ADAPTATION OF INDUSTRIAL HYPERSPECTRAL LINE SCANNER FOR ARCHAEOLOGICAL APPLICATIONS
Keywords: hyperspectral scanning, archaeometry, calibration, cultural heritage, spectral classification, visualisation
Abstract. The spectral characteristic of the visible light reflected from any of archaeological artefact is the result of the interaction of its surface illuminated by incident light. Every particular surface depends on what material it is made of and/or which layers put on it has its spectral signature. Recent archaeometry recognises this information as very valuable data to extend present documentation of artefacts and as a new source for scientific exploration. However, the problem is having an appropriate hyperspectral imaging system available and adopted for applications in archaeology. In this paper, we present the new construction of the hyperspectral imaging system, made of industrial hyperspectral line scanner ImSpector V9 and CCD-sensor PixelView. The hyperspectral line scanner is calibrated geometrically, and hyperspectral data are geocoded and converted to the hyperspectral cube. The system abilities are evaluated for various archaeological artefacts made of different materials. Our experience in applications, visualisations, and interpretations of collected hyperspectral data are explored and presented.