The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016
XXIIl' ISPRS Congress, 12—19 July 2016, Prague, Czech Republic

COMPARISON OF OPEN SOURCE COMPRESSION ALGORITHMS ON VHR REMOTE
SENSING IMAGES FOR EFFICIENT STORAGE HIERARCHY

A. Akoguz®, S. Bozkurt®, A. A. Gozutok™; G. Alp?, E. G. Turan®, M. Bogaz®, S. Kent®

 Center for Satellite Communications and Remote Sensing, ITU, Istanbul, Turkey - (alper, sadik, armagan, gulsah) @cscrs.itu.edu.tr
® Department of Geophysical Engineering, ITU, Istanbul, Turkey - turanel @itu.edu.tr
¢ Department of Electronics and Communication Engineering, ITU, Istanbul, Turkey - kents @itu.edu.tr

Commission IV, WG 1V/1

KEY WORDS: Lossless Data Compression, LZMA, LZO, BWT, PPMd, GeoTIFF, VHR, SPOT, open source

ABSTRACT:

High resolution level in satellite imagery came with its fundamental problem as big amount of telemetry data which is to be stored
after the downlink operation. Moreover, later the post-processing and image enhancement steps after the image is acquired, the file
sizes increase even more and then it gets a lot harder to store and consume much more time to transmit the data from one source to
another; hence, it should be taken into account that to save even more space with file compression of the raw and various levels of
processed data is a necessity for archiving stations to save more space. Lossless data compression algorithms that will be examined in
this study aim to provide compression without any loss of data holding spectral information. Within this objective, well-known open
source programs supporting related compression algorithms have been implemented on processed GeoTIFF images of Airbus Defence
& Spaces SPOT 6 & 7 satellites having 1.5 m. of GSD, which were acquired and stored by ITU Center for Satellite Communications
and Remote Sensing (ITU CSCRS), with the algorithms Lempel-Ziv-Welch (LZW), Lempel-Ziv-Markov chain Algorithm (LZMA &
LZMA?2), Lempel-Ziv-Oberhumer (LZO), Deflate & Deflate 64, Prediction by Partial Matching (PPMd or PPM2), Burrows-Wheeler
Transform (BWT) in order to observe compression performances of these algorithms over sample datasets in terms of how much of the

image data can be compressed by ensuring lossless compression.

1. INTRODUCTION

Remote sensing has been an essential approach for the Earth ob-
servation from the beginning of space age. Since the space tech-
nology and complex space-borne sensor systems are still being
developed rapidly, we can reach sub-meter spatial resolutions and
wider swath width with satellite data acquired nowadays. More-
over, big data definition is getting more and more popular since
the invention of more complex data acquisition systems and gen-
eration enormous amount of data from the beginning of digital
era. One main part of remote sensing is that every image sensed
by high resolution sensors occupies hundreds or thousands of
megabytes in storage when it is in main processing level which
is described as raw data. When we consider the amount of image
acquired by remote sensing satellites each day and going further
with downlinking the acquired satellite data to ground station in
near-realtime, this amount is sure to be grown up to terabytes
and then petabyte (10'> Bytes) scale in short time interval when
hundreds of individual image is recorded over a single day. Fur-
thermore, this may lead to insufficient storage area for ground
receiving stations operating with these high resolution earth ob-
servation satellites after short period of time.

Within this advancing volume of data the challenge becomes more
complicated that one should ask how to store this vast amount
of data more effectively in receiving stations and how to trans-
fer this data over a web structure in shorter time intervals? In
order to avoid these kind of problems that the solution may be
simplified as more storage area can be satisfied by having larger
storage capacity; however, lossless data compression has being a
great importance for storage of imagery as getting complicated
remote sensing technology. On the other hand, preserving orig-
inal quality of an image after compression and decompression

*Corresponding author

operations play the most crucial role for data modeling, for ex-
ample classification and feature extraction applications needs the
spectral data as it is for generating more precise models. There-
fore, lossless data compression should be preferred to compress
remote sensing data for archiving in order to keep their informa-
tion unchanged and then retrieve the original information back. In
addition, data compression algorithms consist of three main cat-
egories which are lossy compression, near-lossless compression
and lossless compression which will be described in algorithms
and methods section.

Data compression concept firstly appeared on the fields of infor-
mation theory (Shannon, 1948). The main concept behind data
compression was generation of probability relations through data
source. Theory behind data compression is achieving the elimi-
nation of redundant information by using an encoder and to fix up
the initial information back in more compressed sizes to reduce
initial volume of data. Inside the context of remote sensing, some
image file formats that are standardized as .TIF (Tagged Image
File), .img etc. are the main file formats that are used appropri-
ately to store today. In order to compress large .TIF formatted
files, one must consider having implemented lossless compres-
sion and decompression on their data to protect the original image
information for further analysis.

Tagged Image File Format (TIFF) is one of the well-known raster
image archiving file format around the world. One of the appli-
cation areas of TIF format is producing and monitoring the raster
image data geographically for various types of images including
remote sensing data (Ritter and Ruth, 1995). Many Geographical
Information System (GIS) softwares support TIF format as their
user demands improved so far. The GeoTIFF is specified between
the tags that are compatible with existing GIS software.

As we consider lossless data compression, we will investigate

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B4-3-2016 3

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016
XXIIl' ISPRS Congress, 12—19 July 2016, Prague, Czech Republic

open-source compression algorithms and programs which are sup-
ported by storage architecture to observe how fast and how much
compression can be satisfied by to store remotely sensed data
more efficiently over archiving architecture. Compression algo-
rithms that are implemented on sample 16 bit-depth .TIF datasets
are Deflate & Deflate64, Lempel-Ziv-Welch (LZW)), Lempel-
Ziv-Markov Chain Algorithms (LZMA & LZMA?2), Burrows &
Wheeler Transform (BWT), Prediction by Partial Matching II
(which is called shortly as PPMd) & Lempel-Ziv- Oberhumer
(LZO). These algorithms will be defined in the following in ba-
sics.

2. METHODS & ALGORITHMS USED
2.1 Deflate

Deflate is a widely known compression algorithm which was de-
veloped by Philip Katz and initially used in PKZip program writ-
ten by himself and further used in Gzip software. The algorithm
was also implemented on zlib library, which is a portable and
open-source compression library for lossless data compression
(Salomon et al., 2010). The deflate is an algorithm based on
LZ77 and Huffman code combination that tries to locate dupli-
cate strings from the input information which are the repetition
of the sequences, then replaces all the secondary situations where
the characters exists by a pointer to retrieve previous information
in archive. While locating and encoding the sequences from the
input stream, Huffman code is also applied for entropy coding.
Deflate algorithm is an essential compression part and base of
Gzip and PigZ programs and also supported by 7z. PigZ program
uses available threads in parallel by breaking the input data up to
128 KB chunks.

Theory behind deflate algorithm is basically a sliding window
that stores the record of information about the characters which
went before, for example, a 16K sliding window means that the
last 16384 (16*1024) characters are recorded by compressor while
archiving and decompressor while extracting. From here, when
the next character stream or sequence is going to be compressed,
it is retrieved from the sliding window, which stores the location
of occurrences as pointers. The sequence is then changed to two
integer numbers, a distance and a length information. The dis-
tance means that there is a further way from where the sequence
starts into sliding window, the length means the quantity of char-
acters from the sequence. The sliding window can be set up to
32K for this algorithm (Sayood, 2002). Deflate64 algorithm is
modified version of deflate and dictionary size is extended to 64K
to store more symbols in window while faster computational op-
erations. Program release versions of Pigz and Gzip are 2.3.3 &
1.5 relatively.

2.2 Lempel-Ziv-Welch (LZW)

Another compression algorithm based on LZ77 is LZW, the al-
gorithm is basically constructed around a translation table which
consists of strings, the algorithm tries to find all of the common
substrings and puts a variable size code where they exist and
makes them assigned to the generated table which contains pre-
vious strings that have been encountered in the message that is to
be compressed (Welch, 1984). In this research, a simple LZW al-
gorithm that is implemented on default compression program of
CentOS compress was used for lossless compression of sample
datasets.

2.3 Lempel-Ziv-Markov Chain Algorithm (LZMA-LZMA?2)

Lempel and Ziv’s consecutive compressors are the base of mostly
practiced and used lossless compression algorithms (Salomon et

al., 2010). Lempel-Ziv-Markov Chain Algorithm (which is ab-
breviated as LZMA) is the main algorithm running behind pro-
grams like 7z (or 7-zip) and XZ to compress data using a dictio-
nary based compression scheme to achieve better compression ra-
tios and faster decompression intervals. First thoughts of adaptive
dictionary based compression algorithms are put forth by Abra-
ham Lempel & Jacob Ziv and come out one as an algorithm in
1977 (LZ77) & another in 1978 (LZ78). Then the LZMA algo-
rithm was created by Igor Pavlov and further developed since it is
released. It is an improved and optimized version of LZ77 and its
compression procedure has similarities between deflate algorithm
however, it uses range encoding which is a variant of arithmetic
coding rather than Huffman coding (Ziv and Lempel, 1977). As a
result, encoder becomes more complex while better compression
ratios are being achieved. This high compression ratio levels of
LZMA basically provided by two computation concepts, sliding
dictionaries or windows and Markov models. First phase of com-
pression process is Lempel-Ziv coding which locates and reduces
the redundancy by transforming data chunks to distance-length
couples. Then the second phase comes which is a range encod-
ing process that uses distinctive probability models for different
samples data.

Considering the 7z program, the dictionary size can be set up
to 4 Gb, however it is currently limited to 1 Gb to implement
on. Also multi-processing is supported if hardware is appropri-
ate for parallel compression on CPU. However, multi-threading is
not supported for decompression. LZMA?2 algorithm is a modi-
fied and improved version of LZMA which provides better multi-
threading results (Pavlov, 1999). 7zip & XZ programs support
both LZMA and LZMA?2 algorithms with different archive types
as .7z and .xz. 7z software release used is this research was 9.20
(64-bit), Xz version was 5.1.2alpha.

2.4 Burrows-Wheeler Transform (BWT)

The Burrows-Wheeler transform (BWT) (Burrows and Wheeler,
1994) is a lossless data compression method which is basically a
block-sorting algorithm. The transformation part does not achieve
any compression but it changes the input data to make it more
simple to compress input data easily, this will lead to significant
increase in compression times. The BWT does not compress data
sub-sequentially however, it divides the input stream to blocks as
units. These units are consisting in the initial block’s characters
in different sort.

BZIP2 is an open-source lossless data compressor which uses
Burrows-Wheeler algorithm and Huffman coding in compression
background. In earlier times when bzip was developed, arith-
metic coding was used more effectively, however it was reduced
due to patent problems of arithmetic coding. The compression
results seeming to be better and way more faster than LZ77-
LZ78 based compressors in general and nearly on the path of per-
formance level where PPM sort of statistical compressors stand
(Gilchrist, 2004).

Linux based bzip2, pbzip2, which is parallel-bzip2, and 7zip soft-
wares are the programs that are consisting in Burrows-Wheeler
Transform within their source code. Compression parameters for
the programs are file block size that reduces file into chunks, is
variable from 100 KB to 900 KB, number of threads (for pbzip2
and 7z) and compression level that can be set from 0 to 9. Pbzip2’s
release version was v1.0.5 while Zip’s version 3.0.

2.5 Prediction by Partial Matching (PPMd)

Prediction by partial matching (PPM) algorithm is adaptive sta-
tistical lossless data compression method based on modeling and

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B4-3-2016 4

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016
XXIIl' ISPRS Congress, 12—19 July 2016, Prague, Czech Republic

prediction, created by Cleary and Witten in 1984 (Cleary and
Witten, 1984). The models basically predicts the next charac-
ter in stream using a set of preceding symbols. First PPM algo-
rithms have had higher memory usage while having longer com-
pression intervals. These algorithms are well-known state of art
compressors for lossless data compression (Mahoney, 2005). An
algorithm called PPMd (or PPM2) was developed by D. Shkarin
from PPM structure and having high compression ratios for all
types of data. PPMd algorithm is supported by 7zip open-source
software. In general, PPM algorithm basically encodes the in-
put stream by using the longer context patterns where the pre-
vious symbols have appeared within defined model order in size
(Howard, 1993).

PPM method is basically predicting the probability distribution of
the nth symbol considering previous k symbols Zpn_k, ... , Tn—1.
Parameter k here is the maximum size or the order for the model
up to (n — k:)th symbol to predict nth symbol. PPMd parameters
tested with 7z software are memory size in format as 257 (226-
227928 Bytes), prediction model order (orders selected 2-8-16)
and compression level that differs from O to 9.

2.6 LZO (Lempel-Ziv-Oberhumer)

LZO is another modification of Lempel-Ziv 1977 (LZ77), com-
pressing data with sliding window scheme, mainly optimized to
use integer arithmetic in computer hardware to gain advantages
of computational architecture. Since that floating point opera-
tions, which takes more time to compute (Kane and Yang, 2012),
generate higher memory usage and consume more time, usage of
integer arithmetic should avoid this kind of problems, however
it has a performance trade-off which results in achieving lower
compression ratios. There are implemented examples of LZO
in various technologies like NASA’s Mars Rovers(Oberhumer,
1996). Linux based lzop software has suitable LZO libraries to
implement the algorithm on our dataset. Lzop release used in
compression tests was v1.03, Nov 1st 2010.

3. IMPLEMENTATION

To begin with implementation of the algorithms on sample .TIF
datasets, initially TIF products were generated from different test
sites chosen from various land cover types as sea, which was cho-
sen from Marmara region, settlement (chosen from urban sites in
Ankara), forest site taken from Zonguldak region where dense
forest flora exist and agricultural site selected from Konya plain.
Quicklook files can be found in Figure 1 & Figure 2 for pansharp-
ened (PMS) and panchromatic (PAN) products, for multispectral
(MS) datasets, sample quicklook display looks same as PMS.
Also product file size parameters can be retrieved from the Ta-
ble 1 for generated sample TIF data. For SPOT satellite imagery
products, there are two different product processing levels which
are defined as primary (Pri) and orthorectified (Ort). The product
level primary is basically described as the processing level which
is closer to the original image that is acquired by sensor and cal-
ibrated radiometrically. After performing the resampling of the
acquired image according to the projection mapping, which is
previously calculated on ground-projected images, is the method
called ortho-rectification (Leprince et al., 2007).

SPOT6 & 7 products used in this study provide natural color, 1.5
m spatial resolution imagery as standard. These Earth observa-
tion satellites have five spectral bands that are red, green, blue,
near-infrared and panchromatic between the range of 0.450 and
0.890 micrometer of electromagnetic spectrum. SPOT6 & 7 im-
agery products are collected along 60 kilometer swath width and
provides mapping at the scale of 1:25000. In this research, 16

Product # MS PAN PMS
Agriculture (Ort) | 86828830 | 347230894 | 1388921934
Agriculture (Pri) | 78712486 | 314896716 | 1259586062

Forest (Ort) 80288606 | 320998116 | 1283990822
Forest (Pri) 58291990 | 233208004 | 932831214

Sea (Ort) 82663070 | 330570330 | 1322279678
Sea (Pri) 57170758 | 228722692 | 914889966

Settlement (Ort) | 81765318 | 326903162 | 1307611006
Settlement (Pri) | 54522006 | 218126884 | 872506734

Table 1: File sizes of different land cover datasets (Bytes).

bit encoded multispectral (MS) with 6 meter spatial resolution,
panchromatic (PAN) with 1.5 meter spatial resolution and pan-
sharpened (PMS which is defined as MS + PAN by image fusion
technique) having 1.5 meter spatial resolution, generated as pri-
mary and orthorectified geotiff imageries have been selected from
agricultural, settlement, sea and forestry areas in order to eval-
uate compression performance of deflate, BWT, PPMd, LZW,
LZMA & LZMA2, LZO algorithms. These imageries tiled to
approximately 20x20 km width while being produced. Addition-
ally, these geotiff data have different sizes depending on spectral
bands information about the selected locations.

Figure 1: Sample quicklook display of pansharpened SPOT 6 & 7
images (upper left: sea, upper right: settlement, lower left: forest,
lower right: agriculture) (PMS). © SPOT Image 2015, CNES.

In algorithm application section, compression parameters typi-
cally have some specific inputs which differ among compres-
sion programs that are tested. Considering the file compression,
the main program input parameters can be listed as compression
method, compression level, output archive type, dictionary size,
file block size, number of threads to use in parallel processing,
model order (only for PPMd implemented by 7z). For decom-
pression of the compressed archive, there are no parameters used
except execution of extraction process. All of the compression
input parameters used in this study are displayed on Table 2. At
that point to evaluate the compression performance, compression
ratio is defined as 1 — (output_size/input_size) which allows
us to decide how much of the input data is compressed and how
can we get free space after compression procedure.

Output si
Compression Ratio =1 — w 1)
Input size

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B4-3-2016 5

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016
XXIIl' ISPRS Congress, 12—19 July 2016, Prague, Czech Republic

Figure 2: Sample quicklook display of panchromatic SPOT im-
ages (upper left: sea, upper right: settlement, lower left: forest,
lower right: agriculture) (PAN). © SPOT Image 2015, CNES.

Test hardware specification includes Intel®Xeon®E3-1225 V2
model 58 @3.2 GHz - 4 core / 8 thread CPU, 8 GB 1333 MHz
DDR3 RAM, 240 GB (520 MB - 350 MB/s read & write speed)
SATA3 SSD hard disk and generated scripts & codes that were
implemented on operating system CentOS Linux release 7.1.1503
(Core), kernel version 3.10.0-229.e17.x86_64.

4. RESULTS

The results of compression-decompression scripts written in bash
(bourne-again shell) having input parameters listed in Table 2
will be discussed in this section. Before that discussion, in or-
der to determine the compression performance relatively among
with the programs and algorithms implemented on sample TIF
datasets, we have and should describe a parameter called com-
pression efficiency, Ecomp. This parameter was basically derived
from the compression ratio which is achieved at the end of archiv-
ing and the time (T¢omp) Which was spent during compression.
We have found this parameter as dividing the achieved ratio by
time elapsed.

Ecomp = Compression Ratio/Tcomp)

According to the results obtained, typically the fastest compres-
sion scenario was proven to be compression level 3 on our sam-
ple imagery. Considering the speed of compression, LZOP have
achieved its best compression efficiency of 110.441 while having
aratio 24.0662. Also Deflate algorithm implemented by Pigz has
proven to be the most efficient algorithm by having 179.525 of
efficiency while getting 48.04 compression ratio in a very short
amount of time. This result was achieved by multi-threading
of 8 threads by Pigz. Another multi-threading supporter Pbzip2
program achieved a maximum efficiency of 53.7075 by getting
62.5972 of compression ratio and the last program that was used
for multi-threaded approach Xz was outperformed by other par-
allel compressors that it could only get an efficiency around 7.
More detailed compression efficiency results can be retrieved from
Table 3.

In terms of multi-threading support of the programs 7z, XZ, Pbzip2
& Pigz, our testbed workstation CPU usage have risen up to 800%
while compressing the datasets with number of threads to com-
press input data were up to 8 to achieve much shorter compres-
sion intervals. In addition, more complex TIF data which con-
sists large amount of land cover that consisting urban architecture
and complicated structures took more time to compress while a
small number of land cover types including sea took less time to
archive. Observed decompression times were much lower than
the compression time among every program, archiving types and
for each algorithm as shown in Figure 8 & Figure 9. LZO archive
files were easier to decompress while bz2, 1zma and xz files that
are compressed by Pbzip2 and XZ softwares were harder to ex-
tract as seen from these figures. As the compression level in-
creases up to "ultra compression” level which is equal to 9, archive
becomes more complex for these algorithms to decode and thus,
decompression process took more time. Also the programs which
have gone down below 1 second to decompress the archive are 7z,
LZOP, Gzip & compress as seen from Figure 9, therefore, there
were no significant differences in decompression time.

Considering the archive types, .xz and .1zma extensions not much
have different effect on both compression and decompression times
as the program XZ was used for archiving as seen from the Fig-
ure 4. For .gz format, output archive format also do not have any
impact on the compression ratio and time when we look at both
Figure 3 & Figure 4. Both programs Gzip and PigZ do not have
ended up with different compressed sizes for gzip format since
Deflate algorithm. Also, when 7z is used for lossless compres-
sion with its own archive format .7z, it will mostly result in its
top performance.

According to the Figure 3, the most successful compression al-
gorithm and program which has the highest compression ratio
among the others is LZMA compressed by 7z. LZMA and LZMA?2
algorithm have the highest compression ratio in general how-
ever, the are almost equal to each other. LZMA satisfied a little
bit more space by compressing slightly more data than LZMA2
while LZMA?2 was faster at making the archive as seen from Fig-
ure 7.

Compression ratios vs. applied methods

2, weiboid
diz6 ;wesboid
doz| ;wesboid

2dizqd ‘weiboid
26/d ;wesboid

2 wesboid
diz :weiboid

ssaudwioo weiboid

Compression Programs

Figure 3: Graph of average compression ratio of each applied
method.

5. CONCLUSION

Compression algorithms that are compared in this research mainly
seek to reduce redundant information in the datastream. For in-
stance, in order to reduce size of the data that is encoded with
16 bit integer, lossless compression algorithms encode the data

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B4-3-2016 6

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
XXIIl' ISPRS Congress, 12—19 July 2016, Prague, Czech Republic

, Volume XLI-B4, 2016

Program Algorithms Archive type Comp. level Dictionary size File block size | #thread
Pigz (v2.3.3) Deflate .8z 1-3-5-7-9 32 KB 1-2-4-8
Pbzip2 (v1.05) BWT .bz2 3-5-9 100-500-900 KB | 1-2-4-8
XZ (5.1.2 @alpha) | LZMA & LZMA2 .xz, .lzma 1-3-5-7-9 64 KB - 64 - 1024 MB 1-2-4-8
LZOP (v1.03) LZO Izo 1-3-5-7-9 -
LZMA
LZMA2 64 KB
BWT 8 MB
7Z (v9.20) 7z, Xz, .gz, .bz2 3-5-9 64 MB 100-500-900 KB | 1-2-4-8
Deflate
1024 MB
Deflate64 1536 MB
PPMd
GZIP (v1.5) Deflate .8z 1-3-5-7-9 32KB -
ZIP (v3.0) Deflate, BWT .Zip 1-3-5-7-9 32 KB -
COMPRESS LZW Z no-level - -
Table 2: Compression parameters for programs used.

Program 7Z Compress Gzip LZOP | Pbzip2 Pigz X7 Zip 7z 7z
Algorithm LZMA LZW Deflate LZO BWT Deflate | LZMA2 | Deflate PPMd | Deflate64
E_comp 49.5224 57.070 43.3717 | 110.441 | 53.7075 | 179.525 7.469 47.641 | 27.2852 | 21.1975

Achieved Ratio | 55.7294 43.570 48.0316 | 24.0662 | 62.5972 | 48.0401 | 38.555 | 48.0316 64.09 50.2950

Table 3: The best efficiency value achieved by each program and corresponding algorithm.

Ratio (%)
N
=5

2, weiboid

$591dW00 :weibosd

Compression ratio vs. different archieve types

diz6 ‘weiboid

doz| :wesboid
26 ;wesboid

2dizqd ‘webosd

Compression Programs

2 wesboid
diz wesoid

Figure 4: Average compression ratio vs. different archive types.

50

Ratio (%)
s
5

2, wesboxd

58,000 :wesbod

Average compression ratio

doz| wiesBoid
26id wiesBoid

2dizqd «

Compression Programs

2x ‘wesboid
diz :wesboid

Figure 5: Average compression ratio among programs.

reducing number of bit integer as much fewer as possible. The
LZMA, which is based on LZ77 using a delta filter to sort data for
better compression among others, is also an open sourced com-
pression algorithm and it was proved to be effectively used to
achieve higher lossless compression ratios. LZO algorithm has
proven to be more quick to compress the same data however, it

©
8

Ratio (%)
@ 2 0N
g 3 3

N
5

@
&

Achieveable max. & min. compression ratios for tested programs

m
g
T

2, weibosd
ssodwioo wesboid
diz6 ;wesbosd

doz) :weiBoid
Zdizqd ‘weiboid

261d weiboid

Compression Programs

2x :wesboid

diz ‘weiBoid

Figure 6: Graph of maximum and minimum of the achieveable
compression ratio.

Compression Time ()

N P IS @ @
3 5 3 g 2
- 7 -

=
T

°

700

Compression

time vs. applied method

2 weibosd
ssaidwoo wesbosd }
diz6 ;wesbosd
doz) :wesBoid L
2dizqd wiesboid

261 wesbo.d |

Compression Programs

2x wesboid

diz \umﬁmdr

Figure 7: Average compression time vs. applied method.

could not achieve higher compression ratio. Another algorithm
PPMd, basically using a few characters at the end of the input
stream to predict next streams very first characters and then en-
codes the datastream according to it achieved also not different

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B4-3-2016

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016
XXIIl' ISPRS Congress, 12—19 July 2016, Prague, Czech Republic

Decompression time vs. applied methods

<

=

)

Decompression Time(sn)
© S

~

m
]

dizB :weiboid

z61d ‘wesboid _

2, wesboxd
doz| ‘wiesboid
2dizqd :weiboid
2 wesboid
diz wesboid

58,000 :wesbod

Compression Programs

Figure 8: Average decompression time among applied methods.

Average decompression time

Decompression Time:(s

2, wesboid
iz wesBoid
doz| ‘wiesBoid

2dizqd ‘weioid
261d ‘wesBoud

2x wesBoid
diz :weioxd

ss0.dWo00 :weiBoid

Compression Programs

Figure 9: Average decompression time.

Mean Ratio achieved by Program

T T T T T
- T -
80F _ 1 -
] ' | :
70F 1 | !
i

!

'
.

zx :weiboud |-),444444
2, ‘weiBoud |
dizB :weaboud |-
diz ‘weiboud |-

2dizqd ‘weiboud |

ssaudwoo weiboud |-

Figure 10: Box and whiskers plots showing statistics and
achieved mean ratio per program.

compression ratio however as the PPMd’s model prediction order
increase the computation time will also increase, we have seen
from the results that order 2 model was way more faster than or-
der 8 & 16 model.

To validate the compression procedure was always lossless, after
the extraction of the compressed archive, md5 hashes were also
generated and compared to the input datasets mdS, consequently
they appeared as exactly the same. Thus, lossless compression
algorithms in this research reduce the size of data which will be

stored in a warehouse by no loss of information.

Since that each data compression algorithm have different com-
pression rate and efficiencies, therefore, there have been exam-
ined several compression techniques on several images in order to
evaluate which compression technique is the best and the most ef-
ficient one to achieve high performance for satellite image archiv-
ing. In this study, satellite images have been selected from differ-
ent regions that have different land cover types such as forestry,
residential, agricultural areas and marine etc. Images selected
from different regions have been produced into two types as or-
thorectified and primary data and these produced satellite images
have been compressed by using different lossless data compres-
sion algorithms and compared according to their effectiveness in
order to reveal the best lossless data compression algorithm. The
results of the compression algorithm implementation will lead us
to perform much better satellite imagery archiving strategy and
architecture in terms of both storage and file transfer time.

6. FURTHER RESEARCH

According to the results obtained, next step of this research will
include the compression of TIFF products of both Pléiades 1A
& 1B satellite data which has 0.5 m. GSD, European Space
Agency’s (ESA) Copernicus Project satellites, called Sentinel,
which also include both radar imagery and optical satellite data
and products in TIF format and METEOSAT 3rd & 4th gener-
ation meteorology satellite data that acquires atmospheric data
from GEO. Furthermore, local or land cover based compression
approach can also be analyzed in order to define an algorithm for
much better compression ratio and less time. Also, algorithm and
program variety will be implemented on sample GeoTIFF data.
Downlinked imagery will also be produced via different file for-
mats generated and processed by different remote sensing packet
programs as .img, .rrd, .pix etc. to decide which compression
algorithms are more suitable to store these processed data. For
further implementation of the algorithms defined with different
approaches, various compression algorithms could be developed
in near future.

ACKNOWLEDGEMENTS

SPOT6 & SPOT?7 extracted scenes were kindly provided by Is-
tanbul Technical University Center for Satellite Communication
and Remote Sensing (ITU-CSCRS), the first satellite ground re-
ceiving station of Turkey, established in 1998.

REFERENCES

Burrows, M. and Wheeler, D. J., 1994. A block-sorting lossless
data compression algorithm. Technical report, Digital Equipment
Corporation.

Cleary, J. and Witten, 1., 1984. Data compression using adap-
tive coding and partial string matching. IEEE Transactions on
Communications 32(4), pp. 396—402.

Gilchrist, J., 2004. Parallel data compression with bzip2. In: Pro-
ceedings of the 16th IASTED international conference on parallel
and distributed computing and systems, Vol. 16, pp. 559-564.

Howard, P. G., 1993. The Design and Analysis of Efficient Loss-
less Data Compression Systems. PhD thesis, Brown University,
Providence, RI, USA. Available as Technical Report CS-93-28.

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B4-3-2016 8

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016
XXIIl' ISPRS Congress, 12—19 July 2016, Prague, Czech Republic

Kane, J. and Yang, Q., 2012. Compression speed enhancements
to 1zo for multi-core systems. In: Computer Architecture and
High Performance Computing (SBAC-PAD), 2012 IEEE 24th In-
ternational Symposium on, pp. 108-115.

Leprince, S., Barbot, S., Ayoub, F. and Avouac, J. P, 2007. Auto-
matic and precise orthorectification, coregistration, and subpixel
correlation of satellite images, application to ground deformation
measurements. IEEE Transactions on Geoscience and Remote
Sensing 45(6), pp. 1529-1558.

Mahoney, M. V., 2005. Adaptive weighing of context models for
lossless data compression.

Oberhumer, M. F,, 1996. oberhumer.com: LZO real-time data
compression library. http://www.oberhumer.com/opensource/
1zo/.

Pavlov, ., 1999. LZMA SDK (Software Development Kit). http:
/Iwww.7-zip.org/sdk.html/.

Ritter, N. and Ruth, M., 1995. Geotiff format specification, re-
vision 1.0. Jet Propulsion Laboratory, Cartographic Application
Group.

Salomon, D., Bryant, D. and Motta, G., 2010. Handbook of Data
Compression. Springer London.

Sayood, K., 2002. Lossless Compression Handbook. Communi-
cations, Networking and Multimedia, Elsevier Science.

Shannon, C. E., 1948. A mathematical theory of communication.
The Bell System Technical Journal 27(3), pp. 379-423.

Welch, T. A., 1984. A technique for high-performance data com-
pression. Computer 17(6), pp. 8—19.

Ziv, J. and Lempel, A., 1977. A universal algorithm for sequen-
tial data compression. IEEE Transactions on Information Theory
23(3), pp. 337-343.

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B4-3-2016

