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ABSTRACT: 

 

Supporting large amounts of spatial data is a significant characteristic of modern databases. However, unlike some mature relational 

databases, such as Oracle and PostgreSQL, most of current burgeoning NoSQL databases are not well designed for storing geospatial 

data, which is becoming increasingly important in various fields. In this paper, we propose a novel method to provide R-tree index, 

as well as corresponding spatial range query and nearest neighbour query functions, for MongoDB, one of the most prevalent 

NoSQL databases. First, after in-depth analysis of MongoDB’s features, we devise an efficient tabular document structure which 

flattens R-tree index into MongoDB collections. Further, relevant mechanisms of R-tree operations are issued, and then we discuss 

in detail how to integrate R-tree into MongoDB. Finally, we present the experimental results which show that our proposed method 

out-performs the built-in spatial index of MongoDB. Our research will greatly facilitate big data management issues with MongoDB 

in a variety of geospatial information applications. 

 

1. INTRODUCTION 

With the development of data acquisition technologies, the data 

needed to be stored expands strikingly in both volume and 

velocity. Under this circumstance, NoSQL (not only SQL) 

databases, which focus on high throughout and free scalability, 

start to emerge. NoSQL databases provide totally different 

storage patterns and query mechanisms compared with 

relational databases. According to their storage patterns, 

NoSQL databases can be divided into several types: Key-value 

database like Redis (Redis Labs, 2016), Document-oriented 

database like MongoDB (10gen, 2016), Graph database like 

Neo4j (Wikipedia, 2016) and the Column-Oriented database 

like HBase (Wikipedia, 2016). 

 

Among various NoSQL products, MongoDB is extensively 

used in an increasing number of industries and companies (e.g., 

GitHub, Sourceforge, Taobao, etc.) due to its rich query 

language and high availability. And also it is acclaimed in 

geographic information fields. Relevant researches start with the 

discussion of methodology of storing spatial data in MongoDB 

(Zhang, 2014). After spatial data (encoded in GeoJSON) was 

officially supported by MongoDB, performance comparisons 

between MongoDB and relational databases (Santos, 2015 and 

Duan, 2015), which reveals MongoDB’s capability in spatial 

tasks, has been made. Meantime, MongoDB is widely used in 

many spatial applications such as LIDAR data management 

(Boehm J, 2015), atmosphere environment Monitoring (Han, 

2015) and sensor web (Liu, 2014). 

 

In order to improve performance of querying geographical data, 

spatial indexes are indispensable in modern spatial databases. 

When it comes to accessing plane (non-geodetic) spatial data, 

R-tree (guttman, 1984) is definitely the most prevalent and 

extensively used one among a variety of spatial indexes (quad-

tree, k-d tree, geohash,etc). Throughout the ages, several R-tree 

variations were developed by researchers. R*-tree (Beckmann, 

1990) improves the R-tree’s query performance by applying 

more powerful pruning roles, which reduces both coverage and 

overlap of the nodes. TPR-Tree (Saltenis, 2000) extends the R-

tree capability of execute spatio-temporal query for moving 

objects. SD-Rtree (Du Mouza C, 2007a) brings the well-known 

R-tree structure into the scalable distribute environment. 

Besides the popularity in science committee, R-tree is also well-

supported by many relational databases (e.g. ORACLE, 

PostGIS for PostgreSQL).  

 

MongoDB’s native spatial index, named 2dsphere (note: 2d 

index, supporting flat coordinate system, was no longer 

advocated by MongoDB), first partitions the earth surface at 

multiple resolution levels and then indexes the resulting cells 

with B+-tree. That is, 2dsphere only supports the access of 

spatial data with geodetic coordinate (longitude and latitude). 

However, in geographical applications which focus on 

city/county scale, planar Cartesian coordinate is widely used, 

too. Thus, constant and time-consuming data transformation 

between two coordinate systems (Boehm J, 2015) is a necessity 

when applying 2dsphere index to these applications, not to 

mention that sophisticated spherical computation is much more 

costly than Cartesian computation in spatial operations (Oracle, 

2015). To solve this problem, this paper introduces a way to 

integrate R-tree index into MongoDB and implements 

corresponding accessing methods. By taking both advantages of 

R-tree’s wide suitability and NoSQL databases’ high 

performance and scalability, the application areas of MongoDB 

will be significantly enlarged. Besides, traditional GIS 

applications will also benefit from it. 

 

The rest of this paper is structured as follows. In section 2, we 

introduce an efficient and tabular R-tree index structure tailored 

to MongoDB’s document-orient data model. Section 3 

describes R-tree index-related data schemas and mechanisms. In 

section 4, we discuss the method of integrating R-tree index 

with MongoDB. In the last 2 sections, we evaluate the system’s 

performance, draw conclusions, and discuss future work. 
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2. STORING R-TREE INDEX STRUCTURE IN 

MONGODB 

2.1 MongoDB’s Storage Unit 

Before further discussion of the documental-oriented index 

structure of MongoDB, a review of MongoDB’s storage model 

is made. Unlike relational databases, MongoDB stores 

unstructured data in BSON (Binary JSON) documents rather 

than rows with fixed structure. Furthermore, a document can be 

nested to represent a complicated structure such as GeoJSON, 

an open standard spatial data format supported by MongoDB. 

For each stored document in MongoDB, a 12-bytes unique ID 

named “oid” is assigned. Querying through oid in MongoDB, 

when indexed by B+-tree, is very efficient. A MongoDB’s 

dataset consisted of documents is referred as a collection 

(RDBMS’s table counterpart). Comparisons between MongoDB 

and RDBMS are listed in Table 1.  

 

Items MongoDB RDBMS 

Dataset Collections Tables 

Record documents Tuples 

Node identifier 
12-byte 

Objectid 

Numerical unique 

ID 

Schema in same 

dataset 
free fixed 

Table 1. Comparison between MongoDB and RDBMS 

 

2.2 Document-oriented R-tree data structure 

One documental R-tree node designed in this paper consists of 

four key-value pairs. The first one (oid) denotes node identifier. 

The second one denotes the node level counting from leaves to 

the root. The third one denotes the number of entries in this 

node. And the last one specifies those entries’ information. Note 

that the fourth key-value element is nested and its value 

component is declared as an array of sub-documents, each of 

which denotes an index entry. Specified by its level, one such 

sub-document references either the document identifier of its 

child node (level>1), or the corresponding spatial object stored 

as a document in another collection (level=1). Figure 1 shows 

an example of an R-tree node document with three entries. 

 

 
Figure 1. An example of R-tree node document 

 

There are three main merits of this tabular design. First, each 

node stores the minimum bounding boxes (MBRs) of all its 

entries. Thus, when received a query request, the database can 

quickly rule out irrelevant entries and consequently does not 

have to access their descendants. As a result, performance 

deterioration is avoided in node retrieval procedure. Second, the 

fixed document structure is used for storing all nodes with 

different numbers of actual entries (up to a specified value M). 

A “Null” value of Entry’s oid indicates that the branch is 

currently empty (e.g. 4th entry of the node in Figure 1.). 

Comparing with variable structures, using fixed structure will 

pre-allocates space for empty entry and avoid constantly data 

moving in hard disc during node expansion or shrinking, and 

therefore improving efficiency (MongoDB, 2016). The last but 

not least, served as a redundant short-cut pair, “Count” can 

avoid frequent scan through “EntryInfo” during the stage of 

inserting and rebalancing. 

 

With this documental structure, R-tree can be flattened as a 

collection into MongoDB. Thus the tree navigation through 

document identifiers (oid) can be performed. Figure 2 illustrates 

an example. There are seven documents in the right collection 

and each of them exactly corresponds to one node in the middle 

R-tree. 

 

  
Figure 2. Flattening a R-tree into a MongoDB collection of 

documents 

 

3. INDEX-RELATED SCHEMA AND MECHANISM 

In this section, we introduce the index-related schemas, as well 

as their relations, that are needed to support all R-tree related 

operations, including index management (create, drop), spatial 

queries (range, approximate) and maintaining R-tree’s balance. 

 

3.1 Index-related Schema 

Four kinds of collections, which are spatial data collections 

(SDC), index collections (IC), geometric metadata collection 

(GMC) and index metadata collection (IMC), are devised with 

different purposes but all contribute to our index mechanism. 

Their functions are described in detail as follows. 

First, spatial data encoded in GeoJSON (GeoJSON, 2008) are 

stored in SDC, along with some other non-spatial attributes 

(SDC are ordinary collection with one field encoded in 

GeoJSON to store spatial data). Then, an accessorial index 

collection (IC), as introduced in section 2, is assigned for a 

target SDC. Literally, an index collection is named by its 

corresponding spatial data colloction’s name appended with the 

suffix “_RTreeIndex” (e.g. the index collection name of spatial 

data collection “building” is “building_RTreeIndex”). Under 

this naming rule, one can easily identify the index collection for 

a certain spatial data collection. Besides index collection, 

spatial metadata collection (GMC) is designed to record each 

indexed collection, along with its geometric properties, while 

index metadata collection (IMC) records the index’s parameters. 

According to the schema in Figure 3, “namespace” records the 

indexed spatial dataset in form of “A.B”, in which A donates 

the database name and B donates the collection name. 

Meantime, “Fieldname” keeps a record of the spatial field on 

which the R-tree index is created. “GTYPE” specifies the data 

layer’s geometry type, limited to one of the seven natively 

supported geometry typies in MongoDB. “MBR” is the layer’s 

minimum bound rectangle and also the MBR of R-tree’s root 

node. “CRS” specifies the Cartesian coordinate system used by 

the data layer and “IndexInfo” references to a document located 

in index metadata collection (IMC), which contains the 

parameters of R-tree, such as the fan factor and the oid of the 

root node. 

 

{ 

   “_id”: “53465e5fd2fa5e5bfe3dfc11”, 

   “Level”: 2, 

   “Count”: 3, 

   “EntryInfo”:       [{”EntryID”:” 5346b65e5fd2fa5e5bfe3dfc12”, “MBR”:[0.0,0.0,3.0,3.0]}, 

{”EntryID”:” 5346b65e5fd2fa5e5bfe3dfc13”, “MBR”:[4.0,4.0,5.0,5.0]}, 

{”EntryID”:” 5346b65e5fd2fa5e5bfe3dfc14”, “MBR”:[2.0,5.0,3.0,6.0]}, 

{”EntryID”:” 000000000000000000000000”, “MBR”:[0.0,0.0,0.0,0.0]}] 

} 
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Figure 3. Index related schema 

 

3.2 Index-related mechanism 

Following the schema proposed in section 3.1, an R-tree 

operation can be easily turned into a sequence of manipulations 

performed on the collections discussed above.  

 

Taking spatial query operations as an example, a three-step 

algorithm is depicted as following. The first step is to verify the 

existence of target index in GMC and then load the index 

parameters from IMC. Considering the fact that spatial query is 

frequently called in a practical application, we cache metadata 

of both GMC and IMC into system memory to optimize the I/O 

access. The second step is to filter, which navigates the R-tree 

nodes stored in IM and excludes spatial objects whose MBRs 

are not intersected with query range. Consequently, we get a 

potential candidate set. Finally, after the precise refining upon 

these candidates is done, the final result set is obtained.  

 

Unlike query operations, inserting or deleting spatial objects in 

SDC may induce a deformation of the corresponding R-Tree 

structure, leading to modifications to all SDC, IC and IMC. 

However, we modify the SDC ahead of other collections for 

better data protection against unforeseen accidents, such as 

hardware failure. Note that the R-tree nodes might change 

during the rebalancing process of R-tree, which may lead to a 

root oid update in IMC.  

 

Index management operations like creating and dropping an 

index can be transformed into inserting or removing metadata 

documents located in GMC and IMC. After that, a 

corresponding index maintaining process will be in operation. 

For a better understanding, figure 4 illustrates how four 

different kinds of collections (SDC, IM, GMC and IMC) are 

involved during the life span of the R-tree related operations. 

 
Figure 4. Procedures of R-tree related operations 

 

4. 4 INTEGRATION OF R-TREE INDEX INTO 

MONGODB 

Obviously, there exists two ways to implement R-tree 

operations into MongoDB: an agency to shield MongoDB or an 

in-built module plugged into MongoDB. Represented by 

ESRI™ ArcSDE, the former implementation serves as a 

middleware between the client and database system. Though 

easier to be achieved, middleware will increase the learning cost 

of end users who might have to set up environment, import data 

and be familiar with a new script language. In this paper, an in-

built R-tree index module written in C++ was plugged in to 

MongoDB’s system, which allows users to use R-tree index as 

easily as 2dsphere index. Before further discussion of the 

implementation, a detailed introduction of MongoDB’s 

architecture is given. 

 

4.1 4.1 MongoDB’s Architecture 

Three key compounds consist the MongoDB cluster, they are 

shard server, config server and route server. Collections with 

large volumes are usually horizontally partitioned and stored in 

multiple shard servers (mongod instance). Router servers, 

accordingly, interface with client applications and direct 

operations to the appropriate shard or shards. Config servers 

(mongos instance) store the cluster’s metadata, which contains a 

mapping of the cluster’s data set to the shards. Based on this 

architecture, MongoDB is able to provide auto-sharding 

capability, which automatically balances I/O load among 

multiple shards, thus guarantees flexible horizontal extension 

again rapid growth of data. Based on the architecture, the 

integration of R-tree index (see Figure 5) is designed as 

following: 

 Storage allocation: we shard spatial data collection 

(SDC), and index collection (IC) if necessary, into 

multiple shards, on which a hash based shard-key is 

assigned. By making the most use of distributing 

memories, I/O efficiency over sharded large collections 

are greatly improved. Unlike SDC and IC, two metadata 

collections (GMC and IMC) are stored in config servers 

for better protection of the metadata from unexpected user 

interferences. 

 Module-embedding: an R-tree module is plugged into 

mongos, in which the upper level CRUD commands are 

provided. Using these commands with R-tree algorithm 

greatly simplify the implementation by ignoring the 

partition details of sharded collections. 

 

 
Figure 5. MongoDB’s architecture with R-tree integration 

 

4.2 4.2 R-tree module integration 

First, we modify the message parsing module of mongos, so as 

to pinpoint the newly added R-tree commands from received 

messages. During this stage, a metadata exchange with config 
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servers is necessary to verify if R-tree index exists in a certain 

collection. If an R-tree index has been built, the corresponding 

R-tree commands will be run. Otherwise, a native database 

command will be executed. 

 

In order to support these R-tree commands, a two-level R-tree 

module is designed. The above level consists of a set of storage 

detached R-tree algorithms such as insert, delete and query. The 

ground level, correspondingly, provides I/O interface features 

on data retrieval, R-tree node manipulation and index metadata 

management, for the above algorithms. Connected into the 

command center of mongos, the I/O interface is able to translate 

basic R-tree function into a sequence of CURD operations, 

which will be dispatched into target shards. Although designed 

for MongoDB, this two-level R-tree module can be easily 

ported into other databases and file system, with a tweak of the 

I/O interface. 

 

In spatial query operations, the filtered candidates from R-tree 

will be handed into a refining module, which uses Cartesian 

computation powered by a famous open source geometry library 

GEOS. Figures 6 shows us a diagram of relevant modules in 

mongos. 

 

 
Figure 6. Integration detail of R-tree module 

 

4.3 R-tree related Command design 

In our case, seven commands listed in Table 2 are involved in 

R-tree index operations. However, six of these commands 

already exist in MongoDB’s command set. We reuse these 

native command interface to ensure backward compatibility. 

Unlike geodetic coordinate system, the metadata like CRS is 

very important for applications based on Cartesian coordinate 

system. So we introduce a new command--“RegisterGeometry”, 

which brings the concept of layer to MongoDB and registers the 

geometric properties of geospatial data stored in SDC. As 

described in the last section, every R-tree related command is 

based on a series of native commands. Table 2 details their 

composition. 

 
Command 

Name 

Command 

Type 

Base command(s) 
drop create insert remove update find 

ensureIndex Native  √ √   √ 

createIndex Native  √ √   √ 

registerGeome

try 

Newly 

Added 

 √ √   √ 

dropIndex Native √   √  √ 

insert Native   √  √ √ 

remove Native   √ √ √ √ 

find Native      √ 

Table 2 R-tree related command design 

 

5. PERFORMANCE EVALUATION 

This section focuses on the performance evaluation of the 

proposed plug-in R-tree index by comparing our method with 

2dsphere index through range queries. 

5.1 Evaluation Environment 

Our experiments are carried out on a PC with 3.1GHz E3 1231 

v3 CPU, Windows Server 2008 platform and 8 GB RAM. The 

version of MongoDB is 2.6. A city scale (20km*20km) dataset 

is chosen in this test. Clipped from open street map (OSM), the 

test data consists of 195823 building polygons located in the 

center of Washington DC. A copy of original data (geostatic 

coordinate system) projected into Cartesian coordinate system is 

prepared to facilitate R-tree queries. A snapshot of the tested 

dataset is shown in Figure 7.  

 

 
Figure 7. An example of tested data 

 

5.2 Comparing setup 

Before the performance evaluation, a group of query windows 

scaling from 0.5% to 10% over the whole area of input data 

were generated. A 2dshpere index is created on original dataset, 

and we also create five R-tree indexes with fan factors of 

8,16,32,64,128 for the projected dataset. Considering the fact 

that MongoDB will continue caching frequently used data into 

main memory which will significantly affect the system’s 

performance, a systematic database warm up before evaluation 

is required. 

 

The evaluation workload is designed as follows. First, we start 

MongoDB and import the dataset. Second, some query 

operations are performed for database warming up. Then, query 

operations with the whole set of generated windows will be 

done by using certain indexes. And the run time of each query is 

recorded. Finally, the database system will be shut down to 

release memory and prepare for another round of evaluation. 

 

5.3 Evaluation result 

In the first evaluation experiment, the performance of R-tree 

with different fan factors is compared. Note that in this 

experiment, the time to read geometries from spatial data 

collection was excluded, resulting in a better discrimination of 

run time caused by various fan factors. As shown in the top of 

Figure 9, the R-tree with fan factor 32 outperforms the others. 

This is because the size of each node document (3888Byte) is 

approximately equal to the system’s page size (4096Byte), the 

basic unit of data swapping between physical memory and hard 

disk. In the second experiment, fan factor is fixed to 32, and the 

result is presented in the bottom of Figure 8. It can be noticed 

that R-tree shows a significant improvement against 2dsphere 

on the efficiency of range query processing. And more 

importantly, this improvement becomes more obvious as query 

scale increases. 
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Figure 8. Average run time of range queries 

 

6. CONCLUSION AND FUTURE WORK.  

In this paper, we presents a new version of MongoDB that 

integrates with R-tree index. Therefore we can manage 

projected spatial data and perform R-tree related operations like 

index management, spatial queries over scalable MongoDB 

cluster. The performance evaluation results suggest our method 

is a better option than 2dsphere at least in city/county scale GIS 

applications. 

 

In the near further, we plan to implement and test more query 

types for our flattened R-tree index within MongoDB, including 

point query, circle query and nearest query. After that, we will 

open our module in the internet and hope to benefit more 

people in the GIS-related fields. 
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