
THE DESIGN OF A HIGH PERFORMANCE EARTH IMAGERY AND RASTER DATA

MANAGEMENT AND PROCESSING PLATFORM

Qingyun (Jeffrey) Xie

Oracle Corporation, One Oracle Drive, Nashua, NH 03062, USA -

qingyun.xie@oracle.com

Commission IV, ICWG IV/II

KEYWORDS: Raster Database, Image Processing, Raster Analytics, HPC, Oracle GeoRaster, Platform

ABSTRACT:

This paper summarizes the general requirements and specific characteristics of both geospatial raster database management system

and raster data processing platform from a domain-specific perspective as well as from a computing point of view. It also discusses

the need of tight integration between the database system and the processing system. These requirements resulted in Oracle Spatial

GeoRaster, a global scale and high performance earth imagery and raster data management and processing platform. The rationale,

design, implementation, and benefits of Oracle Spatial GeoRaster are described. Basically, as a database management system,

GeoRaster defines an integrated raster data model, supports image compression, data manipulation, general and spatial indices,

content and context based queries and updates, versioning, concurrency, security, replication, standby, backup and recovery,

multitenancy, and ETL. It provides high scalability using computer and storage clustering. As a raster data processing platform,

GeoRaster provides basic operations, image processing, raster analytics, and data distribution featuring high performance computing

(HPC). Specifically, HPC features include locality computing, concurrent processing, parallel processing, and in-memory

computing. In addition, the APIs and the plug-in architecture are discussed.

1. INTRODUCTION

The traditional dichotomy is to classify spatial data into vector

data and raster data. As a matter of fact, raster data (imagery

and gridded data) is the dominant form of spatial information,

which includes thematic maps, DEM/DSM, remote sensing

imagery, photogrammetric photos, scanned maps, geophysical

images, geological maps, etc. These raster types have very

different data structure comparing to vector data types and are

complex data types in comparison to structured and simple data

types such as numbers and strings. To be efficiently managed,

they require specialized indexing, querying, processing, and

analyzing algorithms. They are generally huge in size and they

are “big data” in nature. All these mean we have to build

specialized management, processing, and analyzing engines for

raster data types. Scalability and performance of such systems

are two keys to success. Full support of modern computing

architecture and enabling the development of a wide variety of

internet or cloud based applications are essential.

This paper summarizes the general requirements and specific

characteristics of both geospatial raster database management

system and raster data processing platform from a domain-

specific perspective as well as from a computing point of view.

It also discusses the need of tight integration between the

database system and the processing system. These requirements

resulted in Oracle Spatial GeoRaster, a global scale and high

performance earth imagery and raster data management and

processing platform. This paper describes the rationale, design,

and implementation of Oracle Spatial GeoRaster as well as the

benefits and applications.

2. THE REQUIREMENTS

Understanding the requirements is the first step to success. We

will discuss the general requirements in this section.

2.1 Raster Database Management

Geoimagery and raster gridded data are growing exponentially.

Numerous remote sensors of different types on various

platforms are collecting real time data about the Earth and our

environment for different purposes on a daily basis. These

images are processed to create products including rasters such

as DEM, NDVI and orthophotos, which are then used to update

SDI and GIS databases. As a result, it’s critically important to

effectively and efficiently archive, manage, and distribute all

those raster data sets. In other words, truly scalable and really

robust raster database management systems are required.

As a database, such management system needs to provide a

schema to store, index, query, manipulate, manage, and deliver

raster image and gridded data and its associated attribute data

and metadata. From a domain perspective, an integrated data

model should be designed to provide broad compatibility.

Comprehensive ETL tools should be developed to load and

export data in a variety of formats. Advanced indexing should

include both spatial and non-spatial indices. Queries should

support both context-based and content-based queries.

Operations such as storage optimization, compressing,

subsetting, layer merging, reprojection, image appending and

mosaicking are required to accomplish basic manipulation and

management tasks. Data versioning and lineage are important

in many applications too.

From a computing perspective, security is one important

requirement, particularly for intelligence and defense industries.

Multi-user concurrency and multi-tasking are basic needs

nowadays for large scale systems. Replication, backup and

recovery are fundamental management tasks. For mission

critical and real time systems, high availability without down

time is required. Multitenancy at the database level is desired in

the cloud computing era.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B4-551-2016

551

At the end, two of the most important tests are scalability and

performance. Given the “big data” nature of raster data types,

the raster database management system must be truly scalable

and provide high performance in data storage, manipulation,

and management.

2.2 Raster Data Processing and Analysis

Data archiving and management is not necessarily the end goal.

Ultimately, data systems should support specific applications

and serve decision making. So, raster data processing, analysis,

and modeling are required and should be taken into

consideration from the beginning in the design of any such

systems.

From a domain perspective, a raster data processing system

must provide image preprocessing, basic data manipulation

operations, image enhancements, pattern recognition, raster

algebra, cartographic modeling, and many raster analytics. It

should also be tightly integrated with vector data types to offer

more advanced spatial analytics and location intelligence.

From a computing perspective, high performance computing is

critical due to the sheer data volume and the complexity of

raster processing. And the functionalities must be scalable to

handle virtually unlimited data size too. Specifically, locality

computing, concurrent processing, parallel processing, and in-

memory computing should be implemented or leveraged.

In addition, the platform should allow plug-ins of user’s own

algorithms or third-party software packages.

2.3 Requirement for an Integrated Platform

From the above requirement analysis, it’s not difficult to

conclude that on the one hand, building a scalable and easy-to-

use raster database will create a great foundation for data

processing and analysis, and on the other hand, building a fast

processing and analysis solution is important for the application

of the image and raster database as well. In other words, both

raster database management platform and raster data processing

platform are required.

For geospatial image and raster data processing and analyzing,

many advanced and highly efficient desktop systems such as

ERDAS Imagine and PCI Geomatica and server-based engines

such as ArcGIS are readily available. When a large-scale

enterprise spatial database is built, such desktop and server-

based systems generally can connect to it and then retrieve the

imagery and raster data out of the database and process them in

the client or another server. However, moving large volume of

data between the database and the processing engine is costly

given the speed and bandwidth limitations of computer

networks.

A typical geoimage database has tens or hundreds of terabytes

of data. Petabytes of data is not uncommon. Data has “weight”

and geospatial image and raster data sets are particularly

“heavy”. Given that the processing and analysis are data

intensive, data locality should always be an important factor in

our design and implementation strategy. So we conclude that

building an in-database analytics engine should be a good

strategy. It moves the data processing closer to the data instead

of moving the data to the processing, which helps achieve

greater performance by overcoming the bottleneck of computer

networks.

In summary, an integrated platform for both database

management and data processing would be ideal.

3. THE DESIGN OF AN INTEGRATED

PLATFORM

Oracle Spatial GeoRaster is designed and implemented to meet

the aforementioned requirements. It fully leverages the Oracle

RDBMS server technology. It is an integrated platform for both

raster database management and raster data processing. And it

fits well into modern multitier architecture and cloud

computing architecture for application development.

3.1 Background and Approach

Traditional imagery and raster data management systems are

built on file systems directly. Some take a hybrid approach,

which stores metadata and attributes in an RDBMS system

while storing images as flat files. However, most file formats

allow limited image size and have rigid structures, which

prohibit flexible and scalable storage, fast querying and

complex manipulations. Such file system does not offer good

enough security, reliability, availability, and manageability

either. Similarly, another approach is to take advantages of a

standard RDBMS system's large object (LOB) data types by

loading the raster files into database Binary LOB (BLOB)

objects so that both metadata and raster data are stored inside

the database. Since raster data are still in some specific file

formats, the aforementioned disadvantages of file formats are

automatically inherited in such a database system.

Another approach is the so called middleware approach. It

stores all data inside a standard RDBMS system and processing

the data in a middleware or client software package. Most

RDBMS’s don’t have geospatial image data types defined. So

this approach requires a relational database schema to be

designed to store the imagery inside RDBMS. However, a fixed

set of relational tables specified in such an application schema

doesn’t offer good flexibility when it comes to integrate

geospatial raster datasets with other enterprise datasets. The

middleware acts as a query and processing engine, so

performance and data security are concerns with this approach.

The other downside is either the lack of standard database SQL

interface or the decoupling of its interface from the RDBMS

system, which significantly limits the usability and enterprise

integration efforts.

One trend is to leverage Big Data platforms such as Hadoop

and NoSQL. These systems have a shared nothing architecture

and use clustering of low end servers. Besides the benefit of

lower costs, it offers the best scalability and is best used for

static data sets whose subsets are stored, accessed, processed,

and analyzed independently. MapReduce and Parallelism

provide great performance advantage in reading and processing

such data sets. A great example is to store preprocessed and

static Earth imagery and map tiles for web visualization

purposes, as with most online web mapping services. However,

it’s not yet proven to be an efficient approach for large datasets

that require aggregation of their smaller subsets, which are

typically stored on different computing nodes in the Hadoop

system, before they are processed. This is because data moving

cost among distributed storage nodes is very high. Generally,

large scale spatial data types, including raster data types, are

such datasets, which require frequent aggregation for

processing and analysis. Examples may include band merging,

mosaicking, multilayer raster algebra operations, and time

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B4-551-2016

552

series analysis, to name a few. In addition, there are limited

security and managing capabilities in such systems comparing

with enterprise RDBMS systems.

Most specialized data warehousing or OLAP systems use a

shared nothing architecture too. Data moving cost among

distributed storage nodes is a concern as well.

In contrast, enterprise RDBMS systems provide best security

and management capabilities for both OLTP and OLAP

databases. They also offer best hardware platforms for large-

scale data processing and analysis using computer clustering

and engineered systems. They typically use a shared everything

architecture, which avoids or minimizes data moving cost

across different computing nodes by using advanced storage

management technologies, such as Oracle Automatic Storage

Management (ASM). So, in summary, enterprise RDBMS is

the best platform to combine raster database management with

raster data processing if it’s enhanced to support spatial data

types, while other platforms can be complementary to this

RDBMS centric approach.

3.1 GeoRaster Database Management System

Oracle Spatial GeoRaster is built to take full advantage of the

Oracle enterprise RDBMS system. It makes raster data storage

independent of any raster file formats. Basically, the Oracle

database system is internally enhanced to provide a new native

GeoRaster data type (SDO_GEORASTER) to store and

manage raster datasets with virtually no size limitations (Xie,

2008a. Xie, 2008b).

The design of the SDO_GEORASTER data type is one of the

keys. It allows the database treat imagery and raster data as if

they are simple types such as numbers and arrays. Using

standard SQL language, a user can define any table and create

one or more columns inside that table using the

SDO_GEORASTER type. In the Oracle database, a GeoRaster

table is any user-defined table that has at least one data column

of type SDO_GEORASTER. It could have any number of

additional columns of any other SQL data types. From a user

perspective, a GeoRaster database is basically a list of

GeoRaster tables, in which each image or raster grid is stored as

a GeoRaster object in one row. It can contain unlimited number

of GeoRaster objects in one or more schemas and each object

can be terabytes in size (Xie, 2006).

Once a GeoRaster table is created and the data is loaded, users

can build appropriate indexes on various columns of the

GeoRaster tables such as a spatial R-tree index on the

GeoRaster column and B-tree indexes on other columns so that

queries and other operations on the tables can be supported

efficiently.

GeoRaster provides over 190 raster and metadata operations

through a PL/SQL API to optimally manage and manipulate the

GeoRaster database. Examples include listing and validating all

GeoRaster objects in a schema or in the database, deleting

GeoRaster objects and dropping GeoRaster tables using

standard SQL, adjusting the internal raster blocking size to

optimize the storage, generating pyramids, compressing or

decompressing GeoRaster objects, editing and updating both

raster metadata and cell data, cropping rasters, georeferencing

rasters, generating statistics and histograms, combining and

appending rasters, reprojecting and mosaicking rasters.

GeoRaster also provides ETL tools for loading and exporting

raster data.

Because GeoRaster is natively built inside the Oracle database

server, almost all enterprise database management features are

readily available to GeoRaster users. These include long

transaction and rollback, general and spatial indices, data

manipulation with parallelism, versioning, multi-tasking, multi-

user concurrency, high security, partitioning, advanced

replication, physical and logical standby, backup and recovery,

and multitenancy. Besides using ETL, Oracle utilities and

transportable tablespace can be used for data transfer or

migration among databases. In addition, the database is highly

scalability using computer and storage clustering technology.

3.2 GeoRaster Data Processing and Analysis

Once the data is stored and managed by the database, they can

be indexed, queried and retrieved to serve clients or

applications. However, the majority of preprocessing,

processing, and analytical operations should be done where the

data is stored. There are several benefits of doing that. Firstly, it

offers true security for the data because the data no longer

needs to be retrieved and loaded into a middleware or client

through an insecure network and processed in an unmanaged

computer memory. Secondly and most importantly, the

processing is closest to the data so it runs faster by avoiding

data transferring cost. Thirdly, since modern RDBMS systems

such as Oracle support large-scale computer clusters and offer

strong computing power, the processes can be run concurrently

and deployed onto many powerful servers to reduce the burden

on the desktop processing systems. Finally, the processing

engine can be coupled with middleware and client-side

processing systems to fully leverage the power of enterprise

distributed computing systems.

With these, GeoRaster is designed to support powerful raster

processing and analysis inside the database server. As a

platform, it supports application development and allows plug-

ins of existing algorithms. To summarize, there are two major

types of processing capabilities as follows.

First, GeoRaster provides a PL/SQL-based raster algebra

engine enabling fast cell data searching, raster data analysis,

and cartographic modeling. The GeoRaster raster algebra

language is an extension to the PL/SQL language, which

includes specific algebraic expressions and functions. The

algebraic expressions support general arithmetic, logical,

relational and casting operations. The raster algebra functions

include major procedures to support arithmetic operation,

logical operation, statistical analysis, conditional queries, raster

segmentation, and cell value-based updates or edits (Xie, 2012).

Second, GeoRaster provides a list of advanced image

processing and image serving capabilities. These include GCP

georeferencing, reprojection, rectification, orthorectification,

image scaling, image enhancements, image masking, image

segmentation, NDVI computation, Tasseled Cap

Transformation, image appending, band merging, large-scale

advanced image mosaicking, and virtual mosaic. The

operations described here are most commonly used to process

and serve geospatial images, particularly raw satellite imagery

and airborne photographs. However, those operations, just like

the GeoRaster raster algebra, apply to all raster data types

stored in the GeoRaster database (Xie, 2013).

Currently, the list of functions provided by GeoRaster could

meet many application requirements. However, it’s also worth

to note that much more are needed to meet broader raster data

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B4-551-2016

553

processing requirements. The key take away from our work is

we have proved that all image processing and raster analysis

functionalities can be efficiently and effectively implemented

inside the database, regardless how big the rasters and how

complex the processing operations are. In addition, users have

the option of plugging in their own algorithms to meet special

requirements.

3.3 GeoRaster High Performance Computing

Geospatial images and raster data are complex data and big

data, thus geospatial raster processing is not only

computationally complex but also I/O intensive. Real-time or

near real-time performance should be one of the top

considerations at the beginning in the design of any such

modern image management and processing solutions.

Oracle database runs on or supports high end computing

servers, computer clusters, storage clusters, and engineered

database machines. These high end infrastructures make the

development of high performance computing possible for

GeoRaster. We took a comprehensive approach for HPC by

taking into consideration of CPU, memory, storage, as well as

computer clustering. Specifically, locality computing,

concurrent processing, parallel processing, and in-memory

computing are either implemented or experimented in

GeoRaster.

For GeoRaster, locality computing is also called in-database

processing, which refers to the integration of data processing

functionalities into the databases. Given that the processing and

analysis are data intensive, data locality should always be an

important factor in our design and implementation strategy. The

basic idea is to eliminate the overhead of moving large data sets

from the enterprise databases to separate processing and

analytical software applications. The aforementioned raster

functionalities are all developed inside the database so that

better performance can be achieved by overcoming the

bottleneck of computer networks and also improve scalability

and security (Xie, 2008a. Xie, 2012. Xie, 2013).

Concurrency and multi-tasking are readily available in all

enterprise RDBMS systems, including Oracle. Implementing

raster processing inside the database enables us to leverage

Oracle concurrent processing infrastructure directly. We fine-

tune memory usage through our internal GeoRaster memory

management system so that each concurrent process would not

use too much memory resulting in better scalability. Concurrent

processing is available to all GeoRaster functions, regardless

the database is on a single machine or on a computer cluster.

Concurrent processing drastically improves massive raster

processing performance, database scalability and overall

throughput (Xie, 2006. Xie, 2013).

Given that modern computers are mostly multicore or have

multiple CPUs, parallel processing should be implemented in

any modern geospatial and image processing solutions.

GeoRaster supports two types of parallel processing: parallel

execution of SQL statements and parallelized GeoRaster

procedures. Parallel execution of SQL statements applies

directly to all GeoRaster read-only functions such as metadata-

related query operations and all single cell queries. Parallelized

GeoRaster procedures include most of the raster processing and

analysis operations such as compression, pyramiding,

rectification, mosaicking, and raster algebra. The

implementation of parallelism dramatically improves raster data

processing performance inside the database. Parallelism is a

key feature of the GeoRaster data processing and analysis

platform (Xie, 2012. Xie, 2013).

Finally, in-memory computing is designed and experimented to

leverage large memory size coming with modern computing

servers. GeoRaster is designed to support small size of memory

so that it can process any size of rasters on any hardware

configurations and better support concurrency. For example, it

implemented a sophisticated memory management system in

the processing engine so that it can process images of terabyte

in size on an average PC. The idea of in-memory computing is

the opposite, which loads larger chucks of raster data or the

whole raster into memory so that the overhead of I/O and data

swapping can be minimized to improve performance. Our

initial experiments have shown great performance improvement

by leveraging larger memory in each process. Unlike other

products, allowing users to control how much memory to use is

one of the key in-memory computing features in the design of

GeoRaster.

3.4 GeoRaster Application Development

Applications are diverse and may have very different levels of

complexity. On the one hand, GeoRaster provides a large

number of database management operations and data

processing capabilities, which are readily available for

applications to use. On the other hand, special algorithms and

operations may be needed to serve special purposes in different

applications. To support application development and

customization, the GeoRaster platform provides API’s as well

as a plug-in architecture.

GeoRaster has a PL/SQL API and a Java API, which are

provided for database creation, database administration, data

manipulation, raster analysis, image processing, and raster data

serving and delivering. They are the foundation for application

development. They also help in the integration of existing

applications with GeoRaster. Users can use PL/SQL, Java, C or

C++ to leverage the PL/SQL API and the Java API or directly

access the binary data of the open GeoRaster data model. Many

of the functions listed in this paper are extended, augmented or

leveraged by partner technologies delivered as ETL tools,

comprehensive raster analysis and image processing client

tools, or in the form of visualization engines.

The other key feature is allowing users to plug in their

algorithms into the GeoRaster platform. In other words,

existing algorithms can be plugged into the database to work

directly on GeoRaster objects. For example, if the algorithm is

implemented in Java, you can leverage the GeoRaster Java API

and adopt the algorithm into a Java Stored Procedure, which

runs inside the database like any other GeoRaster procedures.

For any such user defined Java Stored Procedure, concurrent

users can invoke it simultaneously and multi-tasking is

immediately available, thus you can quickly take advantage of

your powerful hardware platform. If the algorithm is

implemented in C or C++, you can use the Oracle Call Interface

(OCI) to adopt it and create an External Procedure to execute it

on one or more GeoRaster objects. An External Procedure runs

like other PL/SQL procedures so that concurrency and multi-

tasking are available too. The GeoRaster Java API is designed

to deal with GeoRaster objects specifically while OCI is a

generic database C interface, so the major difference is that it’s

easier to plug in Java programs than C programs currently.

In addition, Oracle Fusion Middleware MapViewer is part of

the GeoRaster stack. It fully supports GeoRaster data types and

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B4-551-2016

554

is the web-based mapping and visualization application

platform for GeoRaster. MapViewer also has a map tile server,

which is a map image caching engine that fetches, caches, and

serves pre-generated, fixed-size map image tiles. You can

leverage it to cache GeoRaster images in the middle tier to

speed up applications. It provides XML and HTML5 API’s for

application development. Spatial web services such as OGC

WMS are provided in the middleware for internet based

application development as well.

In summary, the API’s and plug-in architecture enable

unlimited customization and secondary development making

GeoRaster a very power platform for applications.

4. THE BENEFITS AND APPLICATIONS

The design of GeoRaster, an integrated raster database

management and raster data processing platform, is based upon

large-scale enterprise RDBMS for data management as well as

modern hardware and software infrastructure for high

performance computing. The native GeoRaster data type and

database schema is uniquely designed to meet all database

management requirements. The implementation of raster

manipulation operations, image processing, raster algebra,

API’s, and plug-in architecture enables a variety of applications

and unlimited secondary development.

There are many benefits of this design. To give out a few

examples, all metadata and cell data of GeoRaster objects are

open to users and can be accessed at bit level as long as the

users are granted the access privilege. This enables shared

third-party application developments. It breaks the size barriers.

The internal tuning tools and compressions can be used to

optimize the raster blocking and other storage options to best fit

into the needs and performance requirements of different

applications. The native data type approach provides great

flexibility to store raster data in regular relational tables. Images

or rasters in different projections and locations can be stored in

the same table and users can easily build global databases with

whole-earth spatial index and other indices enabling fast

queries and manipulations of rasters located anywhere on the

Earth. GeoRaster features in-database processing, optimized

multi-tasking, parallel processing, and in-memory computing.

The in-database data manipulations, raster algebra and image

processing capabilities allow data to be processed where it is

stored. Coupled with multi-tasking and parallel processing, this

provides great performance and true security. The standard

PL/SQL and JAVA API’s are flexible, powerful and easy-to-

use. They help speed up enterprise integrations and broaden

geospatial application development.

Application of this platform is unlimited. For example, it can be

used to support image visualization, metadata management and

image archiving, raster data processing, cartographic modeling,

web services, data distribution, spatial data cloud, and

application cloud. It offers a single database and platform yet it

enables multiple applications to be easily built on top of it for

large organizations.

5. CONCLUSION

Imagery and raster gridded data are complex data types and

“big data”. Specialized database management system and data

processing system are required. An integrated platform for both

raster database management and raster data processing is

desired. Oracle Spatial GeoRaster is designed to meet those

requirements and provides unlimited application potential. It

offers the best database security, manageability, scalability, and

availability by leveraging the best commercial RDBMS in the

market. It provides high performance computing features

enabling massive raster data processing and analysis and

removing the overhead of data movement. As a platform, it

provides API’s for developing applications and allows plug-ins

of existing algorithms so that a broad variety of applications

can be built and the computing power of modern infrastructure

can be easily and fully leveraged. The platform will continue to

be enhanced and future directions may include adding more

raster data processing and analyzing capabilities and doing

more research and development on in-memory computing,

plug-in architecture and related API’s, simplification, and easy-

to-use, to name a few.

6. REFERENCES

Xie, Q., Z. Li, and W. Xu, 2006. Using Enterprise Grid

Computing Technologies to Manage Large-Scale Geoimage

And Raster Databases. In: the Proceedings of ASPRS 2006

Annual Conference, Reno, Nevada, May 1 – 5, 2006.

Xie, Q., S. Ravada, W. Xu, and Z. Zhang, 2008a. An Enterprise

Database-centric Approach for Geospatial Image Management

and Processing. In: The International Archives of the

Photogrammetry, Remote Sensing and Spatial Information

Sciences, Vol. XXXVII-B4.2008, XXI ISPRS Congress, Beijing,

China,

Xie, Q., 2008b. Oracle Spatial, Raster Data. Encyclopedia of

GIS, Shashi Shekhar and Hui Xiong (editors), Springer. pp. 826

- 832.

Xie, Q., Zhang, Z., and S., Ravada, 2012. In-Database Raster

Analytics: Map Algebra and Parallel Processing In Oracle

Spatial GeoRaster. In: International Archives of the

Photogrammetry, Remote Sensing and Spatial Information

Sciences, Volume XXXIX-B4, 2012, XXII ISPRS Congress,

Melbourne, Australia.

Xie, Q., F., Chen, Z., Zhang, I., Lucena, 2013. In-database

Image Processing in Oracle Spatial GeoRaster. In: the

Proceedings of ASPRS 2013 Annual Conference, Baltimore,

Maryland, March 24-28, 2013

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B4-551-2016

555

