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ABSTRACT: 
 
In this paper a method is presented which allows the measurement of deflections and torsion by means of the silhouette of an object in 
images. The method is based on a finite element description of a beam. The benefit of this method is the determination of the 
deformation out of the silhouette of an object in images without the need of signalization.  
The presented method is tested against simulated data as well as against real objects in laboratory tests. 
As an outlook the presented method can be further modified. By combination with a laser scanner it seems to be possible to replace the 
CAD model of an object with the point clouds of one or more kinematic laser scans. 
 
 
  

1. INTRODUCTION 

In geodesy the measurement of deformations is a well-known 
topic. It ranges from measurement of discrete points up to surface 
comparisons with point clouds. Established methods like image 
matching or point tracking cannot be used for the registration of 
kinematic deformations of non-textured objects. One example is 
the measurement of rotor blade deformations on site. Due to the 
flexibility of the rotor blades themselves, the registration of 
deformations is a time-depending problem. By passing the tower 
of a wind power plant the rotor blades are affected by the air 
pressure close to the tower, for example. Additionally wind 
turbulences cause different deflections. 
In principle one could signalize points, covering the whole 
surface, and apply photogrammetric multi-camera systems for 
measurement. With respect to a wind power plant this is a very 
expensive approach since the whole system has to be stopped 
(Sable, 1996), (Schmidt et al., 2009) and (Winstroth et al., 2014). 
Therefore a new photogrammetric target less approach has been 
developed using the silhouettes of the rotor blades in images. The 
method is based on a combination of image contour 
measurements with a kinematic finite element model of the 
object. Optionally points clouds of the surface, e.g. acquired by 
terrestrial laser scanning, or CAD models can be integrated. 
 

2. PREVIOUS WORK 

The following description of the previous work is separated in 
two parts: the first gives an overview of silhouette based methods 
and the second deals with modelling of deformations.     
 
2.1 Silhouette-based photogrammetry 

The silhouette (contour) is the outline of an object in an image. It 
is possible to estimate geometric primitives or poses by means of 
silhouettes. Andresen (1991) presented methods for fitting 
spheres or cylinders to the silhouette. Other examples of using 
silhouettes are given in Wong (2001). Potmesil (1986) describes 
a method for the calculation of the visual hull based on a set of 
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images. For the calculation of the visual hull an octree 
representation of the object space is used. For each element of the 
octree a visibility check is done. If a voxel lies inside the 
silhouette, it is part of the visual hull. Vice versa one can calculate 
the 6DoF parameters of a given object based on one image. 
Rosenhahn et al. (2004) use, among other approaches, a Fourier 
representation of the object geometry to calculate the pose of an 
object. Mokhtarian (1995) uses silhouettes for object recognition. 
In Cefalu & Boehm (2009) a method for recognition of objects 
based on a CAD representation of the object is presented. 
Combinations of 6DoF and deformation capturing are given in 
Rosenhahn & Klette (2004). They focus on human motion 
captured by cameras. The motion is calculated based on the 
silhouette of a person. To derive the motion information an initial 
model is set up which is deformed under the limitations of human 
motion.   
 
2.2 Description of non-rigid deformations  

Registration or tracking of non-rigid surfaces is investigated in 
different fields. Szeliskit & Lavallée (1993) are using deformable 
models for the registration of anatomical data, as an example. In 
robotics Fugl et al. (2012) apply a deformable object 
representation related to pick and place operations. In Jordt et al. 
(2015) an overview of different solutions is given.    
These approaches could be distinguished in several ways. One is 
the kind of the representation of the deformation. Possible 
approaches are volumetric approaches which are widely used in 
matching of anatomical data or approaches based on the surface 
of an object. They use NURBS or mesh representations of a given 
model which is deformed by applying a deformation graph or 
function (Jordt & Koch, 2012; Li et al., 2009). With such a shape 
representation it is possible to determine the deformation of an 
object even out of only one image (Salzmann et al. 2007).  
 

3. DESCRIPTION OF A NON-RIGID BEAM 

As shown in section 2.2 there are different solutions for the 
description of a non-rigid object. The method presented in this 
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paper is based on a finite element description of a beam. In 
structural analysis a beam is a long and slender object, hence it is 
possible to model deflections and torsion of rotor blades by using 
a beam model description. 
The used model is based on the assumptions of the Euler-
Bernoulli beam theory: Firstly, a cross-section rectangular to the 
neutral axis remains rectangular to the deformed neutral axis, and 
secondly, a cross-section remains plain (Merkel & Öchsner, 
2014). Furthermore it is assumed that a beam has the same length 
before and after a deformation. 
 

 
 

Figure 1. Schematic of the assumptions of the deformations 

 

3.1 A static non-rigid beam 

To describe the deformation a so-called deformation graph is 
added to the object. In Li et al. (2009) the deformation graph 
describes the deformation of a 3D object. By using the 
assumptions of an Euler-Bernoulli beam this graph could be 
reduced to 1D. The CAD model of a beam-like object (e.g. a rotor 
blade) is divided into finite sections along the neutral axis. 
Between these sections transformation nodes Ki are defined, 
which are referenced to the neutral axis by their distances from 
the axis. The parameters of each node are describing six local 
transformations, namely three translations and three rotations.   
A given point of the CAD model PCAD is transformed by using 
the parameters of the neighbouring transformation nodes (Kl 
Kl+1). For the interpolation of the transformation parameters a 
base point PF is calculated, located on the neutral axis. The 
distances between this base point and the neighbouring 
transformation nodes act as weights in the interpolation process. 
(Figure 2). 
 
The transformation equation of a point PCAD is given by: 
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 (1) 

 
At this point the assumptions on the beam are still neglected. 
Without additional constrains the deformation can change the 
length of the deformed neutral axis in respect to the undeformed 

neutral axis. Furthermore it is not given that a cross-section 
rectangular to the neutral axis remains rectangular after the 
deformation. 
 

  
Figure 2. Schematic of point transformation 

 
These assumptions can be considered by additional constraints 
(Jepping et al., 2016). Therefore three constrains have to be 
added for each transformation node, namely one for the distance 
between two nodes and two for the rectangular cross sections. As 
an alternative one can define the translation depending on the 
rotations. This has the advantage that the number of unknowns is 
reduced. Furthermore no constrains have to be added to the 
normal equation matrix.  
For simplicity it is assumed that the neutral axis is a straight line 
along the x-axis of the beam coordinate system. Any deviation 
from this assumption can easily be described as a constant part of 
the deformation.   
A rotation matrix can be defined as a set of three orthogonal and 
orthonormal vectors. The first vector is pointing in the direction 
of the rotated x-axis, the second intro the direction of the rotated 
y-axis and the third towards the rotated z-axis.  
This definition is used to describe the deformation. Considering 
equation 1 we could rewrite the translation defined in a 
transformation node: 
 

ll KK0 l
' XXX −=  (2) 

 
where 

lK'X are the coordinates of the deformed transformation 

node and 
lKX are the coordinates of the undeformed 

transformation node. The coordinates of a transformation node at 
the index l can be expressed as: 
 

xX ⋅⋅∆= ls
lK  (3) 

 
Where x is the vector {1;0;0}and ∆s is the distance between two 
nodes. Rewriting this equation yields: 
 

xRX
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l
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It has to be noted that this equation is only valid in the 
undeformed case. In order to define the coordinates of a 
transformed transformation node the neutral axis is cut into 
pieces. Then the coordinates of a transformation node can be 
expressed by the coordinates of the previous transformation 
node, the previous rotation matrix and a constant distance 
between two nodes.  
 

xRXX
11KK −−

⋅∆+=
lll Ks  (5) 

Using this relation we can calculate the coordinates of every 
transformation node on the neutral axis. Furthermore the 
coordinates of the transformed base point Pf can be established 
by means of the distance s of the base point on the x-axis.  
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On closer examination this definition shows some disadvantages. 
In equation 5 an interpolated rotation matrix is used for the 
transformation of a point. This means that a cross section does 
not remain rectangular to the neutral axis. To refine this approach 
the distances have to be scaled down. The result is the integral 
equation: 
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where R is an interpolated rotation matrix. The parameters ω, φ 
and κ are interpolated along the neutral axis between RK

l
 and 

RK
l+1

 by a linear interpolation. The interpolation function can be 

written as: 
 

daad ⋅+= 10ω  (7) 
 
where a0 and a1 are calculated from the parameters ωl and ωl+1. 
The integral in equation 6 could be solved analytically or 
numerically. Since the calculation time is much higher for the 
analytical equation, the numerical equation is used in the 
following examples. 
Using equation 6 the translation in equation 1 can be described 
with the rotation matrixes defined in a transformation node. 
Using this description of a beam it is possible to model 
deflections and the torsion of a deformed beam.      
 
3.2 A kinematic non-rigid beam 

The transition from the static to the kinematic beam model can 
be achieved by adding the time to the transformation notes. As a 
consequence, the parameters ω, φ and κ have to be interpolated 
over the distance s along the neutral axis and the time t. By using 
the bilinear interpolation the equation for the interpolation of ω 
gives: 
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In these equations the indices l and c correspond to the 
transformation nodes. The first node has the indices K0,0. ∆s and 
∆t are the steps in which the transformation nodes are defined 
over the distance and the time.  
For solving the integral of equation 6 only the distance s is 
relevant. The new equation results to: 
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In order to ensure that every parameter is solvable additional 
regularizations are used. These regularizations are required in 
areas without observations. For a regular 2D grid Wendt (2008) 
proposed curvature minimizing functions. For the angle ω these 
are: 
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The regularizations are added as observations with a particular 
weight. The weight is reduced depending on the actual iteration. 
In early iterations the weight is set to a high value. In the last 
iterations the weight is reduced. The goal of this process is that 
the raw deformation curves are estimated at first. In the last 
iterations the weight is reduced so that the effect of regularization 
affects only parts without or with few observations.          
 
3.3 Global transformations 

To separate the rigid from the non-rigid deformations a global 
transformation is added. One possible implementation is to 
define this transformation with the first transformation node by 
adding a translation. If a system of more than one beam is used 
this is not practicable. Furthermore the risk of a gimbal lock 
(Dam et al., 1998) by using Euler rotations for the 
transformations should not be ignored. For this reason the global 
transformation is defined as follow: 
 

PRXP ⋅+='  (13) 
 
In order to avoid the gimbal lock problem the rotations are 
defined by quaternions. The global transformation might be 
defined as static or as kinematic. In the following the kinematic 
definition is described. Similar to the non-rigid beam the 
transformations are defined at specified times. Between these 
times the parameters of the translation are interpolated linearly. 
For the quaternions it is not possible as simple as with the 
translations. By applying linear transformations between each 
parameter of a quaternion the resulting quaternion does not have 
to be a unit quaternion. Due to this reason a Spherical Linear 
Quaternion interpolation (Slerp) is used (Dam et al., 1998). In 
Slerp a quaternion is interpolated over the angle Ω between two 
quaternions q0 and q1: 
 

)sin(

)sin())1sin((
),,( 10

10
Ω

Ω+Ω−
=

hqhq
hqqSlerp  (14) 

with  
)cos( 10 qqa ⋅=Ω  (14) 

 
One challenge using this equation is that the quaternion qt defines 
the same rotation as –qt. The angel between q0 and q1 can be 
different. Therefore the following definition is used: 
If q0∙q1<0 than –q1 is used instead of q1. This causes an 
interpolation over the smaller angle.   
Another problem is that equation 14 is not defined if q0 equals 
±q1. In that case the interpolated quaternion equals q0 or q1.  
  
3.4 Observations  

As observations the image coordinates of the silhouette are used. 
These points are interpolated with subpixel accuracy. Between 
these points and the silhouette of the CAD model an Iterative 
Closest Point approach (ICP,Zhang, 1994) is applied.  
To get the CAD model in image space each point of the model is 
transformed with the collinearity equations. From this 2D model 
the silhouette is extracted. In the extended ICP approach the 
deformations and the global transformations are estimated.  
To reduce the mismatches the gradients of the image points and 
the silhouettes are used. Only a point with similar gradient is 
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matched to a line of the silhouette. This is helpful for a slender 
object.    
By using only photogrammetric observations the interpolation 
over time do not have to be applied if the transformation nodes 
are defined for each epoch. The interpolation becomes necessary 
if additional sensors such as laser scanners are used.  
 

4. EXPERIMENTS 

In this section two example experiments are presented. The first 
one is a test with synthetic images of rotor blades from a wind 
power plant. In this case a sequence of 10 seconds is simulated. 
The second one is a laboratory test. During this test a beam is 
oscillated and observed from two cameras and a multi camera 
system for reference.  
 
4.1 Simulation 

During the simulation a wind power plant is simulated with three 
rotor blades. Each of the rotor blades has a length of 60m. The 
rotor blade system is rotated and deformed over time. For the 
deformation each rotor blade is deformed separately. The 
deformation is described by two parabolas, one for the deflection 
in y- and one for z-direction. The parabolas have a minimum at 
the hub without deformation. The deformation at the tip of a rotor 
blade follows a periodic function. To keep the equidistance of the 
neutral axis the x-direction of the rotor blade is shortened 

depending on the deformation in y- and z-direction. The torsion 
is described in a similar way. 
Overall a maximum deflection of approximately 3m and a 
maximum torsion of approximately 5° are simulated.  
The results of the simulation are three image sequences of three 
cameras (Figure3). In total each sequence has a duration of 10 
seconds by 10 Hz. The cameras have a resolution of 1920x1440 
pixels and a focal length of approximately 22mm. For more 
realistic results the images were affected by noise. The cameras 
were positioned in a triangle in front of the wind power plant. 
Two cameras are 90m away from the wind power plant and the 
second one 20m.   
For the estimation of the deformation the beam model description 
of section 3.2 is used. The transformations nodes are defined in 
7m steps along the neutral axis of the rotor blades with a time 
sequence of 0.1 seconds. For the global transformations a 
constant transformation is added for two of the three rotor blades 
(±120° rotations). Furthermore an unknown time depending 
global transformation is used (section 3.3).   
For the calculation of the deformation an error-free CAD-model 
of the rotor blades is used. The exterior and interior camera 
parameters are error free, too.  
To get start values for the calculation a 6DoF estimation is 
calculated at first. In this calculation the CAD model is used to 
calculate only the global transformation of each epoch. This is 
done separately for each epoch with start values based on the 
previous epoch. 
 

 

 

 
 
 
Fig. 3: Example images of the sequence (top) and comparison between the determined (deformed) shape and the given shape from 
simulation after 2 sec and 4 sec (bottom) 
 
 

 
 

length 60m 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B5, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B5-41-2016

 
44



 

In a final step the deformations and the global transformations 
are estimated together. The result is a time depending description 
of the deformation and movements of the wind power plant. 
Based on these parameters deformed CAD models are exported. 
Comparisons are calculated with these models and the ground 
truth of the simulation. 
The resulting deviations are only affected by the accuracy of the 
image measurement and the applied description of the 
deformation.  
Therefore the results are too optimistic. In Figure 3 a comparison 
between the simulated ground truth and the calculated model at 
2 seconds is shown. As could be seen, the deviations are very 
small. Overall the RMS of the comparison is 7mm. The 
maximum deviation is less than 30mm.  
The high accuracy of the comparison is based on the error-free 
input data. In a real world example the accuracy will be lower. In 
further steps it is possible to use these results to identify critical 
components in the calculation of the deformation. As one 
example the influence of the CAD model as input data can be 
tested. 
 

4.2 Laboratory test 

In this test an oscillating aluminium beam is observed by two 
PCO DIMAX HD+ cameras with a resolution of 
1920x1440 pixels. The cameras are used with a focal length of 
approximate 22mm. The image scale is approximately 1:24. The 
aim of the test is the measurement of the kinematic deformation 
of the beam by using the silhouette of the beam in images. For a 
reference measurement circular targets are used. These targets 
are observed by the same cameras as used by the silhouette 
approach. As a result there is no additional transformation 
required between the reference system and the measuring system. 
The test set up is shown in Figure 4. 
The oscillation is captured with 50Hz. For the calculation the 
transformation nodes are defined each 5cm with a time sequence 
of 1/50 seconds. To show the ability of the method the coordinate 
centre of the global transformation is set to the tip of the beam. 
To get a more stable global transformation a transverse beam was 
glued to the main beam (Figure 4). This case is a more realistic 
setup than a fixed coordinate system at the mounted side of the 
beam. 
Because of the uncertainty of the glued beam the relative rotation 
between the main beam and the glued beam is set as unknown 
and constant for each epoch.  
The result of the calculation is promising. In the comparison the 
distances between the measured points and the calculated 
deformed model are calculated. Figure 5 shows a comparison for 
one epoch.  
The maximum deviation to the reference is 0.5mm with an RMS 
value of 0.15mm. As could be seen in Figure 5 the deviations 
between reference and the silhouette approach are much higher 
at the shorter beam than at the long one. The maximum deviation 
on the long beam is 0.08mm caused by the set up. The main 
deformations of the shorter beam are in the line of sight of the 
cameras.  The viewing angles between the longer beam and the 
cameras are much better.  
The standard deviation of the reference is approximately 
0.02mm. This leads to the conclusion that the reference is not 
accurate enough in the case of the long beam.  
For a more detailed analysis the standard deviations of a 
transformed point of the CAD model are calculated (deformation 
and global transformation). For a point close to the 
transformation node at 400mm the standard deviation is 
approximately 0.04mm. This matches to the reference 
measurements. At the short beam the standard deviation is much 
higher. It rises up to 0.12mm.  

For a detailed analysis the correlation between the global 
transformation and the deformation is calculated. The parameters 
are very high correlated with the global transformation of to 0.75. 
That means that a deformation is not clearly separable from the 
global transformation. In the case of this experiment it is easy to 
define the global transformation into the fixed end of the beam. 
That would result in a reduction of the correlation between the 
deformation and the global transformation. But that is not 
possible in the case of a rotor blade.  
 

 
 

Figure 4. Laboratory set up 

 
A more realistic way is the use of additional information like a 
CAD model from a nacelle in the case of rotor blades or the 
behaviour of the object. In the case of a beam the bending 
stiffness is a possible criteria. In this example the stiffness in the 
y-direction is much higher than in the z-direction of the beam. 
Using a higher weight for the regularization in the y-direction 
leads to a reduction of the standard deviation in the y-direction.  
  

5. EXTENSIONS AND OUTLOOK 

The presented method could easily be extended in several ways. 
One extension is an adaptive weight for the regularizations 
depending on the characteristics of the object. One example is the 
stiffness of a rotor blade. The stiffness is much higher at the hub 
then at the tip of a rotor blade. In this case it makes sense to define 
a high weight for the regularization at the hub and a lower at the 
tip of the rotor blade. Another extension is the use of contour lines 
or well defined points at the object. An example of a well-defined 
contour line is the trailing edge of a rotor blade. This could be 
extracted using methods like the LSB-snakes (Gruen & Li, 1997). 
A promising extension is the use of additional sensors like laser 
scanners. Laser scanner point clouds are already supported and 
are advantageous for the calculation of the torsion angle. The 
point cloud is used in an extended ICP approach. The distances 
between the time depending object and the measured points are 
minimized.  
To get rid of the CAD model it seems to be possible to combine 
lasers scanner point clouds and photogrammetry. Instead of the 
CAD model the 3D profiles are used. Figure 6 shows two steps 
in the calculation.  
In a first step the rotation of the rotor blade system is determined 
from the images. After this step it is possible to transform the 
laser scanner points into the coordinate system of the rotor blades 
(Figure 6 bottom). For a more accurate transformation the 
deflection can be determined by the use of the trailing edge in 
images. In a final step the distances between selected points from 
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the point cloud in image space and the silhouette of the rotor 
blade in images are minimized. The result is shown in Figure 6 
top. 
The main problem in the calculation of the deformation without 
a CAD model is the identification of possible matches between 
the silhouette in images and the laser scanner points. Especially 
at the tip of a rotor blade an identification of possible matches is 
a problem. A possible match is defined by using the distances 
between the points of a measured profile and the silhouette. For 
the identification of possible matches a few constrains have to be 
respected. The first and last points of a profile are no possible 
matches. A possible match has to be a local extreme value. For 
this analysis a signed distance is required. Points outside the 
silhouette have a negative distance and points in the inside of the 
silhouette have a positive distance to the corners of the silhouette. 
Due to these constrains there are restrictions for the position of 
the laser scanner due to the cameras and the object. Furthermore 
there are restrictions on the observed object, too.  
 

 

Figure 5. comparison between the determined (deformed) shape 

and the targeted points on the beam 

 
 

 
 

Figure 6. Visualisation of the matching between laser scanner 

profiles and silhouette. Red points are outside the silhouette and 

blue points are inside. The final result is shown in the top 

image. An overlay with start values is shown in the bottom 

image.  

 
6.  SUMMARY  

In this publication a method is described which allows the 
determination of deflections and torsion out of the silhouette in 
images. This method was tested against simulated data and 
laboratory tests. In these tests the benefit and the limitations of 
the method could be shown. Especially the laboratory test shows 
the dependency on a good setup. Deflections in the direction of 
the line of sight are less accurate than other ones.  
Furthermore a high correlation between the deformation and the 
global transformation could be observed. These correlation leads 
to the conclusion that the deformation could only be observed 
with a high accuracy if the global transformation of the beam is 
accurate. One proposal for the reduction of the correlation is to 
use as much preliminary information as possible.  
Furthermore, possible extensions have been discussed. One of 
these extensions is the combination of laser scanning and 
photogrammetry.  
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