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ABSTRACT:

In this work, it is examined the 2D recognition and 3D modelling of concrete tunnel cracks, through visual cues. At the time being, the
structural integrity inspection of large-scale infrastructures is mainly performed through visual observations by human inspectors, who
identify structural defects, rate them and, then, categorize their severity. The described approach targets at minimum human
intervention, for autonomous inspection of civil infrastructures. The shortfalls of existing approaches in crack assessment are being
addressed by proposing a novel detection scheme. Although efforts have been made in the field, synergies among proposed techniques
are still missing. The holistic approach of this paper exploits the state of the art techniques of pattern recognition and stereo-matching,
in order to build accurate 3D crack models. The innovation lies in the hybrid approach for the CNN detector initialization, and the use
of the modified census transformation for stereo matching along with a binary fusion of two state-of-the-art optimization schemes. The
described approach manages to deal with images of harsh radiometry, along with severe radiometric differences in the stereo pair. The
effectiveness of this workflow is evaluated on a real dataset gathered in highway and railway tunnels. What is promising is that the
computer vision workflow described in this work can be transferred, with adaptations of course, to other infrastructure such as
pipelines, bridges and large industrial facilities that are in the need of continuous state assessment during their operational life cycle.

1. INTRODUCTION

At the time being, the structural integrity inspection of large-scale
infrastructures is mainly performed through visual observations
by human inspectors, who identify structural defects, rate them
and, then, categorize their severity. This visual inspection (VI)
process is slow, labour intensive and subjective (i.e. depending
on the experience and fatigue). Generally, it is carried out in
spiteful environments and under rather uncomfortable condi-
tions. Moreover, the evaluation of infrastructure’s health is
empirical, incomplete and lacks any engineering analysis; it is
therefore, hard to integrate it in a trustworthy and automated
spatio-temporal monitoring procedure. One should add here that
the cost of new tunnel construction is very high and, thus,
inspection, assessment and repair of the existing infrastructure is
of utmost importance. Also, the inspection and assessment
should be speedy in order to minimize tunnel closures or partial
closures.

In this work, an automatic procedure based on computer vision is
described and the results on images grabbed in an actual tunnel
are presented. What is interesting is that the computer vision
workflow described in this work can be transferred, with
adaptations of course, to other infrastructure such as pipelines,
bridges and large industrial facilities that are in the need of
continuous state assessment during their operational life cycle.
Approaches that utilize automated procedures for VI of concrete
infrastructures aim specifically to the detection of defects and
structure evaluation, often in the content of BIM (building
information modelling). Towards this direction, such methods
exploit image processing and machine learning techniques. Some
automated approaches have already been tested in real life
scenarios including roads, bridges, fatigues, and sewer pipes

(Kim and Haas, 2000; Pynn et al., 1999; Sinha and Fieguth, 2006;
Tung et al., 2002; Yu et al., 2007).

1.1 Related Work

(Zhang et al., 2014) investigate on automatic crack detection and
classification of cracks. Towards this direction, complex
handcrafted features are constructed, which in turn are used to
train a learning model (detection methods). Some commonly
used handcrafted features for VI are: edges (Abdel-Qader et al.,
2003), colour intensity (Son et al., 2012), texture descriptors
(Koch and Brilakis, 2011), entropy (German et al., 2012), and
HOG (Halfawy and Hengmeechai, 2014); while common
learning models are fuzzy/neuro-fuzzy inference (Kawamura and
Miyamoto, 2003; Zhao and Chen, 2002), SVMs (Nashat et al.,
2014) and kNN classifiers (Jahanshahi et al., 2013). More
information about VI in large concrete structures can be found in
(Koch et al., 2014). Latest work involve the usage of
Convolutional Neural Networks (CNNs) (Makantasis et al.,
2015), and hybrid image processing-CNN approaches
(Protopapadakis and Doulamis, 2015). Intensity features and
SVMs for crack detections on tunnel surfaces where used in (Liu
et al., 2002). Colour properties, different non-RGB colour spaces
and various machine learning algorithms are also investigated in
(Son et al.,, 2012). Edge detection techniques are applied in
(Abdel-Qader et al., 2003) for detecting concrete defects. Edge
detection algorithms (i.e. Sobel and Laplacian operators) and
graph based search algorithms are also utilized in (Yu et al,,
2007) to extract crack information. The exploitation of more
sophisticated features has also been proposed. HOG features and
SVMs are utilized in the work of (Halfawy and Hengmeechai,
2014), to support automated detection and classification of pipe
defects. Shape-based filtering is exploited in the work of
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(Jahanshahi et al., 2013) for crack detection and quantification.
The constructed features are fed as input to ANN or SVM
classifiers in order to discriminate crack from non-crack patterns.
Regarding the 3D modelling of high fidelity surfaces, (Stent et
al., 2013) reconstruct the lining of a tunnel based on the prior
knowledge of tunnel geometry. This model is then updated by
new images in order to detect changes and defects. In principle,
3D modelling is rapidly becoming a mainstream and mature
technology, but its effectiveness usually demands multi-view
imaging and/or constrained environments. Successfully
modelling infrastructure for inspection can include stereo
imaging and projected patterns and terrestrial laser scanners
(Yoon et al., 2009). Unfortunately, not much have been done on
infrastructure specific, low cost techniques.

In this contribution, the shortfalls of existing approaches in crack
assessment are being addressed by proposing a novel detection
scheme. Although efforts have been made in the field, synergies
among proposed techniques are still missing. The holistic
approach of this paper exploits the state of the art techniques of
pattern recognition and stereo-matching, in order to build
accurate 3D crack models. The innovation lies in the hybrid
approach for the CNN detector initialization, and the use of the
modified census transformation for stereo matching along with a
binary fusion of two state-of-the-art optimization schemes. The
described approach manages to deal with images of harsh
radiometry, along with severe radiometric differences in the
stereo pair. The effectiveness of this workflow is evaluated on a
real dataset gathered in highway and railway tunnels.

The rest of the sections are as follows: the overall methodology
(i.e. defect detection and 3D modelling) for inspecting civil
infrastructures is analysed in Section 2; Section 3 describes the
evaluation scheme and proves the effectiveness of the scheme;
Section 4 concludes this work with some remarks and future
work.

2. THE PROPOSED METHODOLOGY

The inspection scheme in this paper involves a three step
approach: (a) data acquisition/ training set creation, (b) CNN
initialization and crack identification, and (c) full crack
description via 3D modelling, exploiting stereo vision
techniques.

A crucial step towards cracks detection, is the definition of cracks
characteristics. Cracks can be characterized by their shape and
intensity, examples of cracks on tunnels’ surface are presented in
Section 3. Cracks are expected, on the one hand to present large
length and small width, and on the other, to be “not straight”
lines. Furthermore, pixels that belong to cracks are expected to
be darker than their neighbouring pixels that do not belong to
cracks. In other words, shape properties describe the ratio length
to width for the detected edges, while intensity properties
describe the spatial relationship of cracks to their surroundings.
Thus, based on cracks characteristics, the crack detection
problem can be addressed through two different approaches; 1)
through approaches that are based on image processing
techniques and ii) through approaches that are based on machine
learning techniques.

2.1 Defects in Dataset and Processing Challenges

Tunnel inspection is a tedious task and even when robots are
employed, optical information comes with difficulties,
occlusions (e.g. bugs, webs, and graffiti) and noise (e.g. dust,
steam). Different defects exist and are of structural interest;

deformations, cracks, surface disintegration, and other defects
are widely known and commonly appear.

Defects that appear on the tunnel lining can actually be of no
interest; discrete, parallel cracks that look like tearing of the
surface are caused by shrinkage while the concrete is still fresh,
called plastic shrinkage cracks. Moreover, fine random cracks or
fissures that may only be seen when the concrete is drying after
being moistened are called crazing cracks. Cracking that occurs
in a three-point pattern is generally caused by drying shrinkage.
Large pattern cracking, called map-cracking, can be caused by
alkali-silica reaction within the concrete. Structural failure
cracking may look like many other types of cracking; however,
in slabs they are often associated with subsequent elevation
changes, where one side of the crack is be lower than the other.

Disintegration of the surface is generally caused by three types of
distress: (a) dusting, due to carbonation of the surface by
unventilated heaters or by applying water during finishing, (b)
ravelling or spalling at joints, when pieces of concrete from the
joint edges are dislodged and, (c) breaking of pieces from the
surface of the concrete, generally caused by delamination and
blistering. At this point, we understand the defect identification
problem: it is extremely difficult to extract features suitable for
the accurate description of such a large number of defect
alternatives, simultaneously.

2.2 Unsupervised Image Annotation

Image processing techniques exploit cracks’ characteristics,
regarding pixels intensity and their spatial relations, through the
utilization of morphological operations, kernel filtering and
simple shape analysis based on the size of detected areas and their
“sphericity”. The utilization of image processing techniques can
be though as an unsupervised crack detection approach. It
requires no annotated data, while at the same time and all image
processing operations can be parallelized in order to achieve
better than real time performance (25fps). However, a crack
detection system that is based on image processing presents low
generalization ability due to the fact that applied operations are
fine tuned for a specific dataset. The developed crack detection
system is based exclusively on image processing techniques.
Concretely, our approach is based on the following five steps: (i)
line enhancing; (ii) noise removal; (iii) straight lines removal;
(iv) shape filtering and (v) morphological reconstruction.

Line enhancing exploits intensity characteristics of cracks. The
intensity of pixels that are darker than the average intensity of
their neighbours is set to zero. The number of neighbours of a
pixel p located at (x,y) position on image plane is defined by the
size of a square window centred at the same position. Although
that line enhancement can emphasize region that may contain a
crack, it produces “salt and pepper” noise. For this reason, line
enhancement is followed by a noise removal step that exploits a
median filter. Furthermore, during the noise removal step, the
image is converted to binary by thresholding any detected group
of pixels smaller than a scale dependent amount. Then, areas that
are smaller than a pre-specified threshold are removed. This step
is based on the detection of connected components on the binary
image plane.

The noise removal step is followed by a straight line removal
step. Straight lines is something common and usually correspond
to man-made crafts (e.g. wiring). Straight lines are located by
using the probabilistic Hough transform (Kiryati et al., 1991),
which is faster and more computational effective than
conventional Hough transform.
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Shape filtering using appropriate image moments is another
crucial step towards crack detection. Cracks is expected to have
the form of curves. Thus, by locating the minimum enclosing
circles of connected components we are able to exclude candidate
cracks, whose shape is not like a curve. Finally, we perform a
classical morphological operation called “opening by
reconstruction”. Opening by reconstruction starts from a set of
starting points (seeds) and then grown in flood-fill fashion ton
include complete connected components, while retraining the
contours of the objects of interest.

2.3 The CNN Detector

The detection of defects can be seen as a two-class image
segmentation problem; defects class and non-defects class. Such
a task requires the description of pixels by a set of highly
discriminative features that fuse visual and spatial information.
However, the features extraction is depended on the problem at
hand. Such drawback can be eliminated following the deep
learning paradigm. At first image patches are created over RGB
tunnel's surfaces images. These patches consist the CNN's input.
Through a hierarchical construction process, complex, high-level
features are created for each patch. These features are fed to a
MLP that conducts the classification task. As such, visual and
spatial information about a specific pixel, located in the centre of
each patch, is related to its neighbour pixels.

Concretely, in order to classify a pixel p(x,y), located at (x,y)
point on image plane, we use a square patch of size s X s centred
at pixel p. If we denote as l,,, the class label of the pixel at
location (x,y) and as by, the patch centred at pixel p, then, we can
form a dataset D = {bxy, lxy}, forx=1,..,wandy=1,..., .
These matrices are fed as input into the CNN. Then, the CNN
hierarchically builds complex, high-level features that encode
visual and spatial characteristics of pixel p. The output of the
CNN is sequentially connected with the MLP. Therefore,
obtained features are used as input by the MLP classifier, which
is responsible for detecting defects.

2.4 3D Reconstruction

Once a crack, which is critical from the structural integrity point
of view, is detected, 3D information is extracted for its position
and orientation in world space. For this, two stereo-cameras are
exploited in a twofold manner: the real-time 3D extrapolation of
a cracks silhouette and orientation, and the offline full 3D
reconstruction of a high fidelity model of the wider area of a
crack. At the beginning of the inspection process the stereo
cameras have to be calibrated based on a Plexiglas chessboard
with a red central square (Prokos et al., 2009), which allows to
calibrate with a chessboard pattern without visible edges, as in
the discussed case since the system cameras are calibrated from
1.5m and 3 m with the same chessboard plane, thus it can be only
partially visible. The subsequent stereo-matching and 3D
reconstruction processes are executed on the rectified epipolar
images.

In this contribution, the disparity map is estimated from a fusion
of two methods: semi-global matching (SGM) and local cross-
based matching (LCBM). Moreover, the matching cost is
selected to be robust against the harsh radiometric characteristics
of images of artificially lighted infrastructures. In section 3.1 the
specific characteristics of the tunnel dataset are presented. The
matching cost is computed on the modified census
transformation Twmc (Stentoumis et al., 2015). The binary
transformation Twc of a pixel p is defined as

T, pP)= ® ® c.(pq)ic(x,y),qeN,
MC( ) ie{x’y}qup 1( ) ( ) P )

which describes the concatenation of the two transformed vectors
corresponding to the x and y directions of the gradient onto which
the census c¢; is computed (Zabih and Woodfill, 1994),

¢, (pa)- {o, ar/ai(p) < 6]/6i(q)}

1, a1/@i(p) > 01/0i(q) @

The matching cost C between a pixel p(x,y) of the reference
image (ref) and its corresponding pixel p(x-d,y) in the matching
image (mat) is the Hamming distance, which is the number of
unequal elements in the two binary vectors:

C=I. (p(x,2)) ® Ty (p(x - d.3)) 3)

As already stated, the cost function is optimized through the
fusion of SGM and LCBM estimated disparity maps. Whenever
the estimated disparities d* of the two methods differ, the
disparity value is rejected, thus a validity map J is constructed,

(x, )={1, ideGM(x’y):dLCBM(xsy)} @

0, if dsm (%) # dicpm (%.)

Local cross-based matching (Zhang et al., 2009) algorithm is
applied in the case of real-time extraction of 3D information for
the crack and its extended hierarchical approach for large scale
images (Stentoumis et al., 2014), is applied in the case of high
fidelity models of the crack area. The hierarchical scheme for the
high fidelity models limits the disparity search space to a
computationally manageable range, and also guides the solution.
This is important for the inspection data as the extended smooth
surfaces lead to hiding the discontinuities, thus the cracks, in
global, or semi-global scheme. The cross windows used for
aggregating the cost, also define the disparity search space in the
pyramid, thus explicitly indicating the crack boundaries.
Concurrently, semi-global optimization (Hirschmiiller, 2008) is
used on the cost function, as it has an advantage on the smooth
untextured surfaces of the tunnels. The disparity map of each
method is restricted by left-right image consistency constraint.

a*(p)=a*(p—[ d* (p).0]) ©)

After the initial maps from SGM and LCBM are estimated, the
validity map V is computed (4). The final map misses about 15%
of the non-occluded pixels (occluded pixels are usually a small
percentage of the overall pixels in this images). The disparities
for the invalidated positions are estimated by typical disparity
refinement steps. Regarding the high fidelity model the windows
defined during the LCBM are used; all the valid disparities
belonging to a cross-based window of an outlying pixel p are
retrieved and the median value of these disparities is given to p.
This is an iterative method that progressively fills all
neighbouring disparities and requires time. Thus, for the real-
time task a simple interpolation among the neighbouring
disparities fills the missing disparities. The final sub-pixel
estimation dsubpx for the disparity map is produced by a disparity
interpolation in the SGM cost function C around the initial d*,
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Ay =(C(d *+1)=C(d* 1)) /

(2'(C(d*+1)—2'C(d*)+C(d*_1))) (6)

The described matching strategy meets the requirements of speed
and computational efficiency for a real-time inspection, while
concurrently serves the requested accuracy and level of detail.

3. EXPERIMENTAL SETUP

The crack detection algorithms were developed on a conventional
laptop with i7 CPU, 8GB RAM, using both OpenCV and Theano
(Bastien et al., 2012) libraries, in Python. The 3D modelling
algorithms were developed in Matlab environment on the same
computer. The time needed for an inspection cycle is appro-
ximate 45sec for the image processing, 1 min for the CNN
annotation and 0.5sec for the real time 3D extraction.

3.1 Dataset Description and Analysis

All the images presented here originate from Egnatia motorway
Metsovo tunnel in Northern Greece and the experimental tunnels
of VSH premises in Sargans, Switzerland. The motorway tunnels
are 3.5km long twin tunnels and have a diameter of 10m. In a
parallel distance of 20m north to this bore, runs the ventilation
tunnel of 3m diameter. The main tunnel suffered a significant
deformation due to water inflow. Image data were captured at this
part of the tunnel, using a hand held DSLR camera. In Figures 1
& 2 some indicative tunnel images from the acquired dataset can
be seen. Regions depicting defects, for each of the captured
images, were manually annotated, by experts (i.e. about 100
images). As already mentioned in Section 2.1, images acquired
in tunnels share unique characteristics, which make image
processing, machine learning and stereo-matching extremely
demanding tasks. Low or uneven lighting causes, in some cases,
blurred images due to low shutter speed. On the other hand,
strong flash lights and the artificial tunnel lighting, which is
usually on the ceiling and the rear, can conceal the hairline
(below 1mm) defects., whereas the different texture in images
due to different materials and colorization can raise more
complications for recognition and reconstruction algorithms.

During the inspection procedure in operating tunnels, users
cannot control the reflection of the lights and the combined effect
of vehicle lights, recording imaging system light and tunnel
lights. The work of (Stentoumis et al., 2015) has also presented
similar data. Figure 1 presents some indicative radiometric
changes in the image set, which can be found on the tunnel
dataset images, but also refer to images collected in artificial
illuminated industrial environments. Such severe changes can be
caused by changes in the orientation of the lighting source, either
from the robotic vehicle or arm, and the existence of periodic
lights in the operating tunnels. Moreover, the variable size of the
tunnels can change the amount of lighting that reflects from the
vehicle to the construction lining.

Finally, the automatic radiometric calibration of the cameras
results in different configuration parameters even for cameras
that are side-by-side, as in the stereo-rig used in this work. The
choice of automatic radiometric calibration was made during our
first experimental evaluation, because of the changing lighting
conditions in the operating tunnel, which prevent as from fixing
the aperture, the exposure time and the gamma correction of the
image sensors. Another important and really disturbing aspect for
the quality of matching and crack detection is the presence of
water drops on the surface of the tunnels. These drops were in an

e

Figure 1. Radiometric changes on the dataset images. First
row: two potential instances of the same image. Second
row: the standard deviation of each image’s pixels is
displayed in a neighbourhood of 5 pixels. Third row: the
local entropy of the two image instances is displayed. The
fourth row includes the two histograms. Last row: the
function of the two images intensities is presented, only to
show that the radiometric changes are not linear; on the
right the image of their differences is displayed.

extensive amount, as one can observe in the images and appear
as salt-and-pepper noise. Hence, a basic assumption of image
matching which is that the depicted surfaces are Lambertian had
been violated. The presence of water drops, not only creates an
anaglyph on the tunnel surface, which is observed as noise in the
reconstructed surfaces and partially hides the cracks, but also the
anisotropic reflectance of the light creates local, not modelled
radiometric differences to the left and the right image of the
stereo pair. In Table 1 the statistics of the indicative image in
Figure 1 are presented. These statistics have been calculated in
order to thoroughly study the differences among images of the
same stereo pair, as this poses a special difficulty for matching.
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Moreover, the radiometric differences described from these
statistics were studied in order to help us determine global values
for the parameters of the algorithms.

Setting 1 Setting 2
Mean 111.68 163.58
Standard deviation 35.70 35.34
Entropy 7.11 7.17
Contrast 0.7256 0.3372
Correlation 0.7255 0.8706
Homogeneity 0.7835 0.8503

Table 1: Image analysis for an indicative image taken under
different radiometric settings.

3.2 Image Processing

The crack detection is based solely on the CNN. However, in
order to facilitate the data set creation, we employ, image
processing techniques. Such an approach does not require
annotated data. Yet, it has low generalization ability and it has to
be fine-tuned for a specific dataset; there are many parameters in
the operators. The data set creation approach needs only a few
images, which are easily obtained (usually at first few meters,
after the tunnels entrance). If there is photographic material, for
the specific infrastructure, from previous examinations, few
pictures will be selected at random. After the image gathering is
complete, the image annotation process is performed. Line
enhancement is performed on 13x13 windows by thresholding
the 0.99% of the mean intensity value. Then, areas spanning less
than 500 pixels are considered noise and, thus, excluded. The
straight line removal, based on Hough transform, parameters, i.e.
distance and angle resolution, were set to 5 pixels and 0 radians
respectively. Finally, areas of defects should span at least 30% of
the minimum enclosing circle. An indicative result of the
annotated images can be found in Figure 2.

Figure 2. Illustration of the image processing step. Top: the

initial image and the enhanced lines binary version; second

row: noise removal and area filtering; /ast row: removal of
the straight lines and final estimated annotations.

3.3 CNN Annotations

The input of the CNN are patches of dimensions 9x9, in order to
take into consideration the closest 24 neighbours of each pixel.
By increasing the value of s, the number of neighbours that are
taken into consideration is increased and thus the computational

cost of classification is increased, also. Also, setting the
parameter s to a value larger than 9, resulted in no further
performance's improvement. On the contrary, increasing the
value of s over 13, deteriorates classification accuracy. The first
layer of the proposed CNN is a convolutional layer with ¢; = 15
trainable filters of dimensions 5 x 5. Due to the fact that we do
not employ a max pooling layer, the output of the first
convolutional layer is fed directly to the second convolutional
layer (30 kernels of size 3x3). Then, the third layer (45 kernels
of size 3x3) creates the input vectors for the MLP. The proposed
CNN approach is shown in Figure 3. An indicative result of the
annotated images via CNN can be found in Figure 6.

mage patch

feature extrocfion

clossification

Figure 3. The proposed CNN architecture.

3.4 Performance Metrics

In this classification problem we have two possible classes;
cracks or non-cracks, named positive (P) and negative (N) class,
respectively. Given the outputs, the confusion table is formed,
which is a 2 X 2 matrix that reports the number of false positives
(FP), false negatives (FN), true positives (TP), and true negatives
(TN). From these values various performance metrics regarding
the defect detection performance are calculated (Table 2).
Metrics of special interest are: Sensitivity (proportional to TP)
and miss rate (proportional to FN), which are both strongly
connected to crack detection. The proposed method have been
compared against other techniques like classification trees
(cTrees), k-nearest neighborhood (kNN), kNN using adaboost
(AB kNN), feed forward neural networks (FNN), Support Vector
Machines (SVMs) using different kernels (linear, polynomial,
RBFs), harmonic separation schemes, low density separation
(LDS) and anchor graphs. For all objective criteria, our CNN
outperforms the compared ones.

3.5 3D Reconstruction

The discussed approach is evaluated on image data taken from an
actual distance of 3.3m from the scene. Based on the 25mm focal
length of the lens, the pixel represents 0.5mm in world space; this
corresponds to a scale larger than 1:135. The calibration resulted
in a standard deviation of 0.1mm. The images are quite sharp, as
they were taken with a very wide aperture, due to the low lighting
conditions, but this resulted in slightly blurred pixels at the edges
of the images where the subject is out of focus (very narrow field
of view). Figure 4 presents some partial results of stereo
matching; a partial detail left image of the stereo pair and the
corresponding disparity map, as it is estimated by the algorithm
outlined in Section 2.4. One can observe the level of details the
image data exhibit; tiny details of the lining surface are visible
and even moisture drops xat the right part of the image depicted.
The estimated disparity map, as it is derived by the fusion of the
two matching algorithms SGM and LCB, is accurate enough
regarding the crack. There are noise artefacts in the areas of
moisture, but this are unimportant for the purposes of inspection
and they appear in only a small percentage of the image data. The
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Figure 4. A detail of the left image of a stereo-pair and the
corresponding disparity map.

disparity map needs to be improved, in order to reduce noise in
smooth surfaces, but also ensure that cracks and areas of
discontinuities are not flattened. The exploitation of more stereo-
pairs in the setup ensures better reconstruction, by minimizing
occlusions and filtering erroneous matches. Models
reconstructed by five stereo-pairs can be seen in Figure 5. The
comparison of reconstructed point clouds from different stereo-
pairs of the same scene through the ICP algorithm, has led to
1.7mm deviation, thus about 3 pixels of the original images.

4. CONCLUSIONS AND FUTURE WORK

The exploitation of computer vision algorithms and procedures
in real-life needs is an intriguing task; especially in industrial
environments, where the specifications and cost-benefit relations
are strict, huge effort is needed in order to make a computer
vision workflow actually applicable. The artificial lighting in
close spaces, as in tunnel infrastructures form very particular
conditions under which the images are grabbed; hence many
recognition and modelling approaches cannot estimate
trustworthy results. Detecting cracks is a demanding procedure,
as among typical difficulties in recognition tasks, the lack of large
amounts of data for such specific use cases is a further
obstruction.

Figure 5. High fidelity 3D models of detected cracks.

The deep learning scheme presented here successfully addresses
this problem. On the other hand, state-of-the-art matching
methods that estimate accurate disparities in indoor or outdoor
scenarios highly fail in scenarios as the one presented here. In
this work, the potentials of a combined aggregation strategy (i.e.
SGM and adaptive local matching) and a dedicated matching
function for images with radiometric changes was exploited. A
further improvement would be to train an algorithm to choose, or
combine, results from several matching algorithms (Spyropoulos
and Mordohai, 2015).

Figure 6. Comparative illustration of the outputs. Top row shows the original images, middle row the image processing
results and bottom row the CNN annotations.
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Quantitative Performance Metrics

TPR SPC PPV NPV
CNN 0,890 0,883 0,883 0,890
Ctree 0,721 0,591 0,751 0,553
kNN 0,845 0,575 0,773 0,685
" AB kNN 0,492 0,586 0,671 0,403
E; FENN 0,854 0,554 0,766 0,689
Eo Lin SVMs 0,833 0,514 0,746 0,643
g Poly SVMs 0,877 0,036 0,609 0,146
— Rbf SVMs 0,864 0,470 0,736 0,669
Harmonic 0,668 0,534 0,710 0,485
LDS 0,875 0,524 0,759 0,710
Anchor Graph 0,890 0,530 0,764 0,737

FPR FDR FNR ACC  Fl1 score
0,117 0,117 0,110 0,886 0,886
0,409 0,249 0,279 0,673 0,736
0,425 0,227 0,155 0,746 0,807
0,414 0,329 0,508 0,527 0,568
0,446 0,234 0,146 0,743 0,808
0,486 0,254 0,167 0,716 0,787
0,964 0,391 0,123 0,567 0,719
0,530 0,264 0,136 0,719 0,795
0,466 0,290 0,332 0,619 0,689
0,476 0,241 0,125 0,746 0,813
0,470 0,236 0,110 0,757 0,822

Table 2: Image analysis for one indicative image taken under different radiometric settings.
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