
Providing R-Tree Support for MongoDB

Longgang Xiang, Xiaotian Shao, Dehao Wang

a State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, Wuhan University, Wuhan 430079,

China - (geoxlg, shaoxiaotian, wangdehao)@whu.edu.cn
b Collaborative Innovation Center of Geospatial Technology, Wuhan 430079, China

Commission VI, ICWG IV/II

KEY WORDS: R-tree, Spatial index, MongoDB

ABSTRACT:

Supporting large amounts of spatial data is a significant characteristic of modern databases. However, unlike some mature relational

databases, such as Oracle and PostgreSQL, most of current burgeoning NoSQL databases are not well designed for storing geospatial

data, which is becoming increasingly important in various fields. In this paper, we propose a novel method to provide R-tree index,

as well as corresponding spatial range query and nearest neighbour query functions, for MongoDB, one of the most prevalent

NoSQL databases. First, after in-depth analysis of MongoDB’s features, we devise an efficient tabular document structure which

flattens R-tree index into MongoDB collections. Further, relevant mechanisms of R-tree operations are issued, and then we discuss

in detail how to integrate R-tree into MongoDB. Finally, we present the experimental results which show that our proposed method

out-performs the built-in spatial index of MongoDB. Our research will greatly facilitate big data management issues with MongoDB

in a variety of geospatial information applications.

1. INTRODUCTION

With the development of data acquisition technologies, the data

needed to be stored expands strikingly in both volume and

velocity. Under this circumstance, NoSQL (not only SQL)

databases, which focus on high throughout and free scalability,

start to emerge. NoSQL databases provide totally different

storage patterns and query mechanisms compared with

relational databases. According to their storage patterns,

NoSQL databases can be divided into several types: Key-value

database like Redis (Redis Labs, 2016), Document-oriented

database like MongoDB (10gen, 2016), Graph database like

Neo4j (Wikipedia, 2016) and the Column-Oriented database

like HBase (Wikipedia, 2016).

Among various NoSQL products, MongoDB is extensively

used in an increasing number of industries and companies (e.g.,

GitHub, Sourceforge, Taobao, etc.) due to its rich query

language and high availability. And also it is acclaimed in

geographic information fields. Relevant researches start with the

discussion of methodology of storing spatial data in MongoDB

(Zhang, 2014). After spatial data (encoded in GeoJSON) was

officially supported by MongoDB, performance comparisons

between MongoDB and relational databases (Santos, 2015 and

Duan, 2015), which reveals MongoDB’s capability in spatial

tasks, has been made. Meantime, MongoDB is widely used in

many spatial applications such as LIDAR data management

(Boehm J, 2015), atmosphere environment Monitoring (Han,

2015) and sensor web (Liu, 2014).

In order to improve performance of querying geographical data,

spatial indexes are indispensable in modern spatial databases.

When it comes to accessing plane (non-geodetic) spatial data,

R-tree (guttman, 1984) is definitely the most prevalent and

extensively used one among a variety of spatial indexes (quad-

tree, k-d tree, geohash,etc). Throughout the ages, several R-tree

variations were developed by researchers. R*-tree (Beckmann,

1990) improves the R-tree’s query performance by applying

more powerful pruning roles, which reduces both coverage and

overlap of the nodes. TPR-Tree (Saltenis, 2000) extends the R-

tree capability of execute spatio-temporal query for moving

objects. SD-Rtree (Du Mouza C, 2007a) brings the well-known

R-tree structure into the scalable distribute environment.

Besides the popularity in science committee, R-tree is also well-

supported by many relational databases (e.g. ORACLE,

PostGIS for PostgreSQL).

MongoDB’s native spatial index, named 2dsphere (note: 2d

index, supporting flat coordinate system, was no longer

advocated by MongoDB), first partitions the earth surface at

multiple resolution levels and then indexes the resulting cells

with B+-tree. That is, 2dsphere only supports the access of

spatial data with geodetic coordinate (longitude and latitude).

However, in geographical applications which focus on

city/county scale, planar Cartesian coordinate is widely used,

too. Thus, constant and time-consuming data transformation

between two coordinate systems (Boehm J, 2015) is a necessity

when applying 2dsphere index to these applications, not to

mention that sophisticated spherical computation is much more

costly than Cartesian computation in spatial operations (Oracle,

2015). To solve this problem, this paper introduces a way to

integrate R-tree index into MongoDB and implements

corresponding accessing methods. By taking both advantages of

R-tree’s wide suitability and NoSQL databases’ high

performance and scalability, the application areas of MongoDB

will be significantly enlarged. Besides, traditional GIS

applications will also benefit from it.

The rest of this paper is structured as follows. In section 2, we

introduce an efficient and tabular R-tree index structure tailored

to MongoDB’s document-orient data model. Section 3

describes R-tree index-related data schemas and mechanisms. In

section 4, we discuss the method of integrating R-tree index

with MongoDB. In the last 2 sections, we evaluate the system’s

performance, draw conclusions, and discuss future work.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B4-545-2016

545

2. STORING R-TREE INDEX STRUCTURE IN

MONGODB

2.1 MongoDB’s Storage Unit

Before further discussion of the documental-oriented index

structure of MongoDB, a review of MongoDB’s storage model

is made. Unlike relational databases, MongoDB stores

unstructured data in BSON (Binary JSON) documents rather

than rows with fixed structure. Furthermore, a document can be

nested to represent a complicated structure such as GeoJSON,

an open standard spatial data format supported by MongoDB.

For each stored document in MongoDB, a 12-bytes unique ID

named “oid” is assigned. Querying through oid in MongoDB,

when indexed by B+-tree, is very efficient. A MongoDB’s

dataset consisted of documents is referred as a collection

(RDBMS’s table counterpart). Comparisons between MongoDB

and RDBMS are listed in Table 1.

Items MongoDB RDBMS

Dataset Collections Tables

Record documents Tuples

Node identifier
12-byte

Objectid

Numerical unique

ID

Schema in same

dataset
free fixed

Table 1. Comparison between MongoDB and RDBMS

2.2 Document-oriented R-tree data structure

One documental R-tree node designed in this paper consists of

four key-value pairs. The first one (oid) denotes node identifier.

The second one denotes the node level counting from leaves to

the root. The third one denotes the number of entries in this

node. And the last one specifies those entries’ information. Note

that the fourth key-value element is nested and its value

component is declared as an array of sub-documents, each of

which denotes an index entry. Specified by its level, one such

sub-document references either the document identifier of its

child node (level>1), or the corresponding spatial object stored

as a document in another collection (level=1). Figure 1 shows

an example of an R-tree node document with three entries.

Figure 1. An example of R-tree node document

There are three main merits of this tabular design. First, each

node stores the minimum bounding boxes (MBRs) of all its

entries. Thus, when received a query request, the database can

quickly rule out irrelevant entries and consequently does not

have to access their descendants. As a result, performance

deterioration is avoided in node retrieval procedure. Second, the

fixed document structure is used for storing all nodes with

different numbers of actual entries (up to a specified value M).

A “Null” value of Entry’s oid indicates that the branch is

currently empty (e.g. 4th entry of the node in Figure 1.).

Comparing with variable structures, using fixed structure will

pre-allocates space for empty entry and avoid constantly data

moving in hard disc during node expansion or shrinking, and

therefore improving efficiency (MongoDB, 2016). The last but

not least, served as a redundant short-cut pair, “Count” can

avoid frequent scan through “EntryInfo” during the stage of

inserting and rebalancing.

With this documental structure, R-tree can be flattened as a

collection into MongoDB. Thus the tree navigation through

document identifiers (oid) can be performed. Figure 2 illustrates

an example. There are seven documents in the right collection

and each of them exactly corresponds to one node in the middle

R-tree.

Figure 2. Flattening a R-tree into a MongoDB collection of

documents

3. INDEX-RELATED SCHEMA AND MECHANISM

In this section, we introduce the index-related schemas, as well

as their relations, that are needed to support all R-tree related

operations, including index management (create, drop), spatial

queries (range, approximate) and maintaining R-tree’s balance.

3.1 Index-related Schema

Four kinds of collections, which are spatial data collections

(SDC), index collections (IC), geometric metadata collection

(GMC) and index metadata collection (IMC), are devised with

different purposes but all contribute to our index mechanism.

Their functions are described in detail as follows.

First, spatial data encoded in GeoJSON (GeoJSON, 2008) are

stored in SDC, along with some other non-spatial attributes

(SDC are ordinary collection with one field encoded in

GeoJSON to store spatial data). Then, an accessorial index

collection (IC), as introduced in section 2, is assigned for a

target SDC. Literally, an index collection is named by its

corresponding spatial data colloction’s name appended with the

suffix “_RTreeIndex” (e.g. the index collection name of spatial

data collection “building” is “building_RTreeIndex”). Under

this naming rule, one can easily identify the index collection for

a certain spatial data collection. Besides index collection,

spatial metadata collection (GMC) is designed to record each

indexed collection, along with its geometric properties, while

index metadata collection (IMC) records the index’s parameters.

According to the schema in Figure 3, “namespace” records the

indexed spatial dataset in form of “A.B”, in which A donates

the database name and B donates the collection name.

Meantime, “Fieldname” keeps a record of the spatial field on

which the R-tree index is created. “GTYPE” specifies the data

layer’s geometry type, limited to one of the seven natively

supported geometry typies in MongoDB. “MBR” is the layer’s

minimum bound rectangle and also the MBR of R-tree’s root

node. “CRS” specifies the Cartesian coordinate system used by

the data layer and “IndexInfo” references to a document located

in index metadata collection (IMC), which contains the

parameters of R-tree, such as the fan factor and the oid of the

root node.

{

 “_id”: “53465e5fd2fa5e5bfe3dfc11”,

 “Level”: 2,

 “Count”: 3,

 “EntryInfo”: [{”EntryID”:” 5346b65e5fd2fa5e5bfe3dfc12”, “MBR”:[0.0,0.0,3.0,3.0]},

{”EntryID”:” 5346b65e5fd2fa5e5bfe3dfc13”, “MBR”:[4.0,4.0,5.0,5.0]},

{”EntryID”:” 5346b65e5fd2fa5e5bfe3dfc14”, “MBR”:[2.0,5.0,3.0,6.0]},

{”EntryID”:” 000000000000000000000000”, “MBR”:[0.0,0.0,0.0,0.0]}]

}

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B4-545-2016

546

Figure 3. Index related schema

3.2 Index-related mechanism

Following the schema proposed in section 3.1, an R-tree

operation can be easily turned into a sequence of manipulations

performed on the collections discussed above.

Taking spatial query operations as an example, a three-step

algorithm is depicted as following. The first step is to verify the

existence of target index in GMC and then load the index

parameters from IMC. Considering the fact that spatial query is

frequently called in a practical application, we cache metadata

of both GMC and IMC into system memory to optimize the I/O

access. The second step is to filter, which navigates the R-tree

nodes stored in IM and excludes spatial objects whose MBRs

are not intersected with query range. Consequently, we get a

potential candidate set. Finally, after the precise refining upon

these candidates is done, the final result set is obtained.

Unlike query operations, inserting or deleting spatial objects in

SDC may induce a deformation of the corresponding R-Tree

structure, leading to modifications to all SDC, IC and IMC.

However, we modify the SDC ahead of other collections for

better data protection against unforeseen accidents, such as

hardware failure. Note that the R-tree nodes might change

during the rebalancing process of R-tree, which may lead to a

root oid update in IMC.

Index management operations like creating and dropping an

index can be transformed into inserting or removing metadata

documents located in GMC and IMC. After that, a

corresponding index maintaining process will be in operation.

For a better understanding, figure 4 illustrates how four

different kinds of collections (SDC, IM, GMC and IMC) are

involved during the life span of the R-tree related operations.

Figure 4. Procedures of R-tree related operations

4. 4 INTEGRATION OF R-TREE INDEX INTO

MONGODB

Obviously, there exists two ways to implement R-tree

operations into MongoDB: an agency to shield MongoDB or an

in-built module plugged into MongoDB. Represented by

ESRI™ ArcSDE, the former implementation serves as a

middleware between the client and database system. Though

easier to be achieved, middleware will increase the learning cost

of end users who might have to set up environment, import data

and be familiar with a new script language. In this paper, an in-

built R-tree index module written in C++ was plugged in to

MongoDB’s system, which allows users to use R-tree index as

easily as 2dsphere index. Before further discussion of the

implementation, a detailed introduction of MongoDB’s

architecture is given.

4.1 4.1 MongoDB’s Architecture

Three key compounds consist the MongoDB cluster, they are

shard server, config server and route server. Collections with

large volumes are usually horizontally partitioned and stored in

multiple shard servers (mongod instance). Router servers,

accordingly, interface with client applications and direct

operations to the appropriate shard or shards. Config servers

(mongos instance) store the cluster’s metadata, which contains a

mapping of the cluster’s data set to the shards. Based on this

architecture, MongoDB is able to provide auto-sharding

capability, which automatically balances I/O load among

multiple shards, thus guarantees flexible horizontal extension

again rapid growth of data. Based on the architecture, the

integration of R-tree index (see Figure 5) is designed as

following:

 Storage allocation: we shard spatial data collection

(SDC), and index collection (IC) if necessary, into

multiple shards, on which a hash based shard-key is

assigned. By making the most use of distributing

memories, I/O efficiency over sharded large collections

are greatly improved. Unlike SDC and IC, two metadata

collections (GMC and IMC) are stored in config servers

for better protection of the metadata from unexpected user

interferences.

 Module-embedding: an R-tree module is plugged into

mongos, in which the upper level CRUD commands are

provided. Using these commands with R-tree algorithm

greatly simplify the implementation by ignoring the

partition details of sharded collections.

Figure 5. MongoDB’s architecture with R-tree integration

4.2 4.2 R-tree module integration

First, we modify the message parsing module of mongos, so as

to pinpoint the newly added R-tree commands from received

messages. During this stage, a metadata exchange with config

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B4-545-2016

547

servers is necessary to verify if R-tree index exists in a certain

collection. If an R-tree index has been built, the corresponding

R-tree commands will be run. Otherwise, a native database

command will be executed.

In order to support these R-tree commands, a two-level R-tree

module is designed. The above level consists of a set of storage

detached R-tree algorithms such as insert, delete and query. The

ground level, correspondingly, provides I/O interface features

on data retrieval, R-tree node manipulation and index metadata

management, for the above algorithms. Connected into the

command center of mongos, the I/O interface is able to translate

basic R-tree function into a sequence of CURD operations,

which will be dispatched into target shards. Although designed

for MongoDB, this two-level R-tree module can be easily

ported into other databases and file system, with a tweak of the

I/O interface.

In spatial query operations, the filtered candidates from R-tree

will be handed into a refining module, which uses Cartesian

computation powered by a famous open source geometry library

GEOS. Figures 6 shows us a diagram of relevant modules in

mongos.

Figure 6. Integration detail of R-tree module

4.3 R-tree related Command design

In our case, seven commands listed in Table 2 are involved in

R-tree index operations. However, six of these commands

already exist in MongoDB’s command set. We reuse these

native command interface to ensure backward compatibility.

Unlike geodetic coordinate system, the metadata like CRS is

very important for applications based on Cartesian coordinate

system. So we introduce a new command--“RegisterGeometry”,

which brings the concept of layer to MongoDB and registers the

geometric properties of geospatial data stored in SDC. As

described in the last section, every R-tree related command is

based on a series of native commands. Table 2 details their

composition.

Command

Name

Command

Type

Base command(s)
drop create insert remove update find

ensureIndex Native √ √ √

createIndex Native √ √ √

registerGeome

try

Newly

Added

 √ √ √

dropIndex Native √ √ √

insert Native √ √ √

remove Native √ √ √ √

find Native √

Table 2 R-tree related command design

5. PERFORMANCE EVALUATION

This section focuses on the performance evaluation of the

proposed plug-in R-tree index by comparing our method with

2dsphere index through range queries.

5.1 Evaluation Environment

Our experiments are carried out on a PC with 3.1GHz E3 1231

v3 CPU, Windows Server 2008 platform and 8 GB RAM. The

version of MongoDB is 2.6. A city scale (20km*20km) dataset

is chosen in this test. Clipped from open street map (OSM), the

test data consists of 195823 building polygons located in the

center of Washington DC. A copy of original data (geostatic

coordinate system) projected into Cartesian coordinate system is

prepared to facilitate R-tree queries. A snapshot of the tested

dataset is shown in Figure 7.

Figure 7. An example of tested data

5.2 Comparing setup

Before the performance evaluation, a group of query windows

scaling from 0.5% to 10% over the whole area of input data

were generated. A 2dshpere index is created on original dataset,

and we also create five R-tree indexes with fan factors of

8,16,32,64,128 for the projected dataset. Considering the fact

that MongoDB will continue caching frequently used data into

main memory which will significantly affect the system’s

performance, a systematic database warm up before evaluation

is required.

The evaluation workload is designed as follows. First, we start

MongoDB and import the dataset. Second, some query

operations are performed for database warming up. Then, query

operations with the whole set of generated windows will be

done by using certain indexes. And the run time of each query is

recorded. Finally, the database system will be shut down to

release memory and prepare for another round of evaluation.

5.3 Evaluation result

In the first evaluation experiment, the performance of R-tree

with different fan factors is compared. Note that in this

experiment, the time to read geometries from spatial data

collection was excluded, resulting in a better discrimination of

run time caused by various fan factors. As shown in the top of

Figure 9, the R-tree with fan factor 32 outperforms the others.

This is because the size of each node document (3888Byte) is

approximately equal to the system’s page size (4096Byte), the

basic unit of data swapping between physical memory and hard

disk. In the second experiment, fan factor is fixed to 32, and the

result is presented in the bottom of Figure 8. It can be noticed

that R-tree shows a significant improvement against 2dsphere

on the efficiency of range query processing. And more

importantly, this improvement becomes more obvious as query

scale increases.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B4-545-2016

548

Figure 8. Average run time of range queries

6. CONCLUSION AND FUTURE WORK.

In this paper, we presents a new version of MongoDB that

integrates with R-tree index. Therefore we can manage

projected spatial data and perform R-tree related operations like

index management, spatial queries over scalable MongoDB

cluster. The performance evaluation results suggest our method

is a better option than 2dsphere at least in city/county scale GIS

applications.

In the near further, we plan to implement and test more query

types for our flattened R-tree index within MongoDB, including

point query, circle query and nearest query. After that, we will

open our module in the internet and hope to benefit more

people in the GIS-related fields.

REFERENCES

10gen, 2016, “Introduction to MongoDB”,

https://docs.mongodb.org/manual/introduction/ (25 Mar. 2016).

Boehm J, Liu K. 2015, NoSQL for storage and retrival of Large

LIDAR data collections [J], ISPRS 2015, Commission III, WG

III/5.

Beckmann N., Leriegel H., Schneider R., etc. 1990, The R*-tree:

an efficient and robust access method for point and rectangles

[C], SIGMOD’s 90

Duan, M.R., Chen, G., 2015, Assessment of MongoDB’s spatial

retrieval performance[C], Geoinfomatics 2015.

Du Mouza C, Litwin W, Rigaux P, 2007, SD-Rtree: A Scalable

Distribute RTree [C]. ICDE 2007: 296-305

Guttman A., 1984, R-Tree: A Dynamic Index Structure for

Spatial Searching[C]. SIGMOD Conference 1984: 47-57

GeoJSON, 2008, “The GeoJSON Format Specification”,

http://geojson.org/geojson-spec.html (16 Jan. 2008)

Han, M., Feng, K., 2015, GIS application based on Cloud

Storage for Atmosphere Enviroment Monitoring [C], IC3ME

2015, 972-976

MongoDB, 2016, “Document Growth”,

https://docs.mongodb.org/manual/core/data-model-

operations/#data-model-document-growth (3 Apr. 2016).

Redis Labs, 2016, “Introduction to Redis”, Israel,

http://redis.io/topics/introduction (25 Mar. 2016).

Saltenis, S., Jensen, C., 2000, Indexing the positions of

Continuously Moving objects [C] SIGMOD 2000

Santos P, Moro M, Davis A, 2015, Comparative Performance

Evaluation of Relational and NoSQL Databases for Spatial and

Mobile Applications [J]. Database and Expert Systems

Applications

ORACLE, 2014, ORACLE Spatial and Graph Developer’s

Guide [M].

Liu, Q., Mao, S.J., Li, M., etc. 2015, Release and Storage of

Mine Gas Monitoring Data Based on Sensor Web [C].

Geoinformatics 2014.

Wikipedia, 2016, “Neo4j”, https://en.wikipedia.org/wiki/Neo4j

(4 Mar. 2016).

Wikipedia, 2016, “Apache HBase”, https://en.wikipedia.org/

wiki/Apache_HBase (16 Mar. 2016).

Zhang, X.M., Wei, S., Liu, L.M., 2014, an Implementation

Approach to Store GIS Spatial Data on NOSQL Database [C].

Geoinformatics 2014

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B4-545-2016

549

