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ABSTRACT: 
 
We propose a complete methodology for the fine registration and referencing of kilo-station networks of terrestrial laser scanner data 
currently used for many valuable purposes such as 3D as-built reconstruction of Building Information Models (BIM) or industrial as-
built mock-ups. This comprehensive target-based process aims to achieve the global tolerance below a few centimetres across a 3D 
network including more than 1,000 laser stations spread over 10 floors. This procedure is particularly valuable for 3D networks of 
indoor congested environments. In situ, the use of terrestrial laser scanners, the layout of the targets and the set-up of a topographic 
control network should comply with the expert methods specific to surveyors. Using parametric and reduced Gauss-Helmert models, 
the network is expressed as a set of functional constraints with a related stochastic model. During the post-processing phase inspired 
by geodesy methods, a robust cost function is minimised. At the scale of such a data set, the complexity of the 3D network is beyond 
comprehension. The surveyor, even an expert, must be supported, in his analysis, by digital and visual indicators. In addition to the 
standard indicators used for the adjustment methods, including Baarda’s reliability, we introduce spectral analysis tools of graph theory 
for identifying different types of errors or a lack of robustness of the system as well as in fine documenting the quality of the registration. 
 

 
Figure 1: front view of the kilo-stations network of the TLS dataset of a cylindrical industrial building. On the left, concrete walls and 
floors of the buildings, with a human silhouette for scale. The sights of all targets as seen from TLS stations are traced in blue; TLS 
stations (one thousand) are the reds dots and control points are the larger green spheres. 

 
1. INTRODUCTION 

From cultural heritage to industrial purposes, the use of 3D as-
built mock-ups has become a standard for many applications. To 
maintain facilities for instance, the knowledge of 3D geometry of 
the factory is valuable through many use-cases: maintenance 
planning, handling, storage, replacement or replacement of 
important components. 
 
Such as-built 3D models (CAD or BIM format) are reconstructed 
(or adjusted) as close as possible to a 3D point cloud, acquired in 
situ in compliance with the quality requirements (exhaustiveness, 
accuracy, precisions and reliability). This cloud is thus 
considered as a reliable source to describe the geometry of the 
facility in its current state.  
 
Indoor point clouds are generally produced by using a laser 
scanner which scans the entire scene with a laser. For one point 
of view, the current laser scanners can measure in less than 

10 minutes a point cloud including 40 million points with a 5 mm 
tolerance on most objects (not too dark, nor too reflective, at less 
than 30 m). Then as many points of view as necessary are 
performed to remove masks and cover the entire area under 
study: in an indoor and congested environment, 1 station is 
provided on average every 10 to 15 m² to remove the major part 
of the masks. For an entire building with several floors, hundreds 
of scans can be achieved rapidly. In the case of the reactor 
building of a nuclear power plant, for instance, which contains 10 
circular floors of 60 m in diameter, there are more than 1,000 
laser scan stations. 
 
Nevertheless, due to the pair-pair registration error propagation, 
the assembly errors of these independent scans rapidly become 
preponderant in recordings of this size. Unfortunately, in 
complex indoor scenes, not only is there no GNSS to estimate 
poses, but the inter-visibilities between the targets and stations 
are weak and therefore restrict the robustness of the network. 
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This paper describes a global adjustment method for kilo-station 
networks recommended and implemented for large indoor laser 
scan networks. The aim of this method is to allow and warrant 
compliance with the quality requirements (precision, accuracy 
and reliability) on large scan networks. This paper specifically 
contributes to this purpose through the following: 

 Reduced formalisation (Gauss-Helmert) of the target-
based registration problem. 

 Review of the main cost functions and discussion 
concerning the loss algorithms. 

 Global scheme for the analysis of large 3D networks, 
especially with graph analysis tools for laser station 
networks (spectral analysis and algebraic connectivity). 

 Proposals concerning methods for identifying 
“outliers” (gross errors) at the level of the constraints 
between the stations.   

The whole article is illustrated by experiments carried out on real 
data sets, including a network of 1,000 laser stations 
 

2. STATE OF THE ART 

A 3D cloud point is a set of 𝑛 coordinates 𝑃𝑖(𝑋𝑖, 𝑌𝑖, 𝑍𝑖), 
calculated in the case of an acquisition by laser scanner from 
measurements of a horizontal angle 𝜃𝑖, a vertical angle 𝛼𝑖 and a 
direct distance 𝜌𝑖. It is agreed that we are to write 𝑃𝑖

𝑗  the point 

whose coordinates are expressed in the coordinate system 𝑆𝑗. The 
uncertainty on the final point cloud is modelled (approximation) 
at each point for a variance-covariance 3 3 matrix Σ𝑖𝑖 . This 
variance-covariance matrix contains all of the error components 
of the acquisition process (Reshetyuk, 2009). Firstly, the polar 
observations are marred by instrumental and environmental 
measurement errors (Lichti, 2007). The shape of the object (angle 
of incidence, edge effects, reflectance, etc.) also modifies the 
laser signal on the distance measurement. These errors on the 
observations can then be expressed by error propagation in a 
Cartesian format. Finally, the referencing uncertainty on these 
data in an external coordinate system, whether it is related to 
another station or global, also influences the final coordinates 
(Reshetyuk, 2009).  
 
The change in coordinate system 𝑆𝑗 to 𝑆𝑘, which is used to 
express several scans in the same system, is referred to as 
registration when system 𝑆𝑘 is an arbitrary system of one of the 
measuring and referencing when 𝑆𝑘 =  𝑆𝑊  is a pre-existing 
global system (𝑊: 𝑤𝑜𝑟𝑙𝑑). Many methodologies have been 
developed to solve the registration of the point cloud. The cloud-
to-cloud approaches directly use the point cloud to establish the 
constraints used in the pose estimation (Rusinkiewicz and Levoy, 
2001) and (Pomerleau et al., 2013). The approaches per targets 
use higher level features extracted in the point cloud (point in the 
centre of a sphere, cylinder reconstructed on a pipe, floor 
drawing, etc.) generally solved according to the least squares 
criterion (Rabbani, 2006) and (Hullo et al., 2011). In the case of 
recordings of cluttered indoor scenes, cloud-to-cloud methods 
are difficult to use for topographical purposes, both due to their 
high calculation consumption rate and to their lack of robustness. 
For the registration such as for the referencing of large networks, 
the judicious arrangement of targets in the environment remains 
a very productive method for ensuring the centimetric accuracy 
ranges (Hullo et al., 2015). Cloud-to-cloud constraints can 
nevertheless still be implemented in case of a failed use of the 
targets (manual segmentation of connected sub-clouds or 
refinement steps between station pairs). This refining stage is 
often used to improve the final results (Gelfand et al., 2005). 
 

In the case of large networks of internal laser stations, the 
registration problems can therefore be expressed as a problem 
concerning the adjustment of the constraints between targets 
recognised from several points of view. It is this analogy of this 
problem with the geodetic networks that has been exploited in the 
past for referencing methods referred to as “direct” and which use 
traversing survey methods (Lichti, Gordon and Tipdecho, 2005). 
However, for large scan networks (exceeding 100 stations), a 
block calculation using the least squares method, such as 
proposed in (Mikhail, 1976) or more recently in (Strang and 
Borre, 1997), is generally implemented such as in the network of 
500 stations in a cave (Gallay et al., 2015).  
 
Yet, such as pointed out in (Scaioni, 2012), the use of common 
tools in geodesy is hardly referred to in literature concerning the 
registration of large laser networks, which become the daily work 
of a certain number of surveyors. For a long time, geodesy has 
tackled the adjustment of large measurement networks (Helmert, 
Cholesky, Bowie, etc.) and (Golub and Plemmons, 1980). 
(Meissl, 1980) provides the orders of magnitude of the American 
datum consisting of ~ 350,000 unknowns (~ 170,000 stations) 
and ~ 2 million observations; in comparison, one thousand laser 
scans consists of ~ 6,000 unknown ~ and 30,000 constraints (3 
per target). The introduction of reliability concepts by (Baarda, 
1968) has provided new additional analysis tools for Geodesists 
which are used, for instance, for internal networks (tunnels) 
(Gründig and Bahndorf, 1984). Furthermore, the use of influence 
functions adapted to various error models, tolerating a percentage 
of non-Gaussian errors (Huber, 1964) and (Hampel et al., 1986), 
has been implemented during the development of fuzzy statistics 
in geodesy (Carosio and Kutterer, 2001), of probabilistic methods 
such as processed by (Koch, 1990) and of the analysis of the 
deformation of large networks (Caspary, 2000). (Triggs et al., 
2000) refers back to all of the block-based adjustment methods 
by describing various formulations and cost functions and by 
underlining the significance of the use of effective methods for 
minimising sparse sets of linear algebra systems (Ashkenazi, 
1971).  (Agarwal, Burgard and Stachniss, 2014) offers an initial 
cross reading between the geodetic methods and the Graph-
SLAM (Simultaneous Localization and Mapping).  
 
It is also through the formalism of the Graph-SLAM that the 
strong connection between the adjustment of 3D networks and 
the graphs is revealed (Olson, 2008). While linear algebra is often 
used for the adjustment of 3D networks, the graph theory was not 
exploited initially in the various work concerning the 
optimisation and design of geometric networks (Grafarend, 
1985) and (Kuang, 1991). Only a few uses have been identified: 
in (Tsouros, 1980), (Katambi and Jiming, 2002) and (Theiler, 
Wegner and Schindler, 2015). Therefore, many tools can be used 
for understanding and analysing a measurement network (graph) 
(Berge, 1958). These numerical analysis tools are especially 
useful when, such as in the case of a 3D network comprising 
hundreds of stations spread over many floors, the visual 
representation of the latter is too complex to be easily analysed. 
The spectral graph theory is one of the most powerful tools for 
these topological analysis. It focuses on the eigenvalues and 
eigenvectors of the adjacency or Laplacian matrices of the graphs 
(Brouwer and Willem, 2011). The meaning to be given to these 
spectra has been studied for many physical problems (Tinkler, 
1972), road problems (Maas, 1985) or even cognitive science 
problems (de Lange, de Reus and van den Heuvel, 2014). Some 
uses for GNSS networks were also proposed (Even-Tzur, 2001), 
(Katambi and Jiming, 2002), (Lannes and Gratton, 2009) and 
(Even-Tzur and Nawatha, 2016). 
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3. MODELLING TLS AND TARGETS NETWORKS 

3.1 Variables 

A laser scanner performs, from one point of view, an overview 
referred to as “station”. The coordinates of point 𝑃𝑖

𝑗  in 𝑆𝑗 and 

those of point 𝑃𝑖
𝑘  in 𝑆𝑘 are connected, in general, by: 

 
 𝑃𝑖 =𝑘 𝑅𝑗𝑘. 𝑃𝑖

𝑗 + 𝑂𝑗
𝑘  (1) 
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Where ( 𝑋0
𝑘 , 𝑌0

𝑘 , 𝑍0)𝑘  are the coordinates in system 𝑆𝑘 of 

centre 𝑂𝑗 of the station; (𝜅𝑗𝑘, 𝜙𝑗𝑘, 𝜔𝑗𝑘) are the Cardan angles of 

rotation matrices 𝑅𝑥 𝑅𝑦 and 𝑅𝑧 around respective axes 𝑥 ⃗𝑦 ⃗and 
𝑧.⃗ It is considered that the corrections of systematic errors on 
angular observations were made during the transition from polar 
to Cartesian.  
 
Thanks to the internal bi-axial compensator of some laser 
scanners, we can consider two other transformation models. The 
vertical model considers the value of angles 𝜔𝑗𝑘 = 𝜙𝑗𝑘 = 0 as 
insignificant. The model can be simplified (4 settings) but can 
generate significant registration errors if verticality has not been 
fully ensured during the acquisition phase. The near-vertical 
model gives way to small variations of these angles, either 
through the addition of linear terms, or for an increased 
robustness through the addition of pseudo-constraints with the 
following value  𝜔𝑗𝑘 = 𝜙𝑗𝑘 = 0 and variances 𝜎𝜔

2  and 𝜎𝜙
2  

provided by calibrating the biaxial compensator. 
 
3.2 Constraints and weights  

A target seen from at least two stations creates a geometric 
constraint between these two stations (Hullo et al., 2011). Among 
the various geometric primitives that can be used to identify 
constraints, we favour the use of point features extracted from 
targets arranged for this purpose in the environment (centre of a 
sphere or chequered target). The surface properties (sphericity, 
reflectance, etc.) of the targets shall be analysed (Wunderlich et 
al., 2013). 
 
3.3 Target matching  

The correct creation of this set of constraints directly conditions 
the quality of the registration results due to the fact that, in the 
case of non-robust methods (least squares), a single matching 
error directly impacts the calculation results. This is all the more 
significant in the case of large laser networks where the 
probability of a matching error and the difficulty related to the 
identification of these faults increase with combinatorics. Hence, 
finding the best set of correspondences is a combinatorial 
optimisation problem with an acceptance assumption. Although 
the simplest solution is performing a comprehensive search, it 
becomes rapidly impossible to perform. Three approaches are 
generally employed: the search tree methods (Vosselman, 1995), 
the pose clustering methods (Olson, 1997) or the RANSAC-type 
stochastic method proposed in (Rabbani and van den Heuvel, 
2005) for primitive-based registration of laser scans.  
 
In all cases, reducing the search space is not only required to 
reduce the calculation time, but it also reduces the probability of 
mismatches if the reduction criteria make sense and if the search 

subset makes sense. In order to constrain the search, it is 
necessary to define relevant features (Rabbani, 2006). Firstly, 
selecting a neighbouring station involves using as an a priori 
approximate values of the stations, obtained by indoor 
positioning such as described in (Hullo et al., 2012). The viability 
of a configuration is then tested by an initial RANSAC matching 
process, which is performed in three steps, such as described in 
(Rabbani, 2006) with, as a similarity distance, the probabilistic 
score defined in (Hullo et al., 2012), which is used to decide the 
matches selected from the a priori of the stations and targets. 
 
3.4 Models 

 
Figure 2: diagram and normal equations associated to parametric 
(left) and Gauss-Helmert (right) models 

   
Figure 3: top view of a target-stations 3D sub-network plot (110 
stations) with parametric (left) and Gauss-Helmert (right) models 

In a parametric adjustment model, the constraint created by the 
matching 𝛼 ≡ 𝛽  of a sphere view from two stations 𝑆𝑗 and 𝑆𝑘 
is: 

𝑃𝛼
𝑊 = 𝑅𝑗𝑊

𝑇 . ( 𝑃𝛼
𝑊 − 𝑂𝑗)𝑊  

𝑃𝛽
𝑊 = 𝑅𝑗𝑊

𝑇 . ( 𝑃𝛽
𝑊 − 𝑂𝑘)𝑊  

 
The match 𝛼 ≡ 𝛽 indicates that 𝑃𝛼

𝑊 = 𝑃𝛽
𝑊 . This observation 

equation amounts to expressing observations as a function of the 
unknown values, or otherwise to "simulating" the observations 𝑙 
with the unknown values  : 

 𝐹(𝑥) = 𝑙 
𝐹(𝑥0) + 𝐴. 𝛿𝑥 = 𝛿𝑙 where 𝐴 = 𝜕𝐺

𝜕𝑥 (2) 

A variance-covariance matrix is used to weight the observations. 
Through the linearisation of the constraint equations close to the 
approximate values of the parameters, we can write a system of 
normal equations corresponding to type 𝐴𝑥 = 𝑏, which can be 
solved by many well-known methods in linear algebra (Strang 
and Borre, 1997). But this parametric formulation requires 
calculating the coordinates of the spheres as unknown values, 
which significantly complicates the calculations. However, this 
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formulation allows one to analyse the contributions of the 
matched targets in the calculation one by one. 
 
Another formulation, which can be considered as reduced, is to 
directly consider the constraint matching: 

𝑅𝑗𝑊 . 𝑃𝑖
𝑊 + 𝑂𝑗

𝑊  = 𝑅𝑘𝑊 . 𝑃𝑖
𝑗𝑊 + 𝑂𝑗

𝑊  
 
This mixed method, referred to as the Gauss-Helmert method 
(Mikhail, 1976), is to express a condition directly linking 
observations and unknown values as follows: 

 𝐺(𝑥, 𝑙) = 0  
𝐺(𝑥0, 𝑙0) + 𝐵. 𝛿𝑙 + 𝐴. 𝛿𝑥 = 0 

With 𝐴 = 𝜕𝐺
𝜕𝑥 and 𝐵 = 𝜕𝐺

𝜕𝑙  
(3) 

The advantage of this formulation is the reduction of the problem, 
both for viewing and for solving the calculation. 
 
3.5 Acquisition and structure  

The acquisition stage of both laser data and control network 
surveying should comply with the expert methods specific to 
surveyors. For registering laser scans, each station should 
reasonably see in average 8 targets and every pair of consecutive 
stations should share in average 5 targets (without weak 
configurations). For referencing targets on tie network, we 
recommend at least 5 targets per independent network and an 
average of 1 control target for 4 laser stations. 

 
Figure 4: tree-structure of a hundred laser scans (black) registered 
consecutively in sub-networks (grey > blue > orange > green), up 
to referencing to external coordinate system using control points 
(red square) 

These tie points can be integrated either as fixed conditions or 
pseudo-observations, to which are associated variances, also 
called soft constraints (Strang and Borre, 1997). This second 
option offers more flexibility in large-scale calculations. 
Moreover, the models also allow the integration of topographic 
measurements (angles and distances) into the same calculation. 
This integration is not recommended due to the summary of 
independent error budgets between surveying and 
lasergrammetry, but it can be used to locally complete a weak 
control network. 
 
Independent blocks of stations can be created freely in situ. If 
they are completely independent and if the support points are 
known with an accuracy of a greater order of magnitude, they can 
be referenced through an affine transformation. However, a total 
block adjustment provides a better control of the referencing 
network which can, at least during an intermediate calculation 
phase, be relevant. The use of sub-blocks can then be used 
through the calculations to facilitate the resolution (Bjerhammar, 
1973). By means of error propagation, we recommen not to 
exceed a sub-block nesting level greater than 3. 
 

4. SOLVING REGISTRATION 

4.1 Cost function 

The least squares, which minimise a quadratic form of the 
residues, are an unbiased estimator of a linear regression for 
variables according to a normal distribution (Mikhail, 1976). 
When functions connecting observations and unknown values are 
not linear, the loss/minimisation process is iterative 
(Bjerhammar, 1973) and (Mikhail, 1976). 
 
However, the data sets are often marred by gross errors which 
deviate from the Gaussian model and can significantly influence 
the results. These outliers must be removed from the data set 
because the quadratic function increases the influence of 
important residuals. These outliers are generally detected via 
statistical tests. However, the latter fail if the proportion of 
outliers becomes too high (Huber, 2009). It is then necessary to 
adopt a new model with reasonable errors, which involves a 
related cost function (Koch, 2007) that makes the influence of the 
residues consistent with the error model.  

 
(𝑥|𝑙) ∝ ∏ 𝑝(𝑣𝑖|𝑙)

𝑛

𝑖=1
→ max  

− ln 𝑝(𝑥|𝑙) ∝ ∑− ln 𝑝(𝑣𝑖|𝑙)
𝑛

𝑖=1
→ min  

(4) 

𝜌(𝑣𝑖) = − ln 𝑝(𝑣𝑖|𝑙) is introduced as the general functional of M-
estimators. The MAP assessment is thus defined in the case of 
independent observations by: 

 
∑ 𝑊𝑖𝑖 𝜌(𝑣𝑖)

𝑛

𝑖=1
→ min  (5) 

 
In case the observations are not completely independent, 
(Bjerhammar, 1973) has shown that a multidimensional variable 
(residues), which follows a normal distribution law, can always 
be transformed into a reduced and centred multidimensional 
variable. This basic change is performed upstream of the 
adjustment thanks to the following relationship: 

𝑥~𝒩(𝜇, Σ) ⇔  𝑥 ∶= Σ1/2 𝑦 + 𝜇  𝑤ℎ𝑒𝑟𝑒  𝑦 ~𝒩(0, 𝐼)  (6) 
 
In (Triggs et al., 2000), the functional is defined as 𝜌(𝑣𝑇 𝑊𝑣), 
which does not make it possible to process the outliers that are 
summed prior to the application of the functional. (Yang, Song 
and Xu, 2002) offers functional 𝜌(𝑣)𝑇 𝑊𝜌(𝑣) which finally 
generalises the functional of equation (5) for many loss functions 
(Zhang, 1997). In the case of laser networks and due to the 
number of observations and rate of errors in target matching, the 
Welsch functional is a great robust estimator that allows to 
highlight outliers. 
 
4.2 Minimization 

Since we are interested in minimising non-linear functions, 
precautions shall also be taken. In the case of linear least squares, 
the system to be solved by inversion (in actual fact, we will never 
directly inverse the matrix of normal equations) (Triggs et al., 
2000). In the case of non-linear least squares, we will proceed by 
iteration on the linearisation of the functional model. However, 
in the case of non-linear M-estimators, it is also necessary to nest 
the linearisation of the cost function in the iterations. To perform 
these minimisations, (Triggs et al., 2000) discusses the use of the 
Newton and quasi-Newton methods. 
 
In the case of large lasergrammetric networks, one thousand 
stations are considered, at each of which around ten targets are 
measured with many connections with neighbours. The global 
equation system is therefore large and non-linear.  
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Hopefully, the network structure induces sparse matrices which 
offer interesting possibilities in the optimisation process 
(Ashkenazi, 1971). In order to take advantage of digitally 
efficient methods, it is advisable to rely, at a minimum, on 
effective linear algebra libraries (LAPACK type) or on libraries 
dedicated to statistical regression methods (sparseLM or SBA 
type). Many wrappers exist for scripted languages, recommended 
for the development phases (Python, R, or Matlab). 
 

5. NETWORK ANALYSIS 

5.1 Principles of evaluation  

The delivery of a laser data set must meet a well-defined need. 
This need is specified geometrically with accuracy, precision and 
reliability criteria, which are subject to a quality control which 
may be demanding, for example, in the industry where 
centimetric precisions at the scale of a building can be required 
(Hullo et al., 2015). In order to ensure these criteria as well as to 
allow the detection and investigation of defects, it is necessary to 
use relevant indicators and to establish a set of checks throughout 
the data production process. 
 
However, the laser data arrives at the end of a long chain, in 
which each link has its own sources and types of errors. 
Considering the complexity of the acquisition process, the 
volume of data and the importance attached to the optimisation 
of the pose parameter assessments, it is necessary to conduct the 
assessment phase as an investigation, aiming to validate the 
quality criteria one after another: a vision which only involves 
considering the final indicators, without returning to their origin, 
is not sufficient in our case to confidently qualify the dataset. 
 
5.2 Model assessment 

Firstly, it should be ensured that the functional models (matched 
targets) and stochastic models (distributions/cost function and 
related magnitudes) are suitable for the observations used in the 
calculation. 
 
Extraction of the targets - the target extraction process must 
produce a quality criterion, which can be used to complete matrix 
𝑄𝑙𝑙 = 1

𝜎0
2 Σ𝑙𝑙 where 𝜎0

2 is an arbitrary function called an a priori 

variance factor. The analysis of this matrix is to help identify 
suspicious targets and guide the inspection work.  
 
Matching - this is a key aspect in the adjustment process. 
Matching is a decision (Boolean) to establish a correspondence 
between two targets acquired from different stations and the 
analysis of these errors is different from a fault detection on a 
scalar value. The search for matching errors is processed 
separately at the end of this section. Checks on the number of 
correspondences between pairs of stations and the number of the 
target connected to the general survey marker must also be 
carried out in batch mode to direct the subsequent identification 
for gross errors. 
 
Verticality and calibration - it is possible that the assumption 
retained for the condition equations is false for some stations. In 
a vertical or near-vertical model, we will search for major local 
closures 𝑤𝑖 after adjustment for all targets of a station that might 
have been inclined. Moreover, we will compare the standard 
closures  𝒘𝒊

𝜎𝑤𝑖
 between the devices by serial number and by work 

sessions to detect any potential uncalibration of the instruments.  
 𝜎𝑤𝑖

= Σ𝑤𝑤 = 𝜎0
′2.𝑄𝑤𝑤 

where 𝑄𝑤𝑤 = 𝐵𝑄𝑙𝑙𝐵𝑇 − 𝐴𝑄𝑥𝑥𝐴𝑇  
(7) 

The a posteriori variance is provided by  𝜎0
′2 = √𝑣𝑇 .𝑃.𝑣

𝑟  where r 

is the redundancy. The ratio between the a priori and a posteriori 
variances indicates the consistency of the model with respect to 
the indicated a priori. We have the same probabilistic thresholds 
due to the fact that these variables follow the following law 𝜒2  

 𝜎0
′2

𝜎0
2 ≤ 𝜒𝑟

2

𝑟
 (8) 

Closures in control points - checks shall be inspected, i.e. not 
included as constraints in the adjustment calculation for both 
registration and referencing. We will specify the maximum value 
and the average of these deviations in relation to the checks Δ𝑤𝑐. 
Only these checks qualify the accuracy of the final result. 
 
Error propagation through the model - after calculation, we can 
assess the stochastic properties of the estimated unknown values 
and observations adjusted by propagation of a priori errors 
through the adjustment model.  

 Σ𝑥𝑥 = 𝜎0
′2.𝑁−1 

with  𝑁 = 𝐴𝑇 . (𝐵. 𝑄𝑙𝑙. 𝐵𝑇 )−1𝐴 
 

(9) 

In order to analyse these large variance-covariance matrices, it is 
a standard practise to resort to error ellipsoids which, if they only 
correspond to a partial representation of a large size distribution, 
can be used to observe unfavourable conditions for the error 
propagation. These propagated variances and covariances are 
used to assess the accuracy of the hypothesis and observations. 
However, the non-linearity of the functional model requires other 
indicators to determine the reliability of these results. 
 
5.3 Network configuration 

At the scale of a building, the complexity of the 3D network is 
beyond comprehension. The surveyor, even an expert, must be 
supported, in his analysis, by digital and visual indicators that 
will help him target his sampling inspection, detect quality faults 
and in fine qualify the data set. 
 
Redundancy - the local redundancy 𝑟𝑖 of an observation (Karup, 
2006) is defined between 0 and 1 such that a redundancy equal to 
0 corresponds to an unchecked observation, which is therefore 
essential, and a redundancy equal to 1 corresponds to a checked 
observation, which therefore is useless. The sum of the local 
redundancies is equal to the total redundancy 𝑟 = ∑ 𝑟𝑖

𝑛
𝑖=1 ; 𝑟𝑖 is 

the 𝑖𝑡ℎ term of the matrix diagonal 𝑄𝑣𝑣𝑃 .   
 
Smallest gross errors (or "grossest" small errors) - a tolerance is 
generally defined by a probabilistic threshold (3𝜎, 95%, etc.). 
Nevertheless, it is interesting to know, for each observation, the 
limit value for undetectable gross errors ∇𝑙𝑖, referred to as 
internal reliability (Baarda, 1968). For this purpose, we set 𝛽 the 
type II error probability (false negative) and 𝑤𝑚𝑎𝑥 the fault 
threshold, which can be used to calculate the translation 
parameter 𝛿. Internal reliabilities are given by:  

 ∇𝑙𝑖 = 𝛿. √
𝜎𝑙𝑖
𝑟𝑖

 (10) 

 
Sensitivity to gross errors - the external reliability, or fault 
simulation, is used to estimate the influences at the level of each 
unknown value of the smallest undetectable fault at the level of 
each observation (Baarda, 1968). These influences are calculated 
for each observation: 

 ∇𝑥𝑗 = max
𝑖

(∇𝑖𝑥𝑗) with: 

 
(11) 
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(12) 

At each point, we therefore have 𝑛 vectors [∇𝑥,∇𝑦, ∇𝑧]. 2D 
(Baarda, 1968) proposes a rectangle defined by the vector with 
the largest norm (half of the long side of the rectangle) and the 
maximum of the norm of vectors projected perpendicularly to the 
first vector (half of the short side of the rectangle). We believe it 
is more interesting to visualise the influence of all external 
reliabilities. Indeed, from a user interface perspective, it seems 
useful to use this reliability indicator as a rake to weave a link 
between the unknown values and observations at the origin of 
these sensitivities. 

 

 
Figure 5: top: rakes of reliability of a 3D network; bottom: 
location of the 3D network: at the top of the building, only 
accessible through ladders. The blue line is the sight of a 
referencing target; all red lines are the influence of the gross error 
threshold on this specific observation; this kind of interaction is 
helpful in the stage of outlier detection and dataset 
documentation. 

5.4 Graph analysis 

Valence analysis - In the parametric model, unique pseudo-
observations created as constraints between stations are used to 
express the measurement network as a non-directed weighted 
graph, which can be expressed as a matrix either via its adjacency 
matrix 𝐴  or its Laplacian matrix (normalized) 𝐿 = 𝐼 − 𝐷−1𝐴  
where 𝐷 is the valence matrix (degree) (de Lange, de Reus and 
van den Heuvel, 2014). Based on this graph, we then have a 
remarkable set of tools to understand the "topological" 
configuration of our network. Low valences nodes can be seen as 
bridges or parts of a weak traverse in the graph. 
 
Spectral analysis - The spectral analysis of a graph focuses on 
analysing the eigenvalues 𝜆𝑖 and eigen vectors 𝑣𝑖 of the graph 
matrices. T. Krarup had, in the 70s, studied the spectrum of 
geodetic networks through eigen values of 𝐴𝑇 𝐴 (Karup, 2006). 
(de Lange, de Reus and van den Heuvel, 2014) explain general 
meanings of the Laplacian spectrum: each eigenvector 𝑣𝑖 
describes a network bisection by assigning a positive or negative 
value to each node (the components of the eigenvector) and the 
associated eigenvalue describes the reverse of the division time 
in a stationary state. The eigenvector 𝑣1 related to the largest 

eigenvalue 𝜆1 of the adjacency matrix, referred to as spectral 
radius or algebraic connectivity, arranges the nodes of the graph 
according to their centrality in the network (Maas, 1985). The 
𝜆1variation upon addition or deletion of the nodes makes this 
eigenvalue a good indicator of the network global connectivity 
(de Lange, de Reus and van den Heuvel, 2014). The smallest non-
zero eigenvalue 𝜆𝑛−1 provides information on the best possible 
sections of the network in two modules. A possible number of 
subgroups for an optimum division may be suggested by the 
largest interval between two eigenvalues (𝜆𝑖+1 − 𝜆𝑖). The 
presence of zero components in the eigenvectors of the graph also 
indicates the presence of independence between the sub-graphs. 
Each spectrum of eigenvalues therefore describes a network 
topology, and these topologies can be compared (Wilson and 
Zhu, 2008). 
 
The algebraic connectivity appeared as a very reliable indicator 
for the data set shown in Figure 6. A ground truth registration 
data set was created through an exhaustive check of the 40 billion 
point cloud based on regular section every 50 cm along the 3 axis 
X, Y and Z leading to additions of local cloud-cloud constraints 
for ~1% of the dataset. We inspected correlations between real 
errors (gound truth poses vs block adjustment) and error 
ellipsoids (75%), reliability (55%) and connectivity (81%). A 
deeper analysis of these results may help understanding strength 
of each indicator.  

 
Figure 6: algebraic connectivity (from red to blue) and error 
ellipsoid through error propagation in the model of a kilo-station 
network 

5.5 Gross errors detection  

The detection of gross errors mainly consists of, in the case of a 
laser network, searching for matching errors, which in most 
cases, have a major influence on the result of the adjustment. This 
complex task of target-based laser registration, described in 
section 3.3, is not included in the “traditional” geodetic networks. 
False negatives (unmatched targets) can generate weak areas in 
the network while false positives create a false constraint, which 
distorts the results. However, if a gross error is detected on a 
target in inter visibility, it is interesting to try and preserve a 
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maximum of constraints. In order to identify false positives, we 
therefore searched for 3 configurations per target clustering: 

 1 vs. all: a target is badly detected in a station, the other 
views of this target is consistent with one another: 1 
constraint is deleted. 

 2 periods: we manage to distinguish two consistent sets 
of views of this target: we can split these two periods 
as two distinct targets. 

 Cause unknown: no structure is identified in the 
spheres: all constraints are removed for this target. 

 
On the 100 largest gross errors of the network shown in Figure 6, 
only 18 had to be removed: 12 were only pairwise constraints that 
could not be corrected and 6 were unique observations of control 
targets (referencing observations only represent 2% of the 
dataset). On the remaining 82 gross errors, we could identify 70% 
of “1 vs all” configuration, 30% of “moving targets”. By 
preserving 82 gross errors, this approach have been a valuable 
tool for increasing precision with a minimum loss of redundancy. 
 

6. OVERVIEW AND DISCUSSION 

 
Figure 7: overview of the referencing process of kilo-station 
networks 

When solving registration, we recommend performing a 
calculation in several stages: free network with robust estimator 
(inspection of reliability, graph spectrum and precision), datum 
points as soft constraints (removing wrong datum points) and 
final least squares referencing. However, some stage still remain 
tedious that should first be optimized to increase productivity. 
The crucial stage, target matching, relies on good approximations 
of the poses; using coarse approximations from field sketches is 
always available when human performs the acquisition but fine 
indoor positioning systems may help. An algorithm for detecting 
the structure of the acquisition, for example using graph analysis 
tools introduced previously, may also be a valuable addition to 
the process. But, as so often, the user interface and interaction 
development might be the most valuable improvement. 
 

7. CONCLUSION 

In this paper, we described a large 3D network registration and 
referencing method used for blocks of hundreds of terrestrial 
laser scans acquired in complex internal environments whose 
complexity is beyond comprehension. This method, in the current 
state of the art of laser topographic data adjustment, uses geodetic 
tools for adjustment and graph theory tools for network analysis 
and gross error identification. In the first stage, correspondences 
between targets are established (adjustment and referencing). In 

order to deal with the combinatorics of this problem, we propose 
a probabilistic method that uses a position a priori. When 
assembled, these constraints define a large algebraic and 
stochastic system which, similarly to large geodetic networks, is 
used to estimate the most likely pose parameters of the 
measurement stations. A robust functional (Welsch) is thus 
recommended to reduce the adjustment bias. The various 
accuracy, precision and reliability indicators are used to qualify 
the network and detect gross errors. The spectral analysis of the 
network, based on the breakdown into eigenvalues of the 
Laplacian matrix, guides the search for outliers and offers new 
tools for understanding these large three-dimensional networks. 
The target matching faults thus detected are analysed to retain a 
maximum of constraints while removing a maximum of false 
positives. 
 
The current limitations of this method, illustrated on a real data 
set of a thousand stations, firstly concern the quality of the initial 
matching phase. To improve it, the graph theory introduced in 
this chapter provides real study possibilities such as spanning 
trees (Kirchoff's Matrix-Tree theorem) to search for faults by 
calculating closures or other properties of the eigenvalues to 
improve inspection of the network. Another issue favouring the 
adoption of this method to a broader audience is to develop new 
visualisation and interaction tools to guide the operator 
throughout this complex process. 
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