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ABSTRACT: 
 
Many types of applications require information about built-up areas and urban areas. Thus, there is a need for a global, vector-based, 
up-to-date, and free dataset of high resolution and accuracy. The OpenStreetMap (OSM) dataset fulfills those demands in principle. 
However, its focus is not land use or land cover. These observations lead to following questions: (1) Which OSM features can be 
used for computing built-up areas on global scale? (2) How can we derive built-up and urban areas on global scale in sufficient 
accuracy and performance by using standard software and hardware? (3) Is the quality of the result sufficient on global scale? In this 
paper, we investigate the first two questions in detail and give some insights into the third question. 
 
 
 

1. INTRODUCTION 

Many types of applications require information about built-up 
areas and – on larger scale – about urban areas. Prominent 
examples are standard street maps and topographical maps 
using such areas for visualization purposes (Nivala et al., 2008) 
as well as analyses about population development or land 
consumption (Esch et al., 2013). 
 
For being widely used by desktop, web or mobile applications, 
the existence of a dataset is desirable that fulfills following 
requirements: (a) the dataset should be global, (b) the dataset 
should contain vector data (i.e., polygons), (c) resolution and 
accuracy should be in a range that is sufficient for most 
applications (10m or better), (d) the data should be up-to-date, 
and (e) the dataset should be provided as open data under a free 
license. At least requirement (b) needs some justification: In 
web mapping, SVG-based tiles replace more and more raster-
based tiles because of performance and styling issues 
(Neumann, 2012). Furthermore, many applications work in 
different scales. Thus, a suitable generalization is important. 
Polygons allows a generalization by simplification, by 
selection, and by aggregation. The selection will be typically 
based on polygon areas (or similar measures). Therefore, the 
polygons in the dataset must be disjoint; otherwise, the 
selection criterion would be wrong. In other words, the 
generalization requires merging of overlapping, touching, or 
nearby areas.   
 
The Corine Land Cover (CLC) database provides classified 
land cover data (e.g., continuous urban fabric, discontinuous 
urban fabric, industrial or commercial units) for the countries of 
the European Union in raster and vector format. The resolution 
of the data is 100m. The CLC database fulfills requirements (b) 
and (e), but not (a) and (c). The last update has been produced 
in 2012. The OpenStreetMap (OSM) dataset fulfills all five 
demands. However, its focus is not land use or land cover. 
Thus, the question for suitability arises. Previous work of 
several authors (see Section 2) indicates that the OSM dataset 
can be used for deriving land use and land cover information on 
regional scale or for well-digitized regions 

Resulting questions are: (1) Which OSM features can be used 
for computing built-up areas on global scale? (2) How can we 
derive disjoint polygons for describing built-up areas and urban 
areas on global scale in sufficient accuracy and performance by 
using standard software and hardware? (3) Is the quality of the 
result sufficient on global scale? In the following, we will 
concentrate on the first two topics and give some insights into 
the third question. 
 
The remainder of this text is organized as follows. Section 2 
presents related work. The third section discusses the suitability 
of different OSM features for deriving built-up areas. 
Algorithmic and performance aspects are investigated in 
Section 4. Merging sets of polygons is among these topics. The 
fifth section is a preliminary evaluation of the results. The paper 
concludes with a short summary and an outlook to future work.  
 

2. RELATED WORK 

The extraction of built-up areas belongs to the field of land 
cover exploration for describing the physical coverage of land. 
For the derivation of urban areas not only the land cover 
(“urban form”) (Talen, 2003) but also urban function is 
considered (Smith & Crooks, 2010). In this work, however, we 
will compute urban areas purely from built-up areas. 
  
If required on global scale, information about built-up areas will 
be typically derived from remote sensing data. Some few 
examples are the usage of Landsat 8 Operational Land Imager 
(OLI) data (Bhatti & Tripathi, 2014), the extraction from 
Advanced Spaceborne Thermal Emission and Reflection 
(ASTER) radiometer data (Miyazaki et al., 2014), and the use 
of Landsat TM/ETM+ images (Zhang et al., 2014). One recent 
effort in this field is the derivation of the so-called “urban 
footprint” from SAR imagery in the context of the TanDEM-X 
radar mission (Esch et al., 2013) (Marconcini et al., 2014). 
 
Volunteers support the classification of remote sensing data in 
VGI (volunteered geographic information) projects. A 
prominent example is geo-wiki.org (Fritz et al., 2012). 
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Some studies have investigated deriving land use from 
OpenStreetMap data by using corresponding polygonal features 
(see also Section 3.2). However, this has been done in local 
scale, typically for one or several cities (Vaz & Jokar Arsanjani, 
2015) (Jokar Arsanjani et al. 2015), for smaller regions (Dorn et 
al., 2015) or single countries (Estima & Painho, 2013). Estima 
& Painho (2013) also provides a detailed mapping between 
OSM feature classes and CLC classes. 
 
The merging of large sets of overlapping polygons was not 
applied by any of the previously mentioned publications. The 
field of computational geometry has investigated this or related 
questions. Margalit & Knott (1989) presented a general 
approach for computing the union, intersection and difference 
between two polygons. Nievergelt & Preparata (1982) proposed 
a plane-sweep algorithm that determines intersecting regions. A 
modified version allows also determining the union of 
polygons. Žalik (2001) presented a plane-sweep approach for 
merging a set of polygons with a time complexity of O(k log k) 
where k is the total number of polygon vertices plus the number 
of touching edges among those polygons. In contrast to such 
work, we are not interested in designing a new algorithm with 
(theoretical) low computing cost, but in exploiting existing 
programming libraries for a fast and robust processing of large 
sets of polygons. 
 
3. INFORMATION ABOUT BUILT-UP AREAS IN THE 

OPENSTREETMAP DATASET 

3.1 Data Model of OpenStreetMap 

OpenStreetMap provides features by a topological data model 
(OSM Wiki, 2016). Node elements describe points in the space 
by their latitude, longitude and identifier. Links are called 
“ways”. Way elements consist of an identifier and an ordered 
list of between 2 and 2,000 nodes. These nodes are referenced 
by using their identifier. Relation elements allow describing 
relationships between other elements. One important use is the 
representation of faces by multipolygons. In that case, a relation 
consists of a sequence of references to way elements that form 
the outer and inner rings of the multipolygon. 
 
A feature is based on one of those three elements. Furthermore, 
it consists of a list of key-value pairs called “tags”. In principle, 
arbitrary keys and values can be added to features. The OSM 
community agrees on certain key-value combinations for the 
most commonly used tags. This (non-static) agreement acts as 
an informal standard. 
 
Interested parties can download OSM datasets from different 
web sites. The data model is either straightly coded by using 
XML or corresponding binary formats or it is converted into 
other popular data formats like shapefiles. In the second case, a 
loss of information may occur. 
 
3.2 Land Cover in OpenStreetMap 

Different keys in the OSM data model are employed for land 
cover (OSM Wiki, 2016): The “landcover” key has the status of 
a proposal and is not widely used; only about 18,400 elements 
currently exist (OSM Taginfo, 2016). The “surface” key was 
originally created for describing the surface of way elements 
(e.g., cobblestone for roads). In addition, it indicates the surface 
type of larger areas as a secondary tag. The “natural” tag serves 
as land cover information for vegetation-, water- and landform-
related features. Exemplary values are “wood”, “beach”, and 

“valley”. The forth key related to land cover is “landuse”. It 
primarily describes agricultural areas (e.g., farmland), leisure 
areas (e.g., park), and built environment. The last category is 
relevant for determining built-up areas. Table 1 lists and 
describes the most often used values of this category. 
 

Value Description Relevance
residential Predominantly houses or 

apartment buildings 
X 

industrial Predominantly workshops, 
factories or warehouses 

X 

cemetery cemetery area - 
commercial Predominantly offices, business 

parks, etc. 
X 

retail Predominantly shops X 
construction An area being built on (x) 
brownfield Land scheduled for new 

development 
- 

garages Areas occupied by multiple 
private garage buildings 

X 

recreation_ 
ground 

An open green space for general 
recreation 

- 

greenfield Undeveloped land scheduled to 
turn into a construction site 

- 

Table 1. The ten most often used values for the “landuse” key 
that belong to the “built environment” category (entries are 
ordered by usage starting with the most often used value) 

 

 
Figure 1. OSM built-up features for Oldenburg, Germany (light 

orange = “residential”, violet = “industrial”, brown = 
“commercial”, red = “retail”, grey = “garages”) 

 
Five of these values are obviously relevant for our purpose 
(indicated by an “X” in Table 1). Elements having a “landuse” 
tag with one of these five values will be called “OSM built-up 
features” in the following. Four values describe areas that are 
predominantly non-built-up or not built-up yet (indicated by a 
“-“). The relevance of the “construction” value is more difficult 
to assess because it depends of the stage of construction; it will 
not be used in the following but another decision would also be 
reasonable. There are currently 3.14 million residential features 
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and 1.19 million of other OSM built-up features in the OSM 
dataset. 
 
Figure 1 depicts the OSM built-up features for Oldenburg, 
Germany. The result looks very promising. However, this 
observation does not hold worldwide. For many countries, the 
coverage of the “landuse” features is poor. Figure 2 shows the 
result for Mexico City. In addition to the OSM built-up 
features, an urban-area layer is depicted in light green as 
reference. Obviously, most built-up areas are not covered. 
Furthermore, the accuracy of some OSM areas is rather low. 
 

 
Figure 2. Built-up areas of Mexico City (OSM: light orange = 
“residential”, violet = “industrial”, brown = “commercial”, red 

= “retail”, grey = “garages”; urban-area layer: light green) 

 
3.3 Buildings in OpenStreetMap 

A further obvious source for built-up areas in the OSM dataset 
are buildings. Buildings are elements that have a tag with the 
key “building” (OSM Wiki, 2016). The value of the tag may 
describe the type of accommodation (e.g., “apartments”), of 
commercial use (e.g., “warehouse”), or of civic use (e.g., 
“church”). For about 83% of all buildings (OSM Taginfo, 
2016), the value of the tag is purely “yes”. For our purpose, we 
can neglect the building typology. There are currently 181.4 
million buildings stored in the OSM dataset. 
 
Figure 3 shows buildings and OSM built-up features for a part 
of Darwin, Australia. It illustrates (a) that the OSM building 
dataset is not complete, (b) that the OSM building dataset partly 
covers areas not considered by OSM built-up features, and (c) 
that the buildings are much too detailed for describing built-up 
areas and even more urban areas. Thus, OSM buildings should 
be considered for deriving built-up and urban areas but need 
further processing (see Section 4). 
 

 
Figure 3. OSM built-up features and buildings for a part of 

Darwin, Australia (light orange = “residential”, violet = 
“industrial”, dark red = “buildings”) 

 
3.4 Roads in OpenStreetMap 

Roads are the third source of build-up areas. At first sight, this 
may be a surprising statement. However, special types of roads 
allow deriving information about the surroundings. For 
example, residential houses are typically built along residential 
roads. Roads in OpenStreetMap are (mostly way) elements with 
a “highway” tag (OSM Wiki, 2016). The corresponding value 
classifies the road. Table 2 lists and describes selected, often 
used values of the “highway” tag. 
 

Value Description Relevance
residential Road in a residential area X 
service Access to a building, service 

station, beach, campsite, 
industrial estate, business park, 
etc. 

(x) 

track Roads for agricultural and 
forestry use etc. 

- 

unclassified Public access road, non-
residential 

(X) 

footway Designated footpaths, 
mainly/exclusively for 
pedestrians 

(x) 

tertiary A road linking small settlements - 
secondary A highway linking large towns - 
primary A highway linking large towns - 
cycleway Designated cycle ways (x) 
living_street Road with very low speed limits 

and other pedestrian friendly 
traffic rules 

X 

motorway High capacity highways 
designed to safely carry fast 
motor traffic 

- 

pedestrian Roads mainly / exclusively for 
pedestrians 

(x) 

road Road with unknown 
classification 

(x) 

Table 2. Selected, often used values for the “highway” key 
(entries are ordered by usage starting with the most often used 

value) 
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For two values (“residential” and “living_street”), we can rather 
definitely conclude that they are flanked by residential 
buildings. Tracks, tertiary roads, secondary roads, primary 
roads, and motorways are typically surrounded by no or only 
scattered houses. Thus, they are not of further relevance. 
Pedestrian paths, footways and cycle ways are often, but not 
always in residential or other built-up areas. Therefore, we are 
not considering them in the following. The description of 
“unclassified” clearly indicates that this key should be used 
outside of residential areas. However, the reality is different in 
many countries. Figure 4 shows unclassified highways in an 
area nearby Porto Alegre. The highways are clearly residential 
roads. Thus, the value “unclassified” has often (outside of 
Europe and North America) the meaning of “unknown” (which 
should be actually represented by “road”).  
 

 
 

Figure 4. Roads with value “unclassified” for the key 
“highway” in an area nearby Porto Alegre, Brazil (satellite map 

by Google Earth with images © Digital Globe) 

 
There are currently 34.3 million roads in the OSM dataset 
classified as “residential” or as “living_street”. 9.0 million 
highways have “unclassified” as value and 0.3 million the 
classification “road”. Thus, neglecting “unclassified” highways 
would lead to a significant loss of information. Therefore, they 
will be included in the further processing; a corresponding 
algorithm will detect and filter most of the wrongly classified 
roads (see Section 4.3). 
 
Figure 5 depicts residential roads, living streets and unclassified 
highways in the area of Mexico City. It illustrates (a) that the 
assumed coincidence between residential (and similar) roads 
and urban areas holds, (b) that the roads cover areas not 
considered by OSM built-up features (see also Figure 2), (c) 
that clusters of unclassified highways indicate built-up areas, 
and (d) that these clusters are disjoint to residential roads. 
Furthermore, some urban areas exist with a low density of 
residential roads or with no residential roads. The last 
observation will be picked up again in Section 5. 
 
Roads as linear features are not suitable for describing built-up 
areas and urban areas in a straightforward way. As for 
buildings, a further processing is required. 

 
Figure 5. Residential roads of Mexico City (OSM: dark red = 

“residential”, red = “living street”, violet = “unclassified”; 
urban-area layer: light green) 

 
4. DERIVING BUILT-UP AREAS AND URBAN AREAS 

FROM OPENSTREETMAP DATA 

In the first three subsections, we present the processing of 
“landuse” features, of buildings, and of roads. The forth 
subsection deals with the combination of the results of the 
previous steps. Performance issues of subtasks are discussed in 
Section 4.5 and Section 4.6. The processing of large data sets is 
topic of the final subsection. 
 
4.1 Processing of OSM Built-up Features 

The goal of this processing phase is to compute a set of disjoint 
polygons describing built-up areas by using OSM built-up 
features (for definition see Section 3.2). Figure 6 gives an 
overview of the algorithm. 
 

 
Figure 6. Algorithm 1 for processing OSM built-up features 

 
Step 1 of the algorithm works obviously. The second step is 
necessary because some of the OSM built-up features are based 
on single way elements describing the outer ring of the 
corresponding area. In addition, multipolygons are 
disaggregated into polygons. As observed in Section 3.1, some 
OSM built-up features have a rather low accuracy. The 
accuracy can be determined by the quotient between the 
number of boundary points and the polygon area. If this 
quotient is lower than a given threshold, step 3 will eliminate 

1. Read OSM features with „landuse” tag whose value in  
    [“residential”, “industrial”, “commercial”, “retail”, 
     “garages”] from input file. 
2. Construct polygons. 
3. Eliminate polygons with low accuracy. 
4. Merge polygons with buffer distance x. 
5. Reduce size of polygons by buffering with distance –x. 
6. Generalize polygons.
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such a feature. As depicted in Figure 7, small gaps between the 
built-up features occur mostly caused by streets or small rivers. 
Furthermore, we are (in our use case) not interested in a 
differentiation of land-use classes. Thus, step 4 buffers all 
features by a small distance x and merges all overlapping 
polygons to single polygons. Algorithmic issues of this step are 
discussed in Section 4.5. The fifth step redeems the increase of 
extension by applying an inverse buffering with distance –x. 
Finally, the polygons are generalized. The generalization 
consists of eliminating small polygons, removing small holes 
and simplifying the boundaries depending on the required 
resolution. This step removes also dense sequences of points 
caused by the previous buffer operations. Figure 8 depicts the 
result. 
 

 
Figure 7. OSM built-up features before processing (area within 

Oldenburg, Germany) 

 

 
Figure 8. OSM built-up features after processing with a buffer 

distance x of 25m and a generalization distance of 5m. 

 
4.2 Processing of OSM Buildings 

The objective of this stage is to compute a set of disjoint 
polygons describing built-up areas by using OSM buildings. 
The proceeding is similar to the processing of OSM built-up 
features. Figure 9 gives an overview of the algorithm. 
 

 
Figure 9. Algorithm 2 for processing OSM buildings 

The quality of the footprints of the OSM buildings is sufficient 
so that an elimination of polygons with low accuracy is not 
necessary. However, the number of buildings is generally quite 
high. Therefore, step 3 deletes all buildings that intersect a 
polygon from the result of algorithm 1. Algorithmic issues of 
this step are discussed in Section 4.6. Again, step 4 buffers and 
merges features to disjoined polygons. Because of the gaps 
between buildings, the resulting polygons have many small 
holes. The fifth step removes them before reducing the size of 
the polygons by inverse buffering (step 6). Now, the absolute 
value of distance x is halved because it is not reasonable to 
align built-up areas exactly at the walls of buildings. The 
generalization step is the same as before. Figure 10 illustrates 
the input and the result of the algorithm. 
 

 
Figure 10. OSM buildings (red: removed buildings intersecting 

resulting polygons of algorithm 1 [depicted in light orange]; 
green: remaining buildings) and the resulting built-up areas (in 
brown) computed with an initial buffer distance x of 25m and a 

generalization distance of 5m (area of Darwin, Australia) 

 
4.3 Processing of OSM Highways 

The third stage computes built-up areas from OSM highways. 
Figure 11 presents the corresponding algorithm. 
 

 
Figure 11. Algorithm 3 for processing OSM highways 

 
The first steps filters the relevant OSM features; for Europe, 
North America and other areas with high digitalization quality 
“unclassified” highways may also be removed. With the same 
motivation as before, the algorithm reduces the highway 
geometries by excluding areas covered by OSM built-up 
features. Because of the longish form of roads, the difference is 
computed. Again, step 3 buffers and merges the features to 
disjoined polygons. However, the buffer distance y should be 

1. Read OSM features with „highway” tag whose value in 
    [“residential”, “living_street”, “unclassified”] 
    from input file. 
2. If result of algorithm 1 exists, then compute difference of 
    highways and polygons from that result. 
3. Merge geometries with buffer distance y. 
4. Remove small holes. 
5. Reduce polygon size by buffering with distance –1.75·y. 
6. Increase polygon size by buffering with distance 1.5·y. 
7. Generalize polygons. 

1. Read OSM buildings from input file. 
2. Construct polygons. 
3. If result of algorithm 1 exists, then delete the buildings 
    that intersect a polygon from that result. 
4. Merge polygons with buffer distance x. 
5. Remove small holes. 
6. Reduce size of polygons by buffering with distance –x/2. 
7. Generalize polygons. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B4-557-2016 

 
561



 

larger than in the two stages before. The distance must be 
sufficient to cover residential blocks between two parallel 
residential roads. In the example in Figure 12, this distance is 
75m instead of 25m as in the examples in Figure 7 and Figure 
10. Step 5 and 6 are performed for avoiding that single 
residential roads or wrongly classified single roads span a built-
up area. Figure 12 illustrates this effect clearly.  
 

 
Figure 12. OSM residential roads (red: removed road segments 
after computing the difference with the resulting polygons of 

algorithm 1 [depicted in light orange]; green: remaining roads) 
and the resulting built-up areas (in brown) computed with an 

initial buffer distance y of 75m and a generalization distance of 
5m (area of Darwin, Australia) 

 
4.4 Combination of Results and Finalization 

The outcomes of the previous three stages – as illustrated in 
Figure 13 – have to be combined for the desired result. Figure 
14 drafts the proceeding. 
 

 
Figure 13. Processed OSM built-up features (light orange), 

OSM buildings (red) and OSM highways (brown) for Darwin, 
Australia 

 
After storing all features in one layer, step 2 merges all 
overlapping polygons to single polygons. The buffer distance z 
depends on the desired result: For detailed built-up areas z can 
be 0, for rougher urban areas a higher distance is reasonable. 
The merge step leads to small holes that step 3 removes. The 
categorization in step 4 indicates an important potential of the 
resulting vector dataset: We can categorize the resulting 

polygons by their geometric properties (e.g., by their area) and 
use this information by further applications (e.g., for a dynamic 
mapping in different scales). For computing urban areas, a 
further generalization is required. Figure 15 depicts the result. 
 

 
Figure 14. Algorithm 4 for combination and finalization 

 

 
Figure 15. Combined and generalized built-up areas for Darwin, 

Australia (buffer distance z = 15m) 

 
4.5 Merge of Buffered Geometries 

An important task of all previous algorithms is the merging of 
overlapping buffered geometries into a set of disjoint polygons. 
The simplest solution is to aggregate all geometries into a single 
geometry (i.e., a geometry collection), to buffer this geometry 
and to disaggregate the resulting multipolygon into single 
polygons (that are disjoint because the components of a 
multipolygon must be disjoint). For larger sets of geometries, 
this approach is not efficient (or breaks because of space limits 
or geometric inconsistencies). 
 
For mid-size sets of geometries, the algorithm depicted in 
Figure 16 is applied. The quadtree is a MX-CIF Quadtree 
(Samet, 1990) implemented by JTS (JT, 2016). It allows storing 
and querying two-dimensional rectangles. Notice that step 4 
does not test whether the geometries actually intersect. Thus, 
the result may include multipolygons. If only polygons are 
accepted in the result, step 7 must be applied. This is necessary 
for algorithm 4 before categorizing the polygons. 
 
For large sets of highways or buildings, also this algorithm is 
too slow. Then, the data space is gridded and each geometry is 
assigned to exactly one grid cell using its centroid. For each 
grid cell, all of its geometries are merged by using algorithm 5. 
A further merging is not performed. Thus, the resulting (multi) 
polygons are not completely disjoint. As long as only 
algorithms 1 to 3 use the grid approach and algorithm 4 (which 
handles smaller sets of geometries) use algorithm 5, there is 
almost no impact on the final result. 

1. Store the results of algorithms 1 to 3 in one layer. 
2. Merge polygons with buffer distance z. 
3. Remove small holes. 
4. Categorize polygons. 
5. (optional) Generalize polygons. 
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Figure 16. Algorithm 5 for buffering and merging sets of 

geometries  

 
4.6 Intersection and Difference 

Determining the intersecting polygons in step 3 of algorithm 2 
and computing the difference between geometries in step 2 of 
algorithm 3 cannot be performed with linear cost. Both steps 
require determining the intersecting pairs of envelopes between 
two sets of geometries. In other words, a spatial intersection 
join is performed (Brinkhoff et al., 1993). Here, we use the 
MX-CIF Quadtree again with one set of geometries stored in 
the quadtree. The envelopes of the geometries of the other set 
serve as query rectangles. 
 
4.7  Processing of Global OSM Data 

For computing build-up areas or urban areas on global scale, the 
input dataset should be parceled into smaller tiles, e.g. into 
stripes of 1 or 2 degree width. A variant of algorithm 5 can 
combine two sets containing processed built-up areas. The main 
differences of this algorithm are: (a) all polygons of the first set 
are inserted into the quadtree at the beginning, (b) the algorithm 
iterates only over the polygons of the second set, and (c) all 
polygons of the second set, which intersect no polygon of set 1, 
also belong to the result set. If the overlap between the two sets 
is small, the algorithm is rather fast. A global OSM dataset can 
be completely processed (partitioning, stages 1 to 3, and 
combination) within few days on a single personal computer. 
 

5. PRELIMINARY EVALUATION 

As indicated by Figure 1, for some (well-digitized) countries 
(like Germany) the processing of OSM built-up features (i.e., 
the application of algorithm 1) is sufficient. Therefore, we 
restrict the further discussion of results to the example of 
Mexico City. 
 
Figure 2 has shown that only few OSM built-up features exist 
for Mexico City. Figure 17 depicts the combined result for 
Mexico City using parameters as in the examples before 
together with a reference dataset. We can observe three 
significant differences indicated by blue numbers and ovals. 
The area (1) belongs to the Santa Lucia Airport, which is a 
mostly unbuilt area. Area (2) – as shown in Figure 18 by a 
screenshot from Google Earth – is also an unbuilt area. In these 
two cases, the computed build-up areas are more reliable than 
the reference dataset. 
 
There are several areas not covered by the computed build-up 
areas in the oval labelled with 3 in Figure 17. Figure 19 from 
Google Earth shows that these areas are industrial zones. This 
shows an actual drawback of the presented approach: Industrial 
areas cannot be detected if they are not included in the OSM 

built-up areas and if their buildings are not included in the OSM 
buildings. 
 

 
Figure 17. Comparison of the computed built-up areas (red) 

with a reference layer (light green)  

 

 
 

Figure 18. Evaluation of area (2) by Google Earth (with images 
© DigitalGlobe)  

 

 
 

Figure 19. Evaluation of a part of area (3) by Google Earth 
(with images © DigitalGlobe)  

 
 

1. Create empty quadtree q. 
For all geometries g perform steps 2 to 5: 
   2. Buffer g with distance d. 
   3. Query q with Envelope(g). 
   4. For all query results: remove them from q and 
       compute stepwise the union with g. 
   5. Store the result in q. 
6. All geometries stored in q form the result. 
7. Disaggregate multipolygons if required. 
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6. CONCLUSIONS 

The paper has demonstrated that an extraction of build-up areas 
from the OSM dataset is feasible on global scale. The 
processing can be done within several days using standard 
hardware and software; the Java library JTS was used for 
geometry processing. First results look promising but need 
further investigation. The representation by disjoint polygons 
supports generalization and deriving urban areas. 
 
Future work consists of a better support of industrial zones. 
Highways tagged as “service” are currently ignored. This tag 
may be used – together with a special arrangement of these 
roads – as indicator for built-up industrial areas.  
 
A more extensive investigation of the parameterization of the 
algorithms and of the resulting quality of the built-up areas also 
belongs to future work. In (Esch et al., 2013), the publication of 
a global “urban footprint” with a resolution of 12m and of a 
public domain version downscaled to 50 to 75m are announced 
(and currently expected for mid-2016). We plan a systematic 
comparison with these datasets. 
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