2008. hrests:
An html microformat for describing restful web services. In:
IEEE/WIC/ACM International Conference on Web Intelligence
and Intelligent Agent Technology, 1.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B4-263-2016

266

