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ABSTRACT: 

Multispectral analysis is a widely used technique in the photogrammetric and remote sensing industry. The use of Terrestrial Laser 

Scanning (TLS) in combination with imagery is becoming increasingly common, with its applications spreading to a wider range of 

fields. Both systems benefit from being a non-contact technique that can be used to accurately capture data regarding the target 

surface. Although multispectral analysis is actively performed within the spatial sciences field, its extent of application within an 

archaeological context has been limited. This study effectively aims to apply the multispectral techniques commonly used, to a 

remote Indigenous site that contains an extensive gallery of aging rock art. The ultimate goal for this research is the development of a 

systematic procedure that could be applied to numerous similar sites for the purpose of heritage preservation and research. The study 

consisted of extensive data capture of the rock art gallery using two different TLS systems and a digital SLR camera. The data was 

combined into a common 2D reference frame that allowed for standard image processing to be applied. An unsupervised k-means 

classifier was applied to the multiband images to detect the different types of rock art present. The result was unsatisfactory as the 

subsequent classification accuracy was relatively low. The procedure and technique does however show potential and further testing 

with different classification algorithms could possibly improve the result significantly. 
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1. INTRODUCTION 

Terrestrial Laser Scanning (TLS) is a widely used tool in 

today’s surveying industry. Increasing usage of TLS has 

instigated extensive research with Light Detection And Ranging 

(LiDAR) technology, resulting in applications ranging from 

building modelling, deformation monitoring, terrain mapping 

and heritage preservation (Armesto-González, 2010). 

Archaeological usage specifically has increased significantly in 

the past decade, with numerous heritage sites being captured 

worldwide (Briese, 2013). To date though, the majority of 

archaeological TLS use has been limited to recording basic 3D 

geometric information for modelling, visual interpretation and 

preservation. 

 

While TLS data provides valuable 3D point information, it also 

includes the returning signal intensity information. This 

intensity data has the potential to be used for determining 

additional information regarding the target surface (Burton, 

2011). At current the use of intensity information is 

predominantly restricted to research level evaluation; however 

its application to heritage sites could prove invaluable. 

 

While LiDAR intensity information is used widely in airborne 

and remote sensing applications, the need for in-depth research 

into the calibration and analysis of the data is becoming 

considerably more prominent. At current archaeological site 

recording is limited to images and 3D scans. The goal of this 

paper is to expand on current methods, by capturing a virtual 

model of the rock art, and also use it to be able to detect rock art 

which has undergone significant levels of superimposition and 

fading due to weathering. If successful, virtual models that 

display and improve existing site knowledge could be created 

and kept for tourism and future generations to view.  

 

The outline of this paper is as follow: After related work is 

discussed in section 2, the test site and the captured data is 

presented in section 3. Section 4 introduced the methodology 

which is evaluated in section 5. A conclusion is given in section 

6.  

 

2. RELATED WORK 

For the majority of applications, the primary use for TLS has 

been to provide basic 3D point geometry information of the 

target region being acquired (Vosselman, 2010). The use of the 

intensity return associated with each 3D point has been 

relatively limited, with most projects being restricted to singular 

intensity wavelength analysis. As the intensity return can be 

affected by the target surface reflectance values, the incidence 

angle, distance to target and atmospheric conditions 

(Kaasalainen, 2010), analysis of such data quickly becomes a 

complex multi-faceted problem to solve. Instrument calibration 

factors in heavily, especially if meaningful and accurate results 

are to be produced (Höfle, 2007). 

 

According to (Armesto-González, 2010), the effectiveness of 

intensity analysis does not appear to be restricted to certain 

wavelengths. Three different TLS systems were utilising for the 

damage detection of historical buildings. Generic unsupervised 

classification algorithms were applied to the 2D intensity 

images extracted from the individual 3D point cloud datasets. 

Different segments from within the historical building were able 

to be easily recognised and highlighted for further analysis. 
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Important to note is that none of the three datasets were 

calibrated, yet still generated acceptable classification results. 

 

Testing of spectral analysis within a geological application has 

been performed extensively in a research capacity due to its 

potential usefulness for lithographic examination. The majority 

of testing has been limited to single spectrum analysis. A single 

laser scanner for spectral analysis was used by Franceschi et al., 

(2009). The geological target surface was a rock outcrop that 

contained alternating layers of marls and limestone. The ground 

truth was established using gas chromatography testing of the 

two different clay types. The differing intensity values were 

then used to distinguish between alternating layers by 

generating a reflectance series along the rock outcrop. The 

intensity values were distance corrected. The two different 

components were then segmented with a clear correlation. 

Importantly the target surface and environment were thoroughly 

considered in the trial with target distance, incidence angle, 

Lambertian surface behaviour, humidity and temperature. 

Thermal imagery was captured throughout the testing to check 

for a temperature correlation, but was proven as unrelated. 

Target moisture did factor in considerably as the scanner 

operates within the infrared wavelength, meaning moisture on 

the target acts to absorb part of the emitted laser. 

 

The independence of the incidence angle to the target surface, 

when the target surface displayed Lambertian surface 

behaviour, was also confirmed by Hartzell et al. (2014). This 

paper performed multispectral testing using three different laser 

scanners, along with a digital SLR camera to produce 2D 6-

band images. The test area was a rock outcrop composed of 

three distinct geological materials. The point cloud datasets 

were also radio-metrically calibrated using a spectroradiometer. 

Two different unsupervised classification algorithms were 

implemented, one was the Minimum Distance algorithm and the 

other was Maximum Likelihood, and both highlighted the 3 

different lithographic sections clearly. When the incidence 

angle was incorporated into the calibration component, it 

resulted in a decrease of the final classification accuracy.  

 

González-Jorge et al. (2012) performed an intensity analysis but 

applied it to biological crusts located on civil engineering 

structures. Two different TLS systems were utilised to capture 

areas that had significant amounts of biological crust 

developing. The 3D scans were converted into 2D intensity 

images and two different unsupervised classification algorithms 

were tested in order to detect the biological crusts on the 

structure. Results varied depending on the scanner used as one 

operated within the visible green wavelength and the second 

was within the infrared wavelength. This would cause a 

significantly different result as the infrared wavelength is 

heavily absorbed by the moisture present in the biological 

crusts. Hence, the trial highlights the different results that are 

caused by use of different wavelength scanners. 

 

Kaasalainen et al. (2010) performed a detailed study of the 

effects of scanning targets with varying percentage levels of 

moisture saturation to determine the effect on the returning 

intensity values. It was found that when using a near-infrared 

TLS there was a significant decrease in the backscattered 

reflectance values, but it depended strongly on both the target 

material composition and the level of moisture content. The 

returning intensity was reduced by more than 50% in some 

cases, with the effect of moisture saturation having minimal 

impact beyond a level of 10-12%. This indicates that if scanning 

was performed over a moist target surface it has to be 

calibrated, especially if the TLS was operating within the near-

infrared or infrared wavelength range. 

 

An issue that multiple studies have consistently raised (Kukko, 

2008; Soudarissanane, 2011; Teza, 2008; Kaasalainen, 2011) is 

the effect of incidence angle on the returning laser scanner 

intensity. Kukko et al. (2008) determined quantitatively the 

significance of the incidence angle by scanning calibrated 

reflectance targets with different laser systems at varying 

incidence angles. For incidence angles of up to 30° the effect 

was minimal, but beyond that the returning intensity decreased 

significantly. This indicates that any scanning performed at any 

significant incidence angle would need to have its intensity 

values corrected based on the surface normals at the target 

surface. (Soudarissanane, 2011) undertook similar testing of 

incidence angles and combined distance effects as well. The 

incidence angle testing displayed similar results. The distance 

(R) testing showed significant variations in the intensity return 

(I) depending of the distance from the scanner to the target. For 

distances below 10m, the intensity values do not follow the 

expected trend of I ⁄ R2 . However, beyond 10m the intensity 

values approximate towards the expected trend. From this it can 

be established that distance related calibration is essential for 

obtaining meaningful results from intensity data, where 

situations that exhibit extreme incidence angles and varying 

distances over the target field will cause inconsistences in the 

intensity values. 

 

When performing classification of various data, the list of 

available algorithms is extensive and varied depending on their 

application. Lu et al. (2007) presents a survey of existing 

algorithms and their applications. The classification of 2D 

intensity imagery has been done extensively in the 

photogrammetric and remote sensing fields, typically with 

airborne imagery and LiDAR. Gerke et al. (2014) presents a 

LiDAR classification case study utilising supervised 

classification techniques. Although this study used the 

combined terrain height information and intensity classification 

for the final result, the intensity processing can be considered 

for relevance. Nearly all of the different terrain areas were 

correctly classified with minimal misclassification. 

 

Gerke et al. (2014) performs a detailed analysis of the initial 

point cloud filtering procedure and the resultant classification 

process and result. 4-band spectral data was used from the TLS, 

being RGB from the internal camera and infrared from the 

scanner itself. From the original data, a training dataset was 

generated and used for the supervised classification (maximum 

likelihood). For classes that demonstrated similar spectral 

signatures, misclassification occurred frequently with an overall 

accuracy of only 60% being correct. When analogous classes 

were merged, the accuracy improved significantly to 82%. This 

demonstrates that when using a minimal number of relatively 

distinct classes fairly accurate data classification can be applied 

of multispectral data. 

 

A comparison of multispectral versus multiband supervised 

classification was performed by (Lerma, 2001) using typically 

architectural imagery. Although this testing has been applied in 

a photogrammetric context, the process applies itself to TLS 

data the same way. The training data were generated from 

several unique feature sets identified with the images and used 

in a supervised maximum likelihood classification. The 

resultant classification accuracies were similar for both the 

multispectral and multiband, with the multiband images 

producing slightly improved classification. However, this is 
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purely an empirical result and only applies if the multiband 

imagery used was captured under suitable conditions. 

 

In this paper we utilise multispectral analysis of TLS intensity 

data captured from Indigenous rock by two different scanners, 

along with digital images of the same target area. The scanners 

utilised operate on a different wavelength offering intensity 

differences. The aim is by utilising this difference, to extract 

and plot features in the rock art generating a digital record for 

additional interpretation and site preservation. This is especially 

important in Australia as many protected Indigenous sites are 

suffering due to high tourist loads or are located in areas highly 

sought after by mining companies due to nearby mineral 

deposits. 

 

3. TEST SITE AND DATA  

The test site is Walga Rock located approximately 700km to the 

north east of Perth in Western Australia. On the NW face of the 

rock is an approximately 100m long gallery of Rock Art of 

different ages and different colours. The Rock Art site is 

protected and only non-contact methods are allowed for data 

capturing. 

 

The first component required establishing a suitable and stable 

control network at the Walga Rock site that could be utilised to 

register the TLS and imagery data together and geo-reference it. 

The control was established using traditional survey methods. A 

total of 20 control points were surveyed with a Total Station 

(TS), with 12 points located directly in front of the gallery and 

the remaining eight points located further away from the site. 

Two of the stations were used to perform static GNSS baseline 

observations to a nearby known standard survey mark (SSM) in 

order to provide georeferenced coordinates. Additionally, 

differential levelling was performed between the points in order 

to transfer heights accurately for the survey. 

 

Processing of the survey data consisted of static GNSS baseline 

processing in Trimble Business Centre (TBC) in order to 

transfer coordinates from the nearby SSM. The full TS and 

levelling dataset was then inputted into an advanced least 

squares adjustment software called Geolab PX5 for processing. 

This resulted in full coordinates for all the stations in the 

control network that could then be used for registering the TLS 

and image data. The network had a large redundancy of 71 due 

to the extensive number of observations that were taken in the 

field. The adjustment resulted in station precisions with a 

maximum of 0.004m for the horizontal semi-major axis error 

ellipses, and a maximum of 0.003m for the vertical error bars. 

These values are stated at the 95% confidence interval, with the 

network containing no outlying observations as per Baarda’s 

data snooping of the standardised residuals. The network also 

passed the global variance factor test. In terms of survey 

precision as stated by the Standards and Practices for Control 

Surveys (SP1) (ICSM, 2007), the network meets class A 

horizontally and class LC vertically.  

 

The laser scans were captured using the Leica C10 (green 

wavelength) and the Trimble TX5 (infrared wavelength) TLS 

systems. This consisted of performing high density laser scans 

of the rock art at each of the 12 stations, using both of the 

scanners. This resulted in a total of 58GB of raw scan data for 

the entire rock art gallery. The raw scan data from each TLS 

were registered separately into a common local reference frame 

using point cloud processing software Cyclone. The resulting 

registrations were joined in a single registration and 

georeferenced using the adjusted control coordinates. From this 

complete georeferenced point cloud, different segments could 

be extracted where desired for further processing. The mean 

absolute error resulting from the final registration was 0.005m. 

Considering the size of the target area and number of scans 

involved, this is an acceptable error magnitude. The number of 

points for the Leica point cloud totalled ~1,250,000,000 and the 

Trimble point cloud had ~6,000,000,000 points. The difference 

in numbers is due to the scan density that each scanner could be 

set to and the data capturing method (time of flight vs. phase 

difference). 

 

The images from the rock art gallery consist of over 300 

captured using two separate digital SLR cameras. The images 

were captured with varying lighting, so that in the end only a 

limited number were actually used for the testing. These images 

were captured by a Nikon D80 camera. Standard 

photogrammetric procedures were followed during data 

capturing. For instance, a scale bar was placed in multiple 

images. The image processing was completed using the 

photogrammetric software iWitnessPro. This involved 

importing the images and performing relative orientation using 

common feature points. The georeferenced point clouds were 

used to pick common points on the Rock Art, which were used 

to provide absolute orientation in a bundle adjustment with self-

calibration. Post calibration accuracy achieved was an RMS of 

0.27 pixels which indicates a satisfactory image alignment was 

obtained. This enabled the images to be easily combined with 

the point cloud dataset as both have been georeferenced to the 

same object coordinate system. 

 

4. METHODOLOGY 

4.1 3D to 2D transformation and data fusion 

Having referenced both (3D and 2D) datasets into a common 

system, the 3D dataset can be transformed into a 2D form in 

order for ease of processing. By performing a transformation 

into 2D, it will enable the use of common photogrammetric and 

remote sensing image processing techniques to be applied. 

 

Prior to transforming the 3D point cloud data into 2D, the 

corresponding image scene was used to colour the point cloud. 

This was done within Cyclone’s texture map toolbox. This 

allows for a simple projective transformation to be applied to 

the image and map the projective image onto the corresponding 

3D point cloud. This was applied by using a minimum of ten 

corresponding tie points in both the image and the point cloud. 

The resultant point cloud contained data corresponding to 

intensity, as well as RGB values from the image scene. 

 

As the imagery and point cloud data sets in the same object 

coordinate system, it can be easily transformed into 2D image 

space. To perform this transformation, the same image of the art 

rock was considered as the base with which the 3D data will be 

transformed onto. The parameters of the IO and EO were used 

to determine the transformation parameters that were applied 

using the collinearity equations to the high density scan that 

covered the same area. This transformed the entire scan into the 

same image coordinate system as the image. The principal point 

offset was applied along with the radial lens distortion 

parameters, as defined from the camera calibration done 

previously. The 2D point cloud was run through an extent 

reduction procedure. This consisted of eliminating data that lay 

beyond the extents of the original base image. To perform this, 

the data had its extents reduced to the dimensions as defined by 
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the number of pixels defining the image size. This produced a 

scattered 2D raster image that covered the same extents as the 

base image. 

 

In order to applied generic image feature processing, the images 

used for processing must have the same image dimensions. In 

order to convert to an organised raster image a nearest 

neighbour grid interpolator was applied. This resulted in a 

multiband 2D raster image, with each pixel being assigned an 

intensity value and RGB value based on the interpolation. 
 

4.2 Image enhancement 

Prior to further processing of the multiband 2D image scene, 

image enhancement was performed. This was done by 

inspecting the intensity histograms for each individual band and 

performing an adjustment in order to improve the overall scene 

contrast. Three different techniques of contrast enhancement 

were applied in order to improve the contrast of each individual 

band. The first method (imadjust) operates by mapping the 

intensity values to a new set of values where 1% of the original 

data is saturated at the low and high intensities of the original 

image. The second algorithm (histeq) operates by transforming 

the intensity values within an image, such that the resultant 

histogram of intensities is forced to approximately agree with a 

predefined histogram shape. The third technique (adapthisteq) 

works on the intensity values by transforming them using a 

contrast-limited adaptive histogram equalisation. 

 

4.3 Unsupervised classification 

The K-means unsupervised clustering algorithm was used for 

the classification of the images. The algorithm was applied to 

different combinations of three band images from the original 

five bands that were created. Different numbers of clusters were 

also implemented to determine the most effective result. 

Inspection of the image scene being tested revealed three to five 

different classes depending on interpretation and whether 

similar features were considered a single class or considered as 

distinct. The distance between the mean centroid clusters was 

determined by the default squared Euclidean distance metric. 

 

5. RESULTS 

5.1 Ground truth 

Determination of ground truth was implemented for a small 

segment located within one of the image scenes due to the test 

site being large and thus generating ground truth for the entire 

area was not a practical solution given the task scope (and is 

indeed a challenge even for experts of this Rock Art). The test 

site selection was determined based on areas that had a large 

amount of artwork within the scene, contained areas of 

relatively high contrasting features within the image and also 

consisted of all the different classes at the target site. 

 

For the ground truth, a small region was selected and the 

different classes in the area clearly segmented. The identified 

classes were exported and run through the same 3D to 2D 

transformation procedure describe earlier, in order to bring 

them to the same image coordinate system for comparison with 

the classification result. 

 

5.2 3D to 2D transformation and data fusion 

Shown in Figure 1 is the result of the texture mapping of the 

images onto the 3D point cloud. Each point of the coloured 

point cloud has a RGB values associated along with the original 

intensity values from the scanners. The accuracy of the colour 

mapping was stated at 1.1 pixels. Although ideally a value 

below 1 pixel is sought, considering the projective distortions 

present in the image and any unseen artefacts in the point cloud, 

this is an acceptable accuracy level. 

 

 
Figure 1. Screenshot of the coloured point cloud. 

 

After colour mapping and subsequent exporting of the point 

cloud data, the collinearity equations were used to perform the 

3D to 2D transformation. The resultant 5 image bands are used 

to perform the image classification next. Figure 2 shows the five 

channel images in the left column. 

 

5.3 Image enhancement 

Inspecting of the five different bands highlights different 

components of the scene. While the blue and green band display 

the white rock art with more contrast, the Leica band displays 

the darker rock art more clearly. The Trimble band does contain 

an artefact in the lower left of the image. This was caused by 

missing data from the point cloud, however as it does not cover 

the primary target surface, it will not impact the classification 

result. From each of the 5 bands the corresponding normalised 

intensity histograms are shown in Figure 2 in the right column. 

 

By visual inspection, the histogram spreads fall into two distinct 

categories based on the instrument used to capture the particular 

band. For the red, green and blue bands a wider spread across 

the greyscale intensity is clearly visible. In contrast, for the two 

TLS based intensity profiles the shape is considerably narrower. 

This is due to the technical properties of the two capture 

methods. The RGB based bands were captured with a standard 

digital SLR camera. The wavelength range that each of these 

three bands covers is relatively large and may cover up to 

100nm of the light spectrum. The TLS however, provides its 

own precise wavelength when the laser is emitted.  

 

Afterwards, three different histogram adjustment techniques 

(imadjust, histeq and adapthisteq) were used. Visual inspection 

led to the conclusion that the first two techniques only provide 

minimal enhancement as too much of the image detail is lost 

due to over saturated areas or regions that are too dark. The 

third technique displays a positive result with greatly enhanced 

contrast shown between the artwork and the surrounding area. 

The same algorithm was tested and successfully applied to the 

remaining red, green, Leica and Trimble image bands. 
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Figure 3: cluster result using enhanced blue, Leica and Trimble  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Images of the different bands with the corresponding normalised intensity histograms 

(histograms are normalised to range from 0 to 1). 
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5.4 Unsupervised classification 

Before the unsupervised classification was applied, different 

three-band-images as a combination of the above explained five 

band images were created. In addition the number of clusters for 

the k-mean algorithm was chosen. In total five tests were 

conducted using the combinations shown in Table 1. 

 

Test Bands # clusters 

1 Enhanced blue, enhanced Leica & 

enhanced Trimble  

3 

2 Leica and Trimble and enhanced blue  3 

3 Leica and Trimble and enhanced blue 4 

4 Leica and enhanced blue and red 4 

5 Enhanced red, green and blue 4 

Table 1: Bands configuration for the tests performed. 

 

Figure 3 shows the classification result for test 1. While the 

figure presents the whole scene, for the calculation of the 

confusion matrix in Table 2 only a small part of the scene was 

used in which the ground truth data was available. 

 

 
Figure 3: cluster result using enhanced blue, Leica and Trimble 

bands 

 

Table 2 shows confusion matrix for test 1 that quantifies the 

effectiveness of the three clusters including their producer’s and 

user’s accuracy levels. The overall accuracy is 56.9% and the 

kappa coefficient is 0.35. It can be confirmed that while the 

white artwork was extracted to a reasonably successful level, the 

remaining portions from the image scene were heavily 

misclassified and give a poor overall result. Overall the 

classification results not successful. 

 

 
White 

artwork 

Chipped 

rock 

Red 

rock/artwork 

Cluster 1 80.9% 50.7% 14.9% 

Cluster 2 11.6% 42.9% 38.2% 

Cluster 3 7.6% 6.4% 46.9% 
    

Producer’s A. 80.9% 42.9% 46.9% 

User’s A.  55.2% 46.3% 77.0% 

Table 2: Confusion matrix test 1.  

 

Test 2 uses the same spectral bands whereas only the blue 

channel is enhanced, but not the Leica and Trimble channel and 

could achieve slightly better results as presented in Table 3. In 

this case the overall accuracy is 61.0% and the kappa coefficient 

is 0.42. Again white artwork was classified the best whereas the 

classification results of Chipped rock and Red rock/artwork also 

increases. 

 

 
Chipped 

rock 

White 

artwork 

Red 

rock/artwork 

Cluster 1 52.4% 22.2% 35.2% 

Cluster 2 23.6% 74.8% 8.9% 

Cluster 3 24.0% 3.0% 55.9% 
    

Producer’s A. 52.4% 74.8% 55.9% 

User’s A.  47.7% 69.7% 67.5% 

Table 3: Confusion matrix test 2.  

 

As the results for test 2 increases the same band combination 

was used also for test 3, but this time the number of classes was 

increased to four. The joint class Red rock/artwork was split 

into two separate classes. The results are presented in Table 4; 

the overall accuracy for this classification was 51.6% and the 

kappa coefficient was 0.36%, i.e. the classification accuracy 

decreased. Especially the results for Red rock are unsatisfying.  

 

 
White 

artwork 

Red 

rock 

Red 

artwork 

Chipped 

rock 

Cluster 1 73.8% 10.2% 0.9% 22.0% 

Cluster 2 1.8% 22.3% 31.0% 22.9% 

Cluster 3 1.9% 27.9% 60.8% 4.6% 

Cluster 4 22.6% 39.7% 7.4% 50.5% 
     

Producer’s A. 73.8% 22.3% 60.8% 50.5% 

User’s A.  69.1% 28.6% 63.9% 42.0% 

Table 4: Confusion matrix test 3.  

 

A visual inspection of Figure 2 indicates that the combination 

of “Leica and enhanced blue and red” should lead to good 

results, which was evaluated in test 4. The results are shown in 

Table 5. The overall accuracy is 54.9% and the kappa 

coefficient is 0.40. This is a slightly better result as in the 

previous test indicating that the red band is more valuable than 

the infrared information from the Trinble TX5 band. The 

classification results of the Red rock improved while the results 

for Chipped rock decreased. 

 

 
White 

artwork 

Red 

rock 

Red 

artwork 

Chipped 

rock 

Cluster 1 74.7% 1.7% 19.2% 29.1% 

Cluster 2 1.1% 69.2% 17.6% 15.2% 

Cluster 3 16.3% 29.2% 63.2% 43.2% 

Cluster 4 7.8% 0.0% 0.0% 12.5% 
     

Producer’s A. 74.7% 69.2% 63.2% 12.5% 

User’s A.  59.9% 67.1% 41.6% 61.6% 

Table 5: Confusion matrix test 4.  

 

 
White 

artwork 

Red 

artwork 

Red rock Chipped 

rock 

Cluster 1 95.7% 24.2% 2.8% 96.0% 

Cluster 2 0.2% 17.8% 8.1% 3.1% 

Cluster 3 4.1% 51.0% 58.8% 0.9% 

Cluster 4 0.0% 7.0% 30.3% 0.0% 
     

Producer’s A. 95.7% 17.8% 58.8% 0.0% 

User’s A.  43.8% 61.1% 51.2% 0.0% 

Table 6: Confusion matrix test 5.  

 

The final test (test 5) shows the result for the classification 

without the use of any of the scanner bands (Table 6). The 

result is the worst with an overall accuracy of 43.1% and a 
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kappa coefficient of 0.24. There is a high confusion in Red 

artwork and also Red rock. Chipped rock and White artwork got 

completely mixed up visible in a producer’s and user’s accuracy 

of Chipped rock of 0.0%. 

 

6. CONCLUSIONS 

An investigation into the effectiveness of utilising multispectral 

data for feature extraction has been completed. This was 

achieved through the use of two different laser scanners and a 

digital SLR camera to perform the data capture. The combined 

multiband dataset was run through a generic unsupervised 

classification algorithm (k-means) that extracted clusters from 

within the dataset for comparison to the ground truth. The 

resultant clustering was then cross-validated with a ground truth 

and a classification accuracy produced. 

 

The end result of the classification accuracy was unsatisfactory 

for all combinations of image bands that were trialled. None 

yielded an overall accuracy of above 61%, with the highest 

kappa coefficient being 0.42. Individual classification accuracy 

was higher in certain cases, especially with the white rock art. 

However the significant level of misclassification by the 

remaining classes had the tendency to pollute the final result too 

much. 

 

The method described indicates that there is significant 

potential for the feature extraction and classification of 

Indigenous rock art using a similar technique. However, the end 

result needs improvement. Firstly, further unsupervised 

algorithms should be trialled. Nevertheless, due to the nature of 

the data which contained significant amounts of 

superimposition and eroding, the improved effectiveness of a 

different unsupervised classifier may be limited. The use of a 

supervised classification algorithm may hold more promise. By 

using training data that takes into account the subtle variability 

within the dataset, the classification result could be significantly 

improved. 

 

Secondly, while the large amount of TLS data captured was 

initially appealing, the high density proved to be excessive. It 

did cause issues when processing in the form of time delays and 

the extremely high redundancy proved unnecessary as the image 

data could not provide the same level of detail as the point 

cloud data. 

 

However, the extensive 3D dataset generated has plenty of 

further potential use. The dataset can be used as an 

archaeological record for the site should any damage occurs. 

The dataset also has a very worthwhile application for 

investigation in reference to analysing the different effects 

caused by the two different TLS measurement types. 
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