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ABSTRACT: 
 
Higher spatial resolution imaging data is always desirable to the international community of planetary scientists interested in 
improving understanding of surface formation processes. We have previously developed a novel Super-resolution restoration (SRR) 
technique (Tao & Muller, 2016) using Gotcha sub-pixel matching, orthorectification, and segmented 4th order PDE-TV, called GPT 
SRR, which is able to restore 5cm-12.5cm near rover scale images (equivalent to Navcam projected FoV at a range of ≥5m) from 
multiple 25cm resolution NASA MRO HiRISE images. The SRR technique has been successfully applied to the rover traverses for 
the MER and MSL missions within the EU FP-7 PRoViDE project. These SRR results have revealed new surface information 
including the imaging of individual rocks (diameter ≥ 25cm) by comparison of the original HiRISE image and rover Navcam 
orthorectified image mosaics. In this work, we seek evidence from processing a very large number of stereo reconstruction results 
from all Navcam stereo images within PRoViDE, registration and comparison with the corresponding SRR image, in order to derive 
a quantitative assessment on key features including rocks (diameter < 150cm) and rover track wheel spacing. We summarise 
statistics from SRR-Navcam measurements and demonstrate that our unique SRR datasets will greatly support the geological and 
morphological analysis and monitoring of Martian surface and can also be applied to landing site selection, in order to avoid 
unsuitable terrain, for any future lander/rover as well as help to define future rover paths.  
 
 

1. INTRODUCTION 

1.1 Background and Context 

Higher spatial resolution imaging data is usually considered 
desirable to the international community of planetary scientists 
interested in improving understanding of surface formation 
processes. The higher the spatial resolution, the closer the 
images are to typical resolutions used by geologists to interpret 
such processes on the Earth from aerial imagery. For example, 
studying the Martian surface using 12.5m High Resolution 
Stereo camera (HRSC) imagery allows you to be able to 
visualise the “big picture”, whilst for a tiny percentage of the 
Martian surface (~1%), 25cm High Resolution Imaging Science 
Experiment camera (HiRISE) allows you to analyse fine-scale 
details of surface features to get insights into complex surface 
forming processes. However, 25cm resolution is still not high 
enough to be able to analyse how rocks are distributed across a 
region or see the types of sedimentary features that Mars 
Science Laboratory (MSL) Curiosity rover has found in rover-
based imagery.  
 
Within the recently completed EU FP-7 PRoViDE project (Paar 
et al., 2015), we developed a novel super-resolution algorithm 
called Gotcha-PDE-TV (GPT), which was specifically 
developed to address the retrieval of orbital SRR and whose 
initial results suggest huge potential for Martian surface studies. 
The technique (Tao & Muller, 2015a) is unique, since (a) we 
not only use sub-pixel information from slight translational 
shifts but also restore pixels onto an orthorectified grid from 
different (comparatively large) viewing angles, thereby 
achieving a 2-5x enhancement in resolution; (b) used a novel 
segmentation-based approach to restore different features 

separately; (c) applied the 5th generation of an adaptive least 
squares correlation and region growing matcher, called Gotcha, 
and the 4th order of Partial Differential Equation (PDE) based 
Total Variation (TV) regularization approach to provide 
accurate and robust (noise resistant) restoration (Tao & Muller, 
2015a). GPT-SRR is applicable whenever there exist sub-pixel 
differences and there are comparably large view zenith angle 
differences, which is always the case in orbital images, even 
between multiple image acquisitions taken at different times 
with different solar illumination conditions. Each view is 
subject to different atmospheric blurring and scattering but as 
long as the atmospheric transparency is sufficiently high, GPT-
SRR can be applied. 
 
From the experiments performed to date over MER and MSL 
rover traverses, multiple overlapping HiRISE input images 
(25cm) can be processed to generate up to 5cm super resolution 
imagery depending on how many overlapping images are 
available and what quality they have. This enables the 
derivation of extremely detailed reconstructions of Martian 
surface hazards that are not viewable or insufficiently clear in 
single HiRISE images.  
 
These SRR results have revealed new information including the 
imaging of individual rocks (diameter ≥ 25cm) by comparison 
with both the original HiRISE image and rover Navcam 
orthorectified image mosaics (Tao & Muller, 2015b). In this 
work, we seek evidence from processing a very large number of 
stereo reconstruction results from all Navcam stereo images 
within PRoViDE, registration and comparison with the 
corresponding SRR image, in order to derive a quantitative 
assessment on key features including rocks (diameter < 150cm) 
and rover track wheel spacing. We summarise statistics from 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B4-503-2016 

 
503



 

SRR-Navcam measurements and demonstrate that our unique 
SRR datasets will greatly assist the geological and 
morphological analysis and monitoring of Martian surface and 
can also be applied to landing site selection, in order to avoid 
unsuitable terrain, for any future lander/rover as well as help to 
define future rover paths. 
 
We plan to port the GPT-SRR software to faster compute 
resources such as a GPU or possible cloud computing resources 
in the near future and hence be able to process a very large 
number of full HiRISE areas, where we have 5 or more repeated 
observations, as well as new ESA CaSSiS data in the future but 
including both 3D and images from multiple overlapping colour 
stereo. 
 
1.2 GPT-SRR Summary 

The current implementation of the GPT SRR algorithm is 
shown schematically in [Figure 1]. A detailed description of the 
method can be found in (Tao & Muller, 2015a). In the GPT 
SRR, we take roughly aligned overlapping Lower resolution 
(LR) images and an Orthorectified Image (ORI) as input to 
estimate the up-scaled High Resolution (HR) image with a 
given scaling factor. The processing pipeline starts with a 
Mutual Shape Adapted (MSA) Scale Invariant Feature 
Transform (SIFT) detection and Gotcha process to predict 
motion vectors for every pixel (sub-pixel correspondences) on 
each of the LR images with respect to the reference ORI frame. 
If a position in the HR grid does not have any corresponding 
motion vector from all motion maps, this HR pixel will be 
propagated by its neighbouring HR pixels.  
 

 
Figure 1 Flow diagram of GPT-SRR processing chain. 
 
The motion maps provide the initial degradation information in 
the similarity measurement term of the MAP estimation. LR 
images and the reference ORI are resized by the defined scaling 
factor and are segmented to tiles according to a given threshold 
of the maximum difference of the magnitude of the distance of 
the motion vectors. Then the MAP equation is resolved by (i) For the same area, each tile of each LR image is projected with motion vector (F), convolved with PSF (H) which is assumed to be a small Gaussian kernel with various standard deviations according to the size of segments (S), down-sampled (D) with the defined scaling factor (L) and compared with its estimated HR image tile sequentially; (ii) Go back to i) for the 
next image (k) until all images converge; (iii) adding the 
transposed difference vector for the image tile (k, t); (iv) adding 
the smoothness term and decomposing the TV regularization 
term with a 4th order PDE; (v) go back to i) for the next steepest 
descent iteration until it converges; (vi) collect the HR result for 
this tile (ti) and go back to i) for the next tile (ti+1) until all 
segments (S) converge; (vii) collect the results for all HR 
segments (S) and reconstruct the full HR grid; (viii) Finally a 
series of post-processing operations are performed based on the 
HR reconstruction including noise filtering and de-blurring. 
 

2. GPT-SRR PRODUCTS OVERVIEW 

2.1 MER and MSL HiRISE SRR 

The first SRR processing was performed using the previously 
described GPT SRR algorithm for 8 repeat-pass 25cm HiRISE 
images covering the MER-A Spirit rover traverse in Gusev 
Crater to resolve a 5cm SRR image of the area. The next SRR 

on MER-B Victoria crater was produced using 4 repeat views to 
yield a 12.5cm resolution. Finally for MSL, 8 repeat views 
(including partial coverage) were used to yield a resolution of 
6.25cm covering its full traverse to date.  
 

 

 
Figure 2 An example of MER-A 25cm HiRISE image 
(top) and 5cm SRR image (bottom) over the rover 
traverse on Sol 549-636. 
 
[Figure 2] is an example of the 5cm MER-A SRR image in 
comparison with 25cm HiRISE ORI, showing that a lot more 
rocks and fine scale features have been resolved after the GPT-
SRR processing. Detailed analysis on such scenes is given in 
the next section. 
 
2.2 3D Visualisation and Web-GIS 

In order to better support geological interpretation on SRR 
products, a subset of the SRR scenes from MER and MSL have 
converted to OPC format by our colleagues at Joanneum 
Research and can be visualised/annotated in 3D using the 
PRo3D® viewer developed by VRVis within the PRoViDE 
project [Figure 4]. 
 

 
Figure 3 3D visualisation from PRo3D® of 5cm SRR 
over the MER-A Homeplate area. DEM courtesy of L. 
Tyler (Aberystwyth University) 
 
GPT SRR products for MER and MSL have been fully 
integrated into an interactive web-GIS system, called PRoGIS 
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(http://www.progisweb.eu), to give access to SRR datasets to 
the planetary science community and visualisation in a multi-
resolution co-registered context. [Figure 5] shows an example 
of the MSL SRR image mosaic on the top of HiRISE and CTX 
ORI along the rover traverse in PRoGIS 1.0 website. 
 

 
Figure 4 PRoGIS 1.0 interface showing MSL SRR 
products on the top of co-registered HiRISE and CTX 
orthoimage. 
 
2.3 Pancam and Navcam SRR 

GPT-SRR has also been applied to MER Pancam sequences that 
were specially acquired for SRR, as well as MSL Navcam 
repeat images. Experiments have been made on a stack of 
MER-B Pancam images and MSL Navcam images. However, 
without multi-angle information, only a factor of 1.5-1.75x 
enhancements can be achieved. An example of MSL Navcam 
SRR has shown in [Figure 6].  
 

 

 
Figure 5 An example of 1.75x MSL Navcam SRR 
from 6 slightly shifted views. 
 
2.4 MSL ChemCam SRR 

Similar to MER Pancam and MSL Navcam, MSL ChemCam 
SRR was also produced and examined using a stack of 
continuous views. The details of small stones and sand can be 
more clearly observed from the SRR shown in [Figures 7 & 8]. 
However, the resolution enhancement in ChemCam sequence is 
also subject to a factor of 1.75x in the absence of different 
viewing angles.  
 

 
Figure 6 An example of one of the original ChemCam 
images in a stack of 16 images. 
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Figure 7 An example of 1.75x ChemCam SRR 
produced from 16 input images. 
 

3. QUANTITATIVE ASSESSMENT 

In the preceding section, GPT-SRR products were demonstrated 
to provide a 1.5-1.75x enhancement on rover imagery without 
multi-angle information and a 2-5x enhancement on multi-angle 
HiRISE images. The GPT-SRR technique is optimal for orbital 
imagery because we use both sub-pixel information from slight 
translational shift of a stack of lower resolution images and we 
restore pixels onto an orthorectified grid using images taken 
from different (comparably large) view angles. In this section, 
we demonstrate several assessment methods taken with the 
HiRISE SRR, original HiRISE image, and rover Navcam 
image. 
 
3.1 Rover Track Measurement 

As described in (Tao & Muller, 2015a), we are able to enhance 
and composite rover tracks that appeared in different HiRISE 
images using different weights. In comparing the enhanced 
rover tracks in SRR with rover imagery, we are able to perform 
high accuracy rover localisation as well as validate the spatial 
resolution. In particular, we can measure the outer-wheel and 
inner-wheel spacing. The comparisons between rover track 
compositing in SRR images, Navcam orthorectified image 
mosaics, and JPL vertically projected Navcam RDR products 
were demonstrated in (Tao & Muller, 2015a) over the MER-A 
Homeplate area. The maximum difference between the rover 
track outer spacing from SRR image and Navcam orthorectified 
mosaic was found within 8cm (1.6 pixels in SRR image), which 
is subject to Navcam orthorectification distortions and possible 
Martian surface change for the yearlong time span. 
 
3.2 Texture-based Surface Roughness 

Apart from the MER-A rover track outer spacing measurement, 
another example from 6.25cm MSL SRR image over the so-
called Shaler area has shown restoration of very clear outcrop 
boundaries, from which we can derive sedimentary structural 
information with much higher completeness and accuracy. This 
should significantly improve geologic structural measurements 
to determine, for example, paleo-transport directions and 
understanding of the stress and strain history. In particular, an 

initial study on surface roughness derived from a simple metric 
(Calef et al., 2014) based on image texture, i.e. maximum 
variation in digital number brightness over a 0.75x0.75m 
window, in comparison of HiRISE with SRR images, suggests 
that 6.25cm SRR images are less noisy and reveal more linear 
surface features.  
 

 
Figure 8 Example of 25cm HiRISE image 
ESP_028401_1755 (left) and 6.25cm SRR image 
(right) in the MSL Yellowknife bay and Shaler area. 
 

 
Figure 9 surface roughnesses derived from image 
texture for the same area, showing maximum 
variations over a 0.75m*0.75m window of 25cm 
HiRISE (left) and 6cm SRR image (right). 
 
By deriving a texture based roughness map, the subjective 
difference between HiRISE and SRR from [Figure 9] can be 
quantitatively visualised in [Figure 10]. SRR tends to be less 
noisy (lower roughness value) on the surface, whilst in the 
feature rich areas, sharper (higher roughness value) layer edges 
with better connectivity (less noisy) have revealed restoration 
on linear features.  
 
3.3 Rock Frequency-size Distribution 

We have studied the potential of SRR imagery to improve 
knowledge of rock size distributions, which is critical for 
understanding the surface formation history described in 
(Golombek et al., 2014) as well as the potential navigability of 
the surface. A preliminary rock frequency-size distribution 
analysis on SRR and original HiRISE image has also been 
described in (Tao & Muller, 2015a). 
 
An example of automatically detected rocks counted from 25cm 
HiRISE image and 5cm SRR image around an impact crater 
close to the MER-A traverse at ~(175.51045º, -14.58461º) 
shows that in 25cm HiRISE images, rocks less than 150cm 
diameter are hard to detect, whereas in 5cm SRR images, rocks 
larger than 50cm diameter are fully resolved. In the experiment 
described in (Tao & Muller, 2015a), for rocks with diameters 
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larger than 150cm, there are 22 rocks detected from the original 
HiRISE image and only 1 rock detected in the range 
50cm<diameter<150cm. On the other hand, in the SRR image, 
there were 33 rocks with diameter larger than 150cm, 111 rocks 
with 50cm<diameter<150cm, and 9 rocks with 
30cm<diameter<50cm.  
 
This experiment has demonstrated that there is a huge 
difference between the detectability of rocks in HiRISE and 
SRR with diameter smaller than 150cm. A large number of 
rocks, which are not visible for either automated detection and 
classification or manual measurement in the original HiRISE 
image, have been restored in GPT-SRR. However, how do these 
SRR rocks correlate with the “ground truth” of the Martian 
surface observed by the rovers? How many more rocks can 
GPT-SRR not resolve from repeat HiRISE images? We take the 
rock frequency-size distribution experiment further in this paper 
to involve comparison with both original HiRISE image and 
Navcam rover images at much more higher resolution.  
 
3.4 Comparison with HiRISE and Navcam Mosaic 

In this work, we look at rock frequency size distributions along 
the MSL rover traverse (from Sol 347 – Sol 549) to compare 
with 0.5cm (down-sampled to 2.5cm) MSL Navcam images 
from standard JPL-PDS RDR vertical projected mosaics. The 
25cm HiRISE orthorectified image and 6.25cm SRR image are 
cropped for the same areas for comparison with 2.5cm Navcam 
mosaics. Rocks on a Navcam mosaic, HiRISE and SRR clips 
are automatically detected and counted w.r.t different radius 
clusters, using a similar method to (Tao & Muller, 2013).  
 
The comparison result is preliminary and subject to: (a) mis-
detections; (b) Navcam projection distortions; (c) mis-counts 
around the border of the Navcam coverage on HiRISE and 
SRR. There are also uncertainties on: (d) smaller rocks mixed 
together and clustered as 1 rock in lower resolution images; (e) 
Rock position changed during the interval of different HiRISE 
images and when MSL rover took the Navcam images.  
 

 
Figure 10 The 25cm HiRISE image 
(ESP_018854_1755) at MSL Sol 549 showing 
automatically detected rocks (green) and the valid 
ROI (yellow) from Navcam vertical projected mosaic 
at the same area. 
 

 
Figure 11 The 5cm SRR image at MSL Sol 549 
showing automatically detected rocks (green) and the 
valid ROI (yellow) from Navcam vertical projected 
mosaic at the same area. 
 

 
Figure 12 The 0.5cm MSL Navcam vertical projected 
mosaic (standard JPL RDR product) at Sol 549 
(N_L000_0549_ILT027VRT_S_1004_UNCORM2) 
showing automatically detected rocks (green). 
 

 
Figure 13 Accumulated rock numbers from HiRISE, 
SRR and Navcam within the same ROI at MSL Sol 
549. 
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Figure 14 Accumulated rock number-size distribution 
for HiRISE, SRR, and Navcam at Sol 549. 
 
[Figures 11-15] show examples of rock frequency-size 
distribution comparisons between 25cm HiRISE image, 6.25cm 
SRR image, and 0.5cm Navcam image in the same region at 
MSL Sol 549. The result has suggested: (a) 25cm HiRISE 
image is only able to resolve individual rocks with diameters 
larger than 100cm; (b) 6.25cm SRR image is able to resolve 
most of individual rocks with diameters larger than 50cm; (c) 
6.25cm SRR image is able to resolve limited number of 
individual rocks with diameter smaller than 50cm and larger 
than 25cm; (d) there are still a large number of rocks with 
diameters smaller than 25cm appearing in Navcam image which 
cannot be captured or resolved from HiRISE and SRR. 
 

 
Figure 15 Rock frequency-size distribution for 
HiRISE, SRR and Navcam at MSL Sol 347. 
 

 
Figure 16 Rock frequency-size distribution for 
HiRISE, SRR and Navcam at MSL Sol 416. 
 

 
Figure 17 Rock frequency-size distribution for 
HiRISE, SRR and Navcam at MSL Sol 520. 
 

 
Figure 18 Rock frequency-size distribution for 
HiRISE, SRR and Navcam at MSL Sol 533. 
 
The rock size frequency-distribution comparison has been made 
for 5 regions along the MSL traverse in Sol 347, 416, 520, 533, 
and 549. Similar statistics [Figure 16-19] in Sol 347, 416, 520, 
and 533 have suggested: (a) the GPT-SRR algorithm is able to 
bring out individual rocks with size smaller than 100cm and 
larger than 30cm, which are not clear or unrecognizable in the 
original HiRISE image; (b) Accumulated rock numbers between 
6.25cm SRR and 0.5cm Navcam mosaic have shown good 
correlation for rocks with size larger than 50cm and even 25cm 
in some cases. We have concluded that GPT-SRR presents huge 
potential for restoring semi-rover scale (Navcam range at ~5m) 
vision from ≥ 6 multi-angle repeated views, therefore HiRISE 
SRR can better support Martian surface studies where there is 
no rover data available and better support future rover path 
planning. 
 

4. SUMMARY AND FUTURE WORK 

4.1 Summary 

Any planetary geologist or geo-morphologist is likely to have a 
strong interest in exploiting the highest possible resolution 3D 
image dataset. SRR will assist them greatly in formulating and 
testing hypotheses about planetary surface processes, as they 
will be able to apply their knowledge and understanding based 
on their terrestrial fieldwork. The high spatial resolution 
imaging data is an active driver for many applications, such as 
studying surface processes, which are not visible or not clear 
enough via known low-resolution data. Geologists can achieve 
more reliable classification and inference from super-resolution 
restored features such as rocks, sedimentary layers, and cliff 
crosscutting profiles.  
 
Within the PRoViDE project, the GPT-SRR technique has been 
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used to produce SRR maps over MER and MSL mission. These 
SRR results have revealed new information including the 
imaging of individual rocks (diameter≥25cm), potential lander 
targets, rover tracks, and improved surface roughness. This 
paper presented recent products from the GPT-SRR technique 
and provided additional quantitative assessment on the original 
algorithm (Tao & Muller, 2015a) by comparing SRR with 
original HiRISE image and Navcam rover imagery at a much 
higher resolution. Statistics from HiRISE, SRR, and Navcam 
measurement have been summarised and demonstrated the 
factors of 2-5x increase in resolution. We believe that the 
unique SRR datasets have huge potential in supporting 
geological and geomorphological analysis, monitoring of the 
Martian surface, and several critical engineering operations, 
such as landing site selection and rover path planning.  
 
4.2 Processing Challenges 

Currently owing to the very lengthy computation times of each 
SRR image tile (24-72 hours depending on different processing 
parameters, for a 2048x1024 tile with 8 input LR images 
running on a 16 core, 64 GB RAM Linux cluster), it is not yet 
feasible to apply SRR to full HiRISE images. SRR mosaics that 
covering MER and MSL rover traverses can be found on the 
PRoGIS 1.0 site (http://www.progisweb.eu) at UCL-MSSL. We 
have quoted a 23,040,000 CPU compute hours (using 22 cores) 
to be able to process ~400 HiRISE scenes with more than 5 
repeat views. In iMars, we are seeking cloud-computing 
resources to be able to produce GPT-SRR with HiRISE full 
scenes. 
 
4.3 Future Work 

We are still optimizing the GPT-SRR algorithm to increase the 
SNR and reduce processing time. In-house modeling on specific 
issues like finding the best parameters, which images can and 
cannot be used, how many images from multiple viewing angles 
could yield certain enhancement factor, and what is the 
enhancement limitation from such approach, still require 
massive processing experiments. 
 
At the moment, we plan to process ~400 HiRISE scenes that 
have more than 5 repeat views. We also plan to develop the 
capability for the ExoMars Trace Gas Orbiter 2016 CaSSIS 
instrument (from 4 up to ≤1m/pixel) including both 3D and 
SRR from multiple overlapping colour stereos.  
  
Finally, we believe that the technology developed here has huge 
potential, not only to other Solar System solid earth targets but 
also to the design of future missions, which will still be severely 
limited by telecommunications bandwidth but also by light 
travel time. We plan to optimize the existing processing pipeline 
to create a GPU powered automated processing system for 
super-resolution restoration of entire datasets and apply SRR to 
other planetary (non-Mars) bodies in the future. 
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