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ABSTRACT: 

 

The paper presents a very straightforward and effective algorithm to convert a space partitioning, made up of polyhedral objects, into 

a 3D block of voxels, which is fully occupied, i.e. in which every voxel has a value. In addition to walls, floors, etc. there are 'air' 

voxels, which in turn may be distinguished as indoor and outdoor air. The method is a 3D extension of a 2D polygon-to-raster 

conversion algorithm. The input of the algorithm is a set of non-overlapping, closed polyhedra, which can be nested or touching. The 

air volume is not necessarily represented explicitly as a polyhedron (it can be treated as 'background', leading to the 'default' voxel 

value). The approach consists of two stages, the first being object (boundary) based, the second scan-line based. In addition to planar 

faces, other primitives, such as ellipsoids, can be accommodated in the first stage without affecting the second 
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1. INTRODUCTION 

Three-dimensional grids, where data are represented as values 

at regularly-spaced grid points (voxels), are drawing attention 

increasingly, in addition to the more common 3D vector 

representations. For certain categories of spatial analysis, such 

as those involving 3D scalar or vector fields (air pollution, 

noise, wind) that vary continuously over space, gridded data 

representations offer clear advantages. Such representations has 

been largely used for modelling of geological structures. It 

seems natural to have objects like buildings and vegetation, as 

well as the terrain, represented by voxels too, when they play a 

role in applications that use field representations. Another 

application area where grid representations are currently studied 

is (indoor) navigation, where routes are computed along which 

persons, robots, or drones are moving through collections of 

'free space' or 'air' voxels. 

 

As many 3D GIS (e.g. building) models are in existence and are 

represented by vector data sets, there is a need for 3D vector-to-

raster conversion algorithms that translate vector models into 

grid representations. To avoid data duplication, but also to serve 

applications at different spatial resolutions, it is advantageous to 

perform those conversions 'on the fly'. This calls for efficient 

conversion routines.  

 

Two general approaches for 3D rasterization can be 

distinguished: object rasterization and scan-conversion 

rasterization (Xie, et al 2009). Object rasterization considers 

only the object of interest and follows two steps: boundary 

rasterization and interior filling, when needed (e.g. polygon and 

polyhedron). Some of the first studies of object rasterization are 

made by (Kaufman & Shimony 1986, Kaufman 1987, Wang 

and Kaufman 1993). They presented a set of algorithms for 

voxelizing 3D lines, polygons, polyhedral, cubic parametric 

curves, bi-cubic surfaces, circles, quadratic objects and tri-cubic 

solids. The algorithms are developed for a specific connectivity 

(i.e. 26-connected only), which influences the performance   in 

case of large data sets. This issue has been lately revisited by the 

same research group (Cohen-or & Kaufman 1997).  Huang et al. 

1998 presents algorithms for voxelizing planes and surfaces. 

However, this approach involves many spatial operations such 

as computation of distances, intersections and constructions of 

planes, which leads to high complexity and difficulties for 

implementation. A topological method presented by (Laine 

2013) has been seen as one of the best, since it offers a 

mechanism of voxelizing, which can be applied for all objects 

and provides options to specify the desired connectivity. An 

implementation of this approach is reported in Nourian et al 

2016.  

 

The above mentioned research is all object-type specific, which 

works well for non-manifold (watertight) objects such as 

surfaces and lines. However, a number of different algorithms 

must be used for the different kinds of input objects.  

 

As opposed to that, a generic solution can be achieved simply 

by creating a voxel if it is overlaid by a portion of an input 

object, i.e. intersection-based approach in a given volume. This 

approach considers continuous rasterization of a given 3D raster 

box and investigates which voxels get what kind of value.  Most 

of the implementations follow the scan-conversion approach, 

which is well studied and commonly used in the field of 2D 

computer graphics. Examples of such libraries are binvox (Min 

2016), Voxelization toolkit (Milossramek 2013). Many of the 

existing approaches make use of bitwise arithmetic to speed up 

the performance and facilitate the raster conversion of big 

models (Eisemann, 2008).  

 

On one hand, one could say that 3D vector-to-raster conversion 

is a complicated, however solved, problem. On the other hand, 

the “best” algorithms doesn't seem to have crystallized out yet. 

Moreover, the different algorithms show various degrees of 

strictness (vs. tolerance) w.r.t. their input formats, for instance 
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regarding topological constraints. Lastly, the problem is 

demanding in terms of computational load. GPU-based 

solutions are present (for example in binvox), but this 

complicates the methods even further and poses additional 

hardware constraints. 

 

Long before these developments became actual, vector-to-raster 

conversion was already an issue in 2D GIS, where, for example, 

the ILWIS (Gorte et al 1988) system included an approach that 

was already making use of functionality provided by dedicated 

PC graphics hardware. Nowadays, standard libraries like GDAL 

(www.gdal.org) provide excellent software for this purpose. 

 

This paper presents a novel approach to raster-to-vector 

conversion in 2D (converting a set of closed polygons to a grid 

of pixels) and in 3D (converting a set of closed polyhedra to a 

3D grid of voxels). It is assumed that to each input  polygon (or 

polyhedron) a numerical value is associated, such as an id-

number, a class label, a semantic value or any other attribute, 

which will become the pixel (or voxel) value in the grid to be 

produced. Polygons/polyhedra should be non-overlapping. In 

case they do not fill the entire space to-be-gridded, a default 

(background) value is assumed for the remainder. 

 

The approach is quite tolerant w.r.t. its input. Preferably this 

should include a complete representation of the topology of 

vertices, edges, faces and polygons/polyhedral. In practice it 

will be sufficient that each boundary “knows” the two 

polygons/polyhedra on either side, and then it is not even 

important to know which one is at which side. Furthermore it 

will be acceptable when each polygon/polyhedron in the input 

dataset is a separate object, having no explicitly stored 

relationship with the others, and every boundary separates the 

object from “background” (therefore, boundaries between 

entities appear twice in the dataset). 

 

Moreover, the approach presented below can be easily 

extended, in order to include other objects than polygons or  

polyhedra, such as ellipses (2D) and ellipsoids (3D), but also 

splines, nurbs, etc. as soon as they are watertight.  

 

2. METHODOLOGY 

The proposed vector-to-raster conversion method is clearly 

divided into two stages (Fig. 1). The first stage converts vector 

polygons (2D) or polyhedra (3D) into an intermediate raster 

format, which we call a 'sparse boundary grid'. In the second 

stage this is then be converted into the final 'full pixel/voxel 

grid', where each pixel/voxel belonging to a certain object has 

been assigned the value of that object. The second stage can be 

easily inverted, deriving a 'sparse boundary grid' from a full 

pixel or full voxel grid.  

 

The explanation of the two stages follows below in the reverse 

order: Stage one, the conversion between vector polygons and 

polyhedra to sparse boundary grids, will be introduced in 

section 2.3. There it will also become clear that such grids can 

be relatively easily created from other vector input elements, 

such as sphere, ellipsoids, and 2.5d surfaces. 

 

First, we explain stage two: the conversion between a sparse 

boundary grid and a full grid, and vice versa. These are done by 

operations called bitwise xor prefix resp. xor infix, as 

introduced below. 

 

 
Fig. 1 Flowchart of the method 

 

 

1.1 Bitwise Exclusive Or (xor) 

The vector-to-raster conversion method heavily relies on the 

bitwise exclusive or operator. It is applied to the numerical 

values of polygons/polyhedra in the input, which appear as 

pixel/voxel values in the output. The operator, denoted a xor b 

when applied to values a and b, is illustrated in Fig. 2. Here the 

range of values is assumed to be 0-255 (8 bits), but the principle 

is the same for larger ranges (16, 32 or 64 bits). Bitwise 

Exclusive Or is a primitive operation (instruction) in the CPU 

of any computer, and is therefore executed at the highest speed 

possible.  

 

 

        
 

Fig. 2: Bitwise Exclusive OR, left: on a single bit,  

right: on two arbitrary 8-bit values 

 

The xor operator is commutative: 

     a xor b = b xor a   (1) 

and associative: 

    (a xor b) xor c = a xor (b xor c).  

Furthermore: 

    a xor a = 0  

and:  

    a xor 0 = a 

and therefore: 

    (a xor c) xor (b xor c) = a xor b.  (2) 

 

Properties (1) and (2) will be helpful when separately handling 

two entities sharing a common boundary. 

 

 

2.2 Prefix and Infix 

Given a sequence A = a0, a1, .. an , we define the infix of an 

operator O on A as the result of applying O to all pairs of 

neighbouring elements of A: 

 

 O infix A = a0 O a1, a1 O a2, .. , an-1 O an 

 

The prefix of the operator O on A is defined as the result of 

applying O on all contiguous sub-sequences a0, .. ai (0≤i≤n). 
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O prefix A = (a0,), (a0 O a1), (a0 O a1 O a2), .. , (a0 O .. O an) 

 

After properly defining 'sum', 'box', 'xor', 'infix' and 'prefix' in 

the programming language J (www.jsoftware.com), we can have 

a dialogue as shown in Fig.3. 

 

 
 

Fig 3. Dialogue in the J programming language illustrating 

infix and prefix on 'box', 'sum' and 'xor' 

 

The last two fragments of the dialogue in Fig. 3 illustrate that 

infix and prefix on the operator xor are each others inverse – 

almost, that is, because infix reduces the number of elements in 

the sequence by 1. This is repaired in the example in Fig. 4, 

where the first element of the top line is put in front of the 

second line (the result of infix). Applying prefix now 

completely restores it. 

  

 

Fig. 4. Using xor infix to convert a full grid line into sparse 

boundary representation, and xor prefix to go back. 

 

When applying xor infix to each line of a two-dimensional 'full 

pixel' grid (i.e. a grid where each pixel of an area-object has the 

value of that object), we obtain what we call the sparse 

boundary grid. The first element (pixel) of each 'full grid' line is 

placed in front of the 'sparse grid', maintaining the total number 

of pixels, and allowing for restoration by xor prefix. When 

extending infix and prefix to two dimensions, we can choose 

between applying them to the columns of the grid (Fig 5, 

centre), or to the rows (fig. 5, right). The default in J would be 

the first; for the second we have to apply a modifier, here 

defined as inrows.  

 

  

Fig. 5. Transforming a full area grid (left) into a sparse 

boundary grid by xor infix , either column wise (centre) or row 

wise (right).  

The boundary grids are called sparse, because the created 

boundaries are not completely closed – the non-zero pixels do 

not form a connected path around each area. 

 

The corresponding xor prefix operation (either column wise or 

row wise) will restore the full area grid from the sparse 

boundary grids (Fig. 6). 

 

Fig 6. Illustration of xor infix converting a full area grid (left) to 

a sparse boundary grid (centre), either by columns (top) or by 

row (bottom). The corresponding xor prefix converts in the 

other direction. 

 

 

2.3  Stage 1: Vector edge to sparse boundary 

During the first stage of a 2D polygon-to-raster conversion the 

edges of the input dataset are converted to pixels in the sparse 

boundary grid. This process can be entirely completed on the 

bases of the edges (that make up the polygons) alone, without 

taking the interiors of the polygons into account.  

 

When preparing for a row-wise xor prefix in stage 2, for each 

edge of the dataset the process is as follows: first the minimum 

and the maximum row of the gridded edge are determined, 

according to the y-coordinates of the end-points of the edge, 

taking the resolution into account, as well as the extent of the 

entire area). Then, for each row in the range between this 

minimum and maximum, one column number is computed: the 

(vertical) column at which the edge intersects the (horizontal) 

row under consideration, based on the parameters of the edge as 

given by the two end-points. At the (row, column)-index 

obtained one value is placed into the grid: the xor of the two 

values of the polygons on either side of the edge. 

 

The process is illustrated in the example of Fig. 7, showing four 

areas (triangles 1 – 4), surrounded by a background with value 

0. There are five vertices, numbered from 0 to 4, and eight 

edges, numbered from 0 to 7. In each edge the two vertices it 

connects are stored, as well as the two areas it separates. The 

two edges are allowed to be in either order, independent of their 

positions in the map. The same holds for the two area values. 

The algorithm does not need to know about left and tight, or 

about clockwise and anticlockwise. From the pairs of area 

values of all the edges, xor values are computed. 
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Fig. 7: Two-dimensional vector input dataset: graphical 

representation (left) and the necessary data structure (right). 

 

Fig. 8 shows at its left how the xor values from Fig. 7 are 

distributed in the sparse boundary grid, which had initially been 

filled with zero values.  

 

 
 

Fig. 8: Sparse boundary grid generated from the vector 

 dataset in Fig. 7 (left), and the resulting full area grid  

after applying xor prefix (right) 

 

 

Inside the algorithm, extra care is taken of the exact positioning 

of the values in the sparse boundary grid, for the fact that the 

entire grid seems to be shifted half a pixel to the right. Another 

concern is about which area “wins” when multiple ones meet at 

one vertex: inserting a value (being the xor of two area 

numbers) into the grid is taking the xor of that value and the 

value that was already there. Therefore the edges of a certain 

polygon at one vertex will either cancel out each other, or 

occupy two pixels next to each other (leading to a single pixel 

being affected after stage 2). 

 

In case of having input data with separate polygons, i.e. without 

topology, the vertices with numbers 4-7 would appear twice, 

adding edges 8-11 to the set: each edge comes once with one 

area number plus background, and once with the other area 

number plus background, and the xor-ing takes place when 

inserting the second of these into the grid. 

 

A real-life example is shown in Figure 9. It is a historical land 

use map of the centre of the City of Adelaide in Australia, 

containing 192 polygons with 24 classes, 1296 vertices (332 

nodes and 964 break points) and 424 boundary lines. Here, 

nodes are vertices where three or more boundaries meet, 

whereas break points separate boundary lines into multiple 

polygons edges. Note that the road network in this dataset is a 

single polygon.  

 

This dataset is rasterized here into a grid of 708 x 929 pixels. 

  

    
 

 
 

Fig. 9 Historical land use map of the City centre of Adelaide 

(AUS) (below), with a detail (upper right) and its preceding 

sparse boundary grid (upper left). 

 

 

3. POLYHEDRON TO VOXEL CONVERSION 

(VOXELIZATION) 

The methodology for converting 2D polygons to raster, 

described above, can be extended to the 3D conversion of 

polyhedra to voxel grids. Whereas is the 2D case the algorithm 

is relying on edges, forming the boundaries between area's, this 

role is now given to faces that form the boundary surfaces 

between solids in 3D space. Therefore, each object (solid) is 

thought to be enclosed by a polyhedron that can be subdivided 

into planar faces. Like an edge in 2D, a face can be part of a 

boundary between two identified solids, or between a solid and 

the background, such as the air in a building model – or the 

outside air if the indoor empty spaces are being modelled 

explicitly. Also when all faces are designated to be bounding 

just single objects (having 'background' at the other side), those 

faces that actually separate the two identified objects will be 

dealt with properly by the xor operation during the gridding 

process. 

 

Faces are 3D polygons, made up of vertices having 3D (x,y,z) 

coordinates. Faces must be planar, also when having more than 

three vertices. 

 

The entire process again consists of two stages. At the end of 

stage 1, a sparse 3D boundary grid has been created, which is 
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converted to a full 3D solids grid during stage 2. This stage 2 is 

very similar to the 2D case, except that there are now three 

directions to choose from: left to right, front to back or top to 

bottom. (Note that the opposite directions would be possible as 

well, but we haven't mentioned this in the 2D case either). We 

will describe the top-to-bottom case. Of course, this also 

determines the appearance of the sparse boundary grid. Notably 

it implies that vertical walls will not explicitly appear in the 

sparse boundary grid, but are solely represented by their top and 

bottom xor values (Fig. 10 left and Fig. 13). 

 

    
 

Fig. 10: 3D sparse boundary grid with different xor values after 

voxelization stage 1 (left) and full voxel grid  

after top-to-bottom xor prefix in stage 2 (right) 

 

 
 

Fig 11. The same result as the right hand side of Fig. 10,  

shown with a larger voxel point size.  

 

As for stage 1: after setting up an empty 3D grid (i.e. filled with 

zero values) of the right size, depending on the extent of the 

dataset and the desired resolution, stage 1 proceeds working 

face by face. Given the (x,y) coordinates of the face's vertices, 

the extent of the horizontal grid coordinates in the resulting 

space is determined, and the smallest possible 2D grid 

surrounding these coordinates is formed. Into this small 2D grid 

a raster representation of the projection of the face into the 

(x,y)-plane is created, exactly following the description of 

Section 2. The result is a polygonal area filled with 1's 

surrounded by a background of 0's. The (row, column) 

coordinates of the 1's are shifted to the horizontal grid 

coordinates of the 3D grid, after which they are completed with 

a third (vertical) grid coordinate on the basis of the plane 

equation of the face, as determined from the 3D vertex 

coordinate set. 

 

At the index thus created a value is inserted into the 3D grid, 

being the xor of the values given by the two solids (or of one 

solid and 'background'). Insertion means taking the xor of the 

new value and the one that might be already present in the grid 

(or 0) 

 

The visualisations in Fig. 10 (right) and 11 clearly show 

different voxel values by different colours. Note that in the full 

solid grid also the 'invisible' voxels are present, having the value 

'background' = 0. 

 

The crown of the tree to the left of the house is not a collection 

of planar faces. Instead, it consists of two hemispheres, which 

are parametrized by x0, y0, z0, R and e and v. Here, x0, y0 and z0 

determine the centre of a (hemi)sphere in grid coordinates, and 

R its radius. For (x,y) pairs within distance R from (x0,y0) a z is 

determined according to the equation of a hemisphere with 

radius R, scaled vertically by e (which may also be negative). At 

the positions in the grid at index (x,y,z) the value v, xor-ed with 

'background', is inserted by using another xor.    

 

Another example, showing the interior of a building too, is 

presented in Fig. 12, 13, 14 and 15. The furniture inside the 

building is represented by polyhedra too, in this case the 

minimum maximum extend of the furniture. The polyhedral 

touch but again do not overlap. Here, the only distinction in 

voxel values is between 'object' and 'background' (air) values. In 

the full solids grid these are represented by 1's and 0's 

respectively. In the visualisation only the 1's are shown, made 

semi-transparent in the final result. 

 

 
 

Fig. 12. Vector input for a building with interior rooms and 

furniture 

 

 
 

Fig. 13. Sparse boundary grid of model of Fig. 12  

at 10cm grid resolution 
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Fig. 14. Voxel cloud of the model in Fig.12. The voxels are 

represented as points. 

 

 
 

Fig. 15: Voxelized model  

 

4. CONCLUSION 

We present a new approach for the conversion of 2D and 3D 

spatial data from vector representation into grids of pixels and 

voxels, respectively. Input are sets of vector boundaries between 

adjacent areas (in 2D) or solids (in 3D). Each area (solid) has a 

value, which will determine the value of the contained 

pixels/voxels of the result. 2D boundaries are piecewise linear 

(edges between vertices), whereas 3D boundaries are piecewise 

planar (plane polygons defined by 3D vertices). Polygons and 

polyhedral may be nested. Topological information in input 

datasets is not required, but its presence increases the efficiency 

of the operation. 

The approach is conceptually straightforward and can be easily 

re-implemented in other programming environments. It consists 

of two stages, the first being object (boundary) based, the 

second scan-line based. Input formats containing other 

primitives than planar faces, such as ellipsoids, can be 

accommodated in the first stage without affecting the second. 

During the first stage a minimal set of voxels have to be updated 

in a buffer in main memory. The indices are computed by 

straightforward operations, such as applying a plane equation. 

The performance is therefore considered to be optimal within 

the boundaries of the task under consideration. Further 

enhancement by GPU processing seems adequate, but has to be 

developed. The second stage is a simple operation based on the 

xor-instruction that is implemented in any CPU hardware, and 

is currently significantly faster than the first. 
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