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ABSTRACT: 

 
A novel Laser-SLAM algorithm is presented for real indoor environment mobile mapping. SLAM algorithm can be divided into two 
classes, Bayes filter-based and graph optimization-based. The former is often difficult to guarantee consistency and accuracy in large-
scale environment mapping because of the accumulative error during incremental mapping. Graph optimization-based SLAM method 
often assume predetermined landmarks, which is difficult to be got in unknown environment mapping. And there most likely has large 
difference between the optimize result and the real data, because the constraints are too few. This paper designed a kind of sub-map 
method, which could map more accurately without predetermined landmarks and avoid the already-drawn map impact on agent’s 
location. The tree structure of sub-map can be indexed quickly and reduce the amount of memory consuming when mapping. The 

algorithm combined Bayes-based and graph optimization-based SLAM algorithm. It created virtual landmarks automatically by 
associating data of sub-maps for graph optimization. Then graph optimization guaranteed consistency and accuracy in large-scale 
environment mapping and improved the reasonability and reliability of the optimize results. Experimental results are presented with a 
laser sensor (UTM 30LX) in official buildings and shopping centres, which prove that the proposed algorithm can obtain 2D maps 
within 10cm precision in indoor environment range from several hundreds to 12000 square meter. 
 
 

1. INTRODUCTION 

1.1 Laser-SLAM 

In recent years, the technology of simultaneous localization and 
mapping (SLAM) has been applied in the surveying and mapping 
domain. In Many places, especially in the indoor environment, 

there is no GPS signal, SLAM is one of the solution to this 
problem. Laser scanners are often used in high precision 
surveying and mapping, Laser range finder is extensively used to 
acquire 2D information from environment for its high abilities of 
prevent interference and low influence of light, and many laser-
SLAM algorithm have been applied to the robot, but most 
algorithms are only suitable for small scale and low precision 
mapping, the new problem with it is that how to draw high 

precision large-scale map.  
About research into SLAM algorithm, the earliest can be traced 
back to the 80’s, Stanford University, Smith [1], who published 
a seminal article on the issue of SLAM. In this paper, the concept 
of random map is proposed, which is based on the description of 
spatial uncertainty and the representation of transformation. By 
1991, Leonard proposed the concept of SLAM, Durrant 
summarized the early research methods of this problem, and 
discussed the structure and convergence of the SLAM problem. 

SLAM algorithm is essentially a system state estimation problem. 
In this way, the solving method can be roughly divided into three 
categories, which are based on Kalman filter, particle filter and 
based on graph theory. Kalman filter and particle filter based on 
the recursive Bayesian state estimation theory, under the 
condition of the known observation information and control 
information from the initial state to the current state, estimate the 
posterior probability of the system. According to the different 

method of posterior probability representation, a variety of 
Kalman filtering methods are proposed, like EKF-SLAM 
algorithm, UKF-SLAM algorithm. Based on the Kalman filter 
method, it can get a satisfactory result when the Gauss 

distribution hypothesis and small non-linearity, and the particle 
filter does not have such a limit. Rao-Blackwellized particle 
filters (RBPF)  is one of the most representative SLAM algorithm 
based on particle filter. Base on RBPF, Montemerlo provides 
FastSLAM algorithm, and propose FastSLAM 2.0 by further 

optimization. 
With the deep study of SLAM, its application has been gradually 
developed from a small scale to a large scale environment. 
SLAM algorithm based on graph theory, due to the use of the 
global optimization of the processing method, can get a better 
mapping result. 
 
1.2 Particle Filters for Localization and Mapping 

In controlling theory, SLAM is a typical dynamic system state 
estimation problem. The system transfer from a given initial state 
x0 and map m0 to the states x1:t = x1,…,xt  from start to from t 
moment. In a work by Murphy, Rao-Blackwellized particle filters 
(RBPF) have been introduced as an effective approach to solve 

the SLAM problem, this approach is to estimate the posterior 
p(x1:t, m | z1:t, u1:t-1) about the map m and the trajectory x1:t. This 
estimation is performed given the observations z1:t = z1,…, zt and 
the odometer measurements u1:t-1 = u1,…,ut-1. Without the 
odometer measurements, the Rao-Blackwellized particle filter 
for SLAM make use of the following factorization 
 

1: 1: 1: 1: 1: 1:
( , | ) ( | , ) ( | )

t t t t t t
p x m z p m x z p x z            (1) 

 

The SLAM problem is decomposed into two independent 

posterior probability：The posterior over maps p(m | x1:t, z1:t) and 

the posterior over potential trajectories p(x1:t | z1:t), which can be 
estimated by particle filter. This factorization allows us to first 

estimate only the trajectory and then to compute the map given 
that trajectory. 
Main process of the RBPF for SLAM is as follows: 
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1) Sampling: In accordance with Sampling from the proposal 

distribution q(x1:t
i | z1:t), the next generation of particle {xt

i} i=1,…,N. 
where N represents the numbers of the particles. 

2) Calculating Importance Weighting: Calculating the import-
ance weight {wt

i}i=1,…,N of each particle according to the 
importance sampling principle to remedy the gap between the 
proposal distribution and the posterior over trajectories. 
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3) Resampling: Particles are drawn with the updated import-

ance weight. This step is based on Monte Carlo Method, only a 
finite number of particles is used to approximate a continuous 
distribution. 

4) Map Updating: For each particle, the corresponding map 
estimate p(mi | x1:t

i, z1:t) is computed based on the trajectory x1:t
i 

of that sample and the history of observation z1:t. 

In this paper, the particle filter is used in the 2.1.1 section, and a 
map representation and updating method is described in detail. 
 
1.3 Graph Optimization for Localization and Mapping 

SLAM problem can also been seen as A problem that inputting 
the motion model and observation and estimating the maximum 
posterior probability of the position of robot and landmarks. 
 

*

arg max ( | )
X

X p X L Z ，                            (3) 

 
where  𝑋 = state positions 

 𝐿 = landmark positions 

 𝑍 = observation 

The formula (3) can be decomposed into: 
 

1
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Under the assumption of Gauss distribution, log on the formula 
(4) both sides: 
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Based on the graph theory, the SLAM problem is regarded as the 
least square optimization problem. 

 

2. RELATED WORK 

2.1 New Framework 

This section shows a new framework (Sub-maps framework) 
which combines SLAM Algorithm based on the use of particle 
filters with graph optimization algorithm. Most SLAM 
algorithms based on the use of particle filters attempt to maintain 
a single map with multiple states, and the map is created by the 
accumulation of observations of the environment and estimates 
of states (PIC), but the observations are compared against an 

incomplete and possibly incorrect map, identified with the 
particle. This approach will inevitably lead to the introduction of 
cumulative errors. In Sub-maps framework, a single map is 
divided into many small sub-maps. Each sub-map is just 
composed of adjacent observations. This can greatly decrease the 
effect of cumulative errors, and each sub-map has relatively rich 
topological construction and outstanding features, The 
relationship among sub-maps can be calculated separately by 
matching their detail information, than non-consistency of 

relationships and trajectories of sub-maps make a graph 
optimization problem, thus the SLAM problem of A single map 
is translated into several independent SLAM problem of sub-
maps and a graph optimization problem (PIC).  
 
2.1.1 Sub-maps: In the sub-maps frameworks, the whole 
original SLAM task is decomposed to many task of small map, 
we call such a small map a sub-map. The purpose of this is to 

avoid the cumulative error generated in a large scale map and 
improve the parallel efficiency of the algorithm.  
Since the laser scanning data for each frame reflects less 
information, it is difficult to extract and match features in non-
adjacent frames with overlapping area, so the traditional SLAM 
is easy to produce errors, and with the increasing of time, the 
cumulative error will be increasing. When the map is segmented 
into sub-maps of reasonable size, there is no cumulative error 

between sub-maps, and each sub-map has relatively rich 
topological construction and outstanding feature.  
Sub-maps are estimated by using A Particle Filters SLAM like 
DP-SLAM, we use grid occupied state to describe and update 
sub-maps. A sub-map is decomposed into grid. In one time scan, 
the position of the end of the laser scanning line is more likely an 
obstruction, and the position on the laser scanning line is more 
likely no obstructions, the rest position is not sure whether it is 

an obstruction. Assuming that their probabilities are Oo, Of  and 
Ou. 
For any grid point s, o is occupied. The potential trajectories is 
x1:t = x1,…,xt, and the observations is z1:t = z1,…, zt, After t scans, 
the probability that the grid s is occupied is: 
 

  
1: 1:

1

( | , ) ( | , )

t

t t t t

i

O o x z O o x z


                       (6) 

 
Logarithmic: 
 

1: 1:
log ( | , ) log logf o

c c

t t f o
O o x z O O                    (7) 

 

Where co and cf represent the number of times the grid is occupied 
and free.  
So, we can make a probabilistic analytic formula of the occupied 
state of grid s to calculate the posterior over maps p(m | x1:t, z1:t) 
in the equations () like this: 
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1: 1:

exp( log log )
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            (8) 

 
When estimating the posterior over potential trajectories p(x1:t | 
z1:t), each observation should be compared with the current 
incomplete map, so this map have to be kept in memory, and 
memory consumption will increase with the expansion of the 
map. In the Sub-maps framework, sub-map calculation is 
independent of each other, so several sub-maps can be computed 
simultaneously. We can set the number of sub-maps for parallel 

computing and the size of sub-map to control the consumption of 
memory and maintain constant memory consumption. 
 
2.1.2 Virtual landmark: Landmarks are features which can 
easily be re-observed and distinguished from the environment, 
Landmarks can be easily set arbitrarily in the simulation of 
SLAM algorithm. In a real-world environment, we must place a 
real specific target, but it is not desirable in real applications. DP-

SLAM avoid the data association problem by storing multiple 
detailed maps instead of sparse landmarks, thereby subsuming 
association with localization, therefore, the authors claim that 
DP-slam makes no landmark assumptions. This, in turn, can 
create landmarks through localization of multiple detailed maps, 
and we call these landmarks Virtual landmarks, because it does 
not need to set specific landmark in the real scene or extract the 
features of landmarks. According to the probabilistic analytic 

formula of the grid occupied map (), a point in the map most 
likely to be an obstacle is chosen as a virtual landmark, which 
may not even be distinguishable in visual features.  
Create a virtual landmark in order to describe the relationship 
between the sub-maps, so we only need to be concerned with the 
relationship between the virtual landmark and the corresponding 
sub-maps, but not need to care about the absolute position of this 
virtual landmark itself. The calculation of the virtual landmark, 
in essence, is to calculate the relationship, which is to calculate 

the relationship between the virtual landmark and the trajectories 
of the corresponding sub-map.   
The calculation steps of virtual landmark l: 
    1) Setting the virtual landmark l, l is the most likely to be the 
grid point of obstacles in the sub-map. 
 

1: 1:
arg max ( | , )

t t

s

l p o x z                           (9) 

 
2) Calculate the relationship zij between the landmark lj and the 

track point xi, lj  is the landmark of  the sub-map j, xi is the track 

point in the adjacent sub-maps. 
It is clear that the relationship between landmark and track point 
is independent and does not guarantee consistency, and this 
problem will be solved by graph theory optimization in section 
1.3. 

 

Figure 1. Automatic landmarks. The circles is four automatic 

landmarks 

 

2.1.3 Optimization strategy: In order to ensure the 
correctness of the result, we designed two sets of optimization 
strategies for automatic optimization and manual optimization. 
Two  optimization strategies are used in the same graph theory, 
but landmark selection is different. The automatic optimization 
strategy adopts the landmark setting described in section 2.12. 
The manual optimization strategy is to make up the deficiency of 
the automatic optimization strategy in large scale complex terrain. 

The manual optimization strategy allows the landmark selection 
of the corresponding points in several different sub-maps by the 
way of feature matching or manual selection, than calculate the 
relations between the points and the locus of map. Manual 
optimization can be repeated iteratively until the corresponding 
points can not be found. 

 
Figure 2.Manual landmarks. The circles is a pair manual 

landmarks 
 

Select the grid points most likely 
to be obstacles in a sub-map

Optimization

Select the corresponding points in 

several sub-maps

Start

Optimization

Whether meet the accuracy 
requirements?

Yes

No

End

Automatic 
optimization

Manual  
optimization

 
Figure 3. Optimization process 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B4-351-2016 

 
353



 

2.2 Dynamic Indexing Map 

Another problem of large-scale map SLAM algorithm is the 
problem of map indexing and memory consumption. In order to 
quickly retrieve the map grid value, we want to remember the 
values of each grid in map. But before the implementation of the 

algorithm, we do not know how large the map may be. In order 
to ensure that our map structure can be adapted to all the different 
sizes of map, a dynamic index map is designed. In this map 
structure, we divide the grid map into larger grids, and each larger 
grid represents a map block. In the initialization stage, there is 
only one map block in the map structure. With the 
implementation of the SLAM algorithm, the map data is beyond 
the existing map blocks, we create a new map block in the 
corresponding location of the new map data and record the grid 

number of the map block. When we need to retrieve a grid value, 
first calculate the map block of this grid, and then retrieve the 
grid value in this map block. In this way, we can dynamically 
allocate memory according to the size of the actual map, and can 
quickly retrieve the value of the grid. 
 

3. EXPERIMENTAL RESULT 

3.1 Platform Description 

The platform used is entirely independent research and 
development of our company. This platform is a set of equipment 
like a cart. There is a powerful computer engineering, two 
mutually perpendicular laser sensors and a high resolution 
panoramic camera,  e.g. Figure 4 

 
Figure 4. Indoor mobile measuring vehicle 

 
This equipment is power by the lithium batteries( 12 V ) of 36 
Ah, The fastest speed of 3 m/s implementation. The laser sensors 
used are two Hokuyo URG-30LX. It is connected to a USB port. 
 
3.2 Result and Discussion 

We compared the results of using a single map and the results of 
our sub-maps framework. 
 

 
(a). Using a single map 

 
(b). Using sub-maps framework 

Figure 5. (a). Using a single map (b). Using sub-maps 
framework.  

 
We tested the office buildings, shopping malls, pedestrian street 
and parking lots, these scenes represent the different size and 
complexity environment, 
 

 
Figure 6. The scale represents 100 meters 

 
4. CONCLUSION 

This article, we show a framework of sub-maps. In this 
framework, we skilfully combine the state estimation method and 

the graph theory method with the sub-maps and the virtual 
landmark. We elaborate in detail the calculation method of the 
sub map, and the selection principle of the landmarks, and how 
to optimize the map through the relationship between the 
landmarks and the locus point. 
Finally, through the experiment proved that SLAM algorithm 
based on our sub-maps frameworks in dealing with large scale 
environment is more effective than ordinary single map particle 

filter SLAM algorithm, and a dynamic index map structure is 
designed.to solve the contradiction between the memory and the 
retrieval speed. 
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