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ABSTRACT:

Topographic mapping, e.g. the generation of Digital Elevation Models (DEM), is of general interest to the remote sensing community
and scientific research. Commonly, photogrammetric methods, e.g. stereo image analysis methods (SIAM) or bundle adjustment
methods (BAM), are applied to derive 3D information based on multiple images of an area. These methods require the detection of
control points, i.e. common points within multiple images, which relies on a similarity measure and usually yields a sparse map of 3D
points. The full spatial DEM is then obtained by interpolation techniques or imposed restrictions, e.g. smoothness constraints. Since
BAM utilizes all images of the area, it is assumed to provide a more accurate DEM than SIAM which utilizes only pairs of images.
Intensity-based shape recovery, e.g. shape from shading (SfS), utilizes the reflectance behavior of the object surface and thus provides
a dense map of relative height changes, which provide the possibility to refine the photogrammetric DEMs. Based on Rosetta NavCam
images of 67P/Churyumov-Gerasimenko we compare intensity-based DEM refinement methods which use DEMs obtained based on
SIAM and BAM as a reference. We show that both the SIAM based DEM refinement and the BAM based DEM refinement are of
similar quality. It is thus possible to derive DEMs of high lateral resolution by applying the intensity-based refinement to the less
complex SIAM.

1. INTRODUCTION

In 2004, the spacecraft Rosetta was launched by the European
Space Agency in order to analyze the comet 67P/Churyumov-
Gerasimenko (Churyumov, 2005). Among other subjects, the
shape of 67P/Churyumov-Gerasimenko has been analyzed by
Sierks and 65 coauthors (2015) based on images of the OSIRIS
camera (Keller and 68 coauthors, 2007).

Topographic mapping, e.g. the generation of Digital Elevation
Models (DEM), is of general interest to the remote sensing com-
munity and scientific research. It has been widely applied to plan-
etary bodies (Smith and 23 coauthors, 2001; Smith and 30 coau-
thors, 2010; Scholten et al., 2012; Jaumann and 42 coauthors,
2012) and is crucial for geologic analysis and mission planning,
e.g the selection of possible landing sites (Kirk et al., 2003b).
Consequently, a high effective DEM resolution is required.

Commonly, photogrammetric methods, e.g. stereo image analy-
sis methods (SIAM) or bundle adjustment methods (BAM) (Mc-
Glone et al., 2004), are applied to derive 3D information based
on multiple images of an area. These methods require the de-
tection of control points, i.e. common points within multiple im-
ages, which relies on a similarity measure and usually yields a
sparse map of 3D points. The full spatial DEM is then obtained
by interpolation techniques or imposed restrictions, e.g. smooth-
ness constraints. Since BAM utilizes many images of the area, it
is assumed to provide a more accurate DEM than SIAM which
utilizes only pairs of images. The DEMs originating from both
types of methods, however, have a lower resolution than the un-
derlying image data (Kirk et al., 2003a; Schenk, 2008; Scholten
et al., 2012).

In contrast, intensity-based shape recovery, e.g. shape from shad-
ing (SfS), utilizes the reflectance behavior of the object surface
and thus provides a dense map of relative height changes (Horn,

1990), which provide the possibility to refine the photogrammet-
ric DEMs. The refinement of a-priori known DEMs has been
successfully demonstrated (Soderblom and Kirk, 2003; Schenk,
2008; Grumpe and Wöhler, 2014).

Based on Rosetta NavCam images of 67P/Churyumov-
Gerasimenko we compare intensity-based DEM refinement
methods which use DEMs obtained based on SIAM and BAM
as a reference. We show that both the SIAM based DEM refine-
ment and the BAM based DEM refinement are of similar quality.
It is thus possible to derive DEMs of high resolution by applying
the intensity-based refinement to the less complex SIAM. The
position and orientation differences between frames of the Nav-
Cam with respect to the surface being analyzed are not known
accurately enough for using a calibrated stereo method. Conse-
quently, we apply an uncalibrated stereo image analysis. This
SIAM is defined only up to an arbitrary projective transformation
(Hartley and Zisserman, 2004) and thus needs to be constrained
by the BAM derived DEM, which is defined up to an arbitrary
scaling. Although this approach requires both the SIAM and the
BAM derived DEMs, it is generally possible to replace the com-
putationally complex BAM with SIAM if the camera positions
are calibrated or three images are analyzed.

2. METHODS

The DEMs are generated using two subsequent steps. At first, a
DEM is obtained from triangulation based methods outlined in
Section 2.1. The resulting DEM is then refined using the photo-
metric techniques given in Section 2.2.

2.1 Triangulation based shape recovery

Triangulation methods are common techniques for the DEM gen-
eration from multiple images of the same object. Bundle adjust-
ment methods (BAM) recover the DEM from multiple images
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at once and thus pose a considerably larger computational bur-
den than stereo image analysis methods (SIAM). Since BAM in-
cludes more images, i.e. more information, the obtained DEMs
from BAM, however, are supposed to be more accurate. This
section reviews the applied triangulation based methods.

2.1.1 Bundle-adjustment methods (BAM) In contrast to
SIAM, BAM recover the depth information from more than two
images. While it may be feasible to manually select pairs of
stereo images, it is certainly infeasible to manually determine a
possibly huge sequence of images showing the same surface re-
gion. At first, we thus present a simple image selection algorithm.
The BAM is then applied to the selected images yielding a point
cloud of 3D coordinates. Finally, the possibly sparse point cloud
is projected into a virtual camera and interpolated to a dense grid.

Image selection At first, we manually select one target image
showing nearly the complete target region. An additional crite-
rion is the position of the camera. The viewing direction should
be as orthogonal to the surface as possible to avoid projective
distortions during the photometric analysis. The selected image
is then cropped to the target region to reduce false matches.

SIFT features (Lowe, 2004) are extracted from the target image,
yielding the target descriptors. We then extract SIFT features
from each NavCam image, respectively, and compare them to the
target descriptors using the Euclidean distance based approach of
Lowe (2004). Images showing less than 50 matching descriptors
are discarded.

Triangulation BAM generally do not yield a single intersec-
tion of all camera rays due to noise and inaccurate point matches.
To avoid this problem, the squared re-projection error

EBAM =
∑
p

∑
c

‖up,c − Pr (xp, cc)‖2 , (1)

i.e. the squared Euclidean distance ‖·‖ of the position up,c of
the pth point in the cth camera from the projection Pr (·) of the
3D coordinates xp of the pth point using the camera parameters
cc of the cth camera.

In general, Eq. (1) requires a non-linear optimization algorithm
and allows for the simultaneous estimation of camera parameters
and 3D points. In this study, we use the VisualSFM toolbox (Wu,
2011; Wu et al., 2011) to solve the problem. For all parameters
the default values are used. The optimization produces a point
cloud which is exported from VisualSFM.

DEM generation All points of the point cloud are projected
into the camera, which corresponds to the target image. The re-
sulting DEM zproj is generally not dense and its scaling is un-
known. Consequently, we rescale the resulting DEM such that
the average depth value z̄proj matches the distance d67P to the
comet that has been supplied with the NavCam image data and is
centered around zero, i.e.

zBAM =

(
zproj
z̄proj

− 1

)
d67P. (2)

Finally, the DEM is interpolated to a dense grid using a spring
metaphor D’Errico (2012).

2.1.2 Stereo image analysis methods (SIAM) In general,
the projection of a 3D point into cameras at two different spatial
positions results in a displacement of the projected points in the
camera coordinate systems. This displacement, which is known
as the disparity, shows an inverse proportionality to the distance

from the optical centres of the cameras. The direction of the
displacement is called epipolar line and depends on the orienta-
tion of the cameras and varies over the local camera coordinates.
To reduce the complexity of the problem and introduce parallel
epipolar lines, we apply a projective transformation to the im-
age, i.e. a rectification (Hartley, 1999), prior to the estimation of
a disparity map using semi-global matching (Hirschmüller, 2005,
2008). Since SIAM requires two images only, we select the sec-
ond image manually. Finally, the disparity map is converted to a
DEM.

Rectification The rectification step consists of a projective
transformation that results in parallel epipolar lines. If the camera
has been calibrated, i.e. the extrinsic and intrinsic camera param-
eters are known, the rectification is straightforward (Loop and
Zhang, 1999). In case of the Rosetta NavCam, however, the po-
sition and orientation of the camera relative to the surface part
being analyzed are not known accurately enough for using a cal-
ibrated stereo method. We thus apply the rectification algorithm
by Hartley (1999) and Hartley and Zisserman (2004). Accord-
ingly, the fundamental matrix of the stereo image pair is esti-
mated based on control points, i.e. points in both images that cor-
respond to the same object point. Both images are then trans-
formed such that the epipolar lines are parallel. Additionally,
the transformations include a translation of the images such that
the mean squared Euclidean distance between the camera coordi-
nates of the control points is minimized (Hartley, 1999; Bradski
and Kaehler, 2008). This translation minimizes the image size
which is required to hold the transformed images.

The control points are obtained from SIFT features (Lowe, 2004).
SIFT features are extracted for different scales of the image, i.e.
octaves, and different levels of low-pass filtering. Possible fea-
ture points are derived from corner points. The corner points are
obtained using the corner detector of Harris and Stephens (1988).
Based on the intensity gradient, each feature point is assigned
an orientation. Finally, an array of histograms of oriented gra-
dients are constructed and the histogram counts form the feature
descriptor. The descriptors are matched based on the Euclidean
distance between different descriptors. In this study, we apply
the SIFT feature extractor and the SIFT matching of the VLFeat
toolbox (Vedaldi and Fulkerson, 2008) with the default parame-
ters therein.

Since the estimated projective transformations highly depend on
the quality of the matched control points, we apply an additional
outlier detection step. The resulting epipolar lines are supposed
to be parallel and thus the vertical coordinate should not differ for
the transformed control points. Consequently, we remove control
points that exhibit a vertical difference of more than one pixel and
recompute the transformations.

Semi-global matching The semi-global matching algorithm of
Hirschmüller (2005) minimizes the error

ESGM(D) =
∑
p

(
C(p, Dp)

+
∑

q∈Np

P1T
[∣∣Dp −Dq

∣∣∣ = 1
]

+
∑

q∈Np

P2T
[∣∣Dp −Dq

∣∣ > 1
])

(3)

where D is the disparity map, p is an image pixel, q is a pixel in
the neighborhood Np of p, Dp and Dq are the disparity values at
p and q, respectively, and the function T [·] returns the value one
if the logical argument is true or zero if the logical argument is
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false. Consequently, the overall error function consists of a cost
function C(p, Dp) measuring the similarity between the pixel
p and the corresponding pixel in the second stereo image and a
smoothness constraint. The first smoothness expression punishes
small deviations, i.e. one pixel, in the disparity map weighted by
P1 while the second expression punishes larger deviations, i.e.
more than one pixel, weighted by P2. Accordingly, P2 should
exceed P1. We set P1 = 1 · 10−5 and P2 = 1 · 10−4.

Since minimizing ESGM(D) globally is a NP-complete problem,
Hirschmüller (2005) propose the aggregation of one-dimensional
cost functions. The modified error function

S(p, d) =
∑
r∈Nr

Lr(p, d) (4)

is obtained by traversing Nr paths r and aggregating the path
costs

Lr(p, d) =C(p, d) + min(Lr(p− r, d),

Lr(p− r, d− 1) + P1,

Lr(p− r, d+ 1) + P1,

min
i∈Nd

Lr(p− r, i) + P2) (5)

where r is the previous pixel in the path direction, d is the dispar-
ity at pixel p, and min is the minimum operator which returns
the smallest argument. The path costs are recursively defined
and terminated at the image boundary by setting the path costs
to C(p, d) for the pixels on the image boundary. The path costs
are computed for a set of admissible disparities Nd. Additionally,
we adopt the 16 path directions proposed by Hirschmüller (2008).
The recursion is started at each pixel on the image boundary and
the cost function values are aggregated.

As proposed by Hirschmüller (2008), we set the cost function
C(p, d) to be the negative mutual information. Since the mutual
information is based on the full image and requires the disparity
map, it is generally not possible to compute a value for each pixel.
Therefore, the Taylor expansion derived by Kim et al. (2003) is
applied to transform the mutual information into a sum over pix-
els. The rectification step produces an average disparity value
which is close to zero. Consequently, we initialize an all-zero
disparity map to perform the estimation for three subsequent it-
erations. Each iteration uses the previous disparity map estimate
to compute the mutual information. Finally, the optimal integer
disparity value is refined by fitting a parabola through the overall
error function for each pixel, respectively. To ensure valid dis-
parity estimates, we independently compute a disparity map that
transforms the left image onto the right image and a disparity map
that transforms the right image onto the left image. If both esti-
mates differ by more than one pixel, the disparity is invalid and
discarded.

DEM generation Since the camera geometry is uncalibrated,
the scene may be reconstructed up to an arbitrary 3D projective
transformation (Faugeras, 1992; Hartley, 1999; Hartley and Zis-
serman, 2004). Furthermore, the disparity map is aligned to the
rectified image. Therefore, we apply the inverse projective trans-
formation from the rectification step to generate a disparity map
that is aligned to the original NavCam image. We then com-
pute the projective transformation that minimizes the squared Eu-
clidean distance between the transformed disparity map and the
BAM-derived DEM zBAM. Finally, the DEM is interpolated to a
dense grid using a spring metaphor D’Errico (2012) yielding the
SIAM-based DEM zSIAM.

In general, this arbitrary projective transformation limits the use-
fulness of SIAM. It is, however, possible in principle to resolve

the ambiguity if the camera positions are calibrated, i.e. the ex-
ternal parameters of the camera are extracted from the spacecraft
position and pointing data. Here, this step is omitted and replaced
by the mapping onto the BAM derived DEM.

2.2 Reflectance-based DEM refinement

Reflectance-based surface recovery methods estimate the slope of
the surface, i.e. its gradient field, based on the known reflectance
behavior of the surface. Consequently, a mathematical model of
the surface reflectance is required. From the observed shading
and the shading predicted by the model, the gradient field of the
surface is then estimated. Afterwards, the surface may be re-
covered through a gradient field integration step. This section
reviews the applied methods.

2.2.1 Reflectance model The reflectance-based surface re-
covery relies on the predicted shading of a reflectance model.
Consequently, an adequate model needs to be accurate and com-
putationally feasible. Prominent physically motivated reflectance
models, which are commonly applied to planetary bodies, aster-
oids, and comets are the model by Hapke (1981) and Shkuratov
et al. (1999). Both models rely on the scattering behavior of a
single particle modeled as a slab. The surface reflectance is then
computed by taking into account multiple scattering between par-
ticles in a regolith layer. The main difference between the models
of Hapke (1981) and Shkuratov et al. (1999) is the treatment of
the single-particle scattering function or “phase function” (Poulet
et al., 2002).

Both models, however, have quite a few parameters and a high
degree of freedom. Since a reliable estimation of all parame-
ters requires a large variety of different phase angles α, i.e. the
angle between the viewing direction and the direction of the in-
cident light, it is not possible to apply these models to single im-
ages without prior knowledge. Therefore, we apply a less com-
plex empirical reflectance model. McEwen (1991) suggests the
“lunar-Lambert” function

R = ρ

(
2L

µ0

µ0 + µ
+ (1− L)µ0

)
, (6)

where the cosines of the incidence angle and the emission angle
are denoted by µ0 and µ, respectively, and the weight function L
depending on the phase angle can be read from the diagrams in
McEwen (1991, Fig. 16 therein). We assume that the NavCam
image intensities are proportional to the physical reflectance. The
proportionality constant ρ ∈ [0,∞[ thus has no upper boundary
and corresponds to the scaling factor from image intensities to
reflectance values. The interpolated DEMs obtained by SIAM
and BAM generally do not match the image resolution. Thus we
apply the method of Grumpe et al. (2015) to compute a locally
varying reflectance parameter ρ using a Gaussian low-pass filter
of width σρ = 21 pixels.

2.2.2 Shape-from-Shading Horn (1990) provides an exten-
sive survey of the development of reflectance-based methods.
Most of them focus on the estimation of gradients from shading
information since the proportion of light reflected from a surface
is dependent on the surface slope rather than the absolute height.
Furthermore, Horn (1990) presents a coupled scheme for simulta-
neous estimation of surface height and gradients. This method is
referred to as “Shape from Shading” (SfS). The coupled scheme
alternates between estimating the surface gradient field and the
recovery of the surface from the current gradient field estimate.
A similar technique is applied by Kirk (1987).
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Reflectance-based gradient field estimation Commonly, the
gradient field is estimated by describing the surface normal n =
(p2+q2+1)−1/2[−p,−q, 1]T in terms of reflectance-based gra-
dient estimates p ≈ ∂z

∂x
and q ≈ ∂z

∂y
. The reflectance model

R(p, q) depends on the illumination geometry and thus on the
gradient field given by p and q. The gradient field estimate is
then obtained by minimizing the intensity error

EI =
1

2

∫
x

∫
y

(I −R (p, q))2 dxdy, (7)

i.e. the squared difference between the intensity I and the mod-
eled reflectance. The intensity error, however, relates the two par-
tial derivatives to one intensity quantity and thus does not yield
a unique solution. Horn (1990) proposes an additional smooth-
ness and/or integrability constraint to regularize the optimization
problem.

In this study, we adopt the method by Grumpe et al. (2014) and
use the triangulation based DEM as a regularization of the opti-
mization problem by adding the gradient error

Egrad =
1

2

∫
x

∫
y

(
f (p)−

(
∂zDEM

∂x

))2

+

(
f (q)−

(
∂zDEM

∂y

))2

dxdy. (8)

The gradient error measures the deviation of the photo-
metric gradient field estimate [p, q] from the gradient field[
∂zDEM

∂x
, ∂zDEM

∂y

]
derived from a known DEM zDEM after a low-

pass filter f(·) has been applied. This approach assumes that
zDEM is re-sampled to the image but has a lower effective reso-
lution, which is generally the case for triangulation based DEMs.

Gradient field integration Since the reflectance-based gradi-
ent field estimate [p, q] is subject to image noise and modeling
inaccuracies, the DEM may not be retrieved by a simple integra-
tion step. Horn (1990) proposed the minimization of the integra-
bility error

Eint =
1

2

∫
x

∫
y

(
p− ∂z

∂x

)2

+

(
q − ∂z

∂y

)2

dxdy, (9)

which measures the squared Euclidean distance of the gradient
field derived from the DEM z to the reflectance-based gradient
field estimate.

To include information from a known but possibly sparse DEM,
Shao et al. (1991) propose the simultaneous minimization of the
integrability error and the squared deviation of z from the known
DEM zDEM. This approach however, does not include the lower
lateral resolution of the known DEM. Therefore, we adopt the
depth error

Edepth =
1

2

∫
x

∫
y

(f (z)− f (zDEM))2 dxdy (10)

from Grumpe and Wöhler (2014), with the same low-pass filter
f(·) of Egrad.

Combined height and gradient estimation The combined es-
timation of the reflectance-based gradient field and the DEM is
obtained by minimizing

min
p,q,z

EI + δEgrad + γEint + τEdepth. (11)

(a) 67P/Churyumov-Gerasimenko

(b)
ROS_CAM1_20140826T060854.

(c)
ROS_CAM1_20140816T110718.

Figure 1: Study area on 67P/Churyumov-Gerasimenko.
(a) Regional map of 67P/Churyumov-Gerasimenko. URL:
‹ http://www.esa.int/spaceinimages/Images/2015/
01/Getting_to_know_Rosetta_s_comet_region_maps ›.
Image credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/-
LAM/IAA/SSO/INTA/UPM/DASP/IDA. (b) The target image
of BAM and SIAM. All images are matched with respect to this
image. The red rectangle marks the region of interest, which is
refined using SfS. (c) The second image of the stereo pair.

Similar to Horn (1990), we use an alternating update scheme,
i.e. at each iteration the reflectance-based gradient field is up-
dated and the DEM is then adapted to the updated gradient field.
Since Edepth does not depend on p and q, the update equations
of Grumpe et al. (2014) are applicable. The update of the DEM,
in contrast, does not depend on EI and Egrad. Consequently,
we adopt the update equations from Grumpe and Wöhler (2014).
All update equations are somewhat lengthy and thus not repeated
here. The weights of the error function are set to δ = 0.001,
γ = 0.2, and τ = 10. The low-pass filter f(·) is set to be a
Gaussian of width σ = 21 pixels.

3. RESULTS

The NavCam image ROS_CAM1_20140826T060854 showing
the Seth region is selected for this study. Fig. 1 shows a map
of 67P/Churyumov-Gerasimenko, the selected NavCam image
ROS_CAM1_20140826T060854, and the corresponding stereo
image ROS_CAM1_20140816T110718. The image selection al-
gorithm described in Section 2.1.1 selects 47 NavCam images
showing the Seth region. The analysis is based on the region
of interest (ROI) marked in 1(b). Fig. 2(a) shows a close-up
of the ROI, and shaded DEMs obtained by BAM and SIAM are
shown in Fig. 2(b) and 2(c), respectively. Since both DEMs show
“spikes” that originate from false matches, we apply a median fil-
ter of width 15 pixels prior to the computation of the reflectance-
based surface refinement. The refined DEMs are shown in Fig.
2(d) and 2(e).
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(a) BAM-derived DEM. (b) SIAM-derived DEM.

(c) Refined BAM-derived DEM. (d) Refined SIAM-derived DEM.

Figure 3: 3D surface plots of the DEMs. Notably, the overlying images are shaded versions of the DEM and thus represent the details
of the DEM data. (a) DEM obtained using BAM. (b) DEM obtained using SIAM. (c) SfS result using the BAM-derived DEM. (d) SfS
result using the SIAM-derived DEM.
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250 m

(a) Close-up of the
study region.

250 m

(b) BAM-derived
DEM.

250 m

(c) SIAM-derived
DEM.

250 m

(d) Refined BAM-derived DEM.

250 m

(e) Refined SIAM-derived DEM.

Figure 2: Region of interest. (a) A close-up view of the ROI (b)
DEM obtained using BAM. (c) DEM obtained using SIAM. (d)
SfS result using the BAM-derived DEM. (e) SfS result using the
SIAM-derived DEM.

3.1 Visibility of small details

Fig. 3 shows 3D surface plots of the DEMs. Although the SIAM-
based DEM (Fig. 3(b)) appears more sharp than the BAM-based
DEM (Fig. 3(a)), the effective resolution is not better since the
impression of sharpness arises from edges and most of the edges
in the SIAM-based DEM originate from pixel locking, i.e. in-
teger disparity values, and noise captured by the dense semi-
global matching. It does, however, show less interpolation gaps.
Both triangulation based DEMs, however, appear rather planar
and capture little details that are clearly visible in the image (Fig.
2(a)).

The refined DEMs based on BAM and SIAM are shown in
Fig. 3(c) and 3(d), respectively. Both DEMs appear to be very
similar and there is basically no visible difference. Very subtle
differences may be observed near the boundary of the ROI and
the corners. The “spiky” noise artifacts are suppressed and the
interpolation gaps are filled with data. Furthermore, both DEMs
closely resemble the NavCam image, indicating a strongly in-
creased effective resolution.

3.2 Contours

Twenty equally spaced contours are overlain on the color-coded
DEMs in Fig. 4. The pixel locking artifacts are clearly visible in
the SIAM-derived DEM (Fig. 4(b)) while the BAM-based DEM
(Fig. 4(a)) clearly shows “spikes” and flat areas due to the inter-
polation routine. In both cases, the contours of the SfS-refined
DEMs are smooth and appear to be less noisy. The contours,
however, show that there are small differences between the two
SfS-based DEMs. The SIAM-based DEM shows an increased
height variation, i.e. smaller minimum values and larger maxi-
mum values. The hill on the south-east corner seems to be higher
in the refined SIAM-based DEM. It is, however, not clear if this
behavior is due to missing matches in the BAM-based DEM or

due to noise inherited from the SIAM-based DEM. The differ-
ences are very subtle and the overall appearance of both SfS
based DEMs is largely the same.

3.3 Depth profiles

The high noise component of the SIAM based DEM is also vis-
ible in the height profiles shown in Fig. 5. The BAM-derived
DEM is less noisy but, again, shows “spiky” height changes
around control points. The refined DEMs show a very similar
behavior. In the left profile shown in Fig. 5(b), they resemble the
triangulation-based DEMs quite well. Both DEMs show approxi-
mately the same values but differ close to the image boundary. In
the right profile shown in Fig. 5(c), both SfS-refined DEMs show
a larger deviation from the triangulation-based DEMs after the
shadowed region has been passed. This behavior originates from
the integration of erroneous shading information if no shadow
detection is applied. It is well known for shading-based DEM
recovery methods to exhibit this kind of errors. The applied SfS
algorithm, however, utilizes the triangulation based DEMs to reg-
ularize the solution and thus recovers from these errors yielding a
locally slightly distorted DEM. The absolute height thus matches
again near the end of the profile. While the triangulation-based
DEMs barely show the steep rims and crater-like structures, the
SfS-based DEMs clearly show that the corresponding height de-
creases. However, shadows and poor shading information lead to
an oversmooth representation of the steep rims.

4. CONCLUSIONS

The results show that triangulation-based DEM recovery meth-
ods, i.e. BAM and SIAM, yield DEMs of a lower effective res-
olution than the underlying images. Although the dense semi-
global matching algorithm produces DEMs that nominally share
the image resolution, the resulting DEM shows artifacts such
as pixel locking and noise. The BAM-based DEM shows less
noise but more “spiky” artifacts originating from false control
point matches. In both cases, the SfS method succeeded in in-
creasing the effective resolution of the DEM while the absolute
scale was not affected. The refined DEMs derived from BAM
and SIAM based DEMs, respectively, showed no significant dif-
ference. Consequently, it is possible to replace the computation-
ally complex BAM by a more simple SIAM. Uncalibrated SIAM,
however, may be applied to obtain a DEM up to an arbitrary
projective transformation. This ambiguity may be resolved by a
camera calibration step, by using at least five control points with
known 3D coordinates, or by using a trinocular image analysis
method.
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Figure 4: Contour plots of the DEMs. The 20 contours are equally spaced between −650m and 350m. The based maps are created
by encoding the height in colors and multiplying the intensity of each image by a Lambertian shading of the DEM. Black dashed lines
represent the contours. (a) DEM obtained using BAM. (b) DEM obtained using SIAM. (c) SfS result using the BAM-derived DEM.
(d) SfS result using the SIAM-derived DEM.

250 m

(a) Location of the profiles.

(b) Left profile (green).

(c) Right profile (red).

Figure 5: Depth profiles. All profiles run from top to bottom. (a) The location of the left (green) and right (red) profiles are shown on
the NavCam image. (b) Left profile. (c) Right profile.
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