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ABSTRACT: 
 
When ground conditions are weak, particularly in free formed tunnel linings or retaining walls, sprayed concrete can be applied on 
the exposed surfaces immediately after excavation for shotcreting rock outcrops. In these situations, shotcrete is normally applied 
conjointly with rock bolts and mesh, thereby supporting the loose material that causes many of the small ground falls. On the other 
hand, contractors want to determine the thickness and volume of sprayed concrete for both technical and economic reasons: to 
guarantee their structural strength but also, to not deliver excess material that they will not be paid for. In this paper, we first 
introduce a terrestrial LiDAR-based method for the automatic detection of rock bolts, as typically used in anchored retaining walls. 
These ground support elements are segmented based on their geometry and they will serve as control points for the co-registration of 
two successive scans, before and after shotcreting. Then we compare both point clouds to estimate the sprayed concrete thickness 
and the expending volume on the wall. This novel methodology is demonstrated on repeated scan data from a retaining wall in the 
city of Vigo (Spain), resulting in a rock bolts detection rate of 91%, that permits to obtain a detailed information of the thickness and 
calculate a total volume of 3597 litres of concrete. These results have verified the effectiveness of the developed approach by 
increasing productivity and improving previous empirical proposals for real time thickness estimation. 
 
 

*  Corresponding author 
 

1. INTRODUCTION 

Engineers working in the Architecture, Engineering and 
Construction (AEC) field quite often need to design and build 
structures that are situated in densely populated urban areas. 
This involves a high risk, because if an accident happens, the 
damage can be large. Previously, geologists must evaluate the 
physical and mechanical properties of the construction site and 
its surrounding rock mass stability. In excavations of 
intermediate and great depth, safety will be probably 
compromised if fractures, discontinuities, disintegration, 
weathering or loosening exist. 
 
In those situations, rock bolts are used for stabilizing rock 
excavations and prevent rockfalls (Cai et al., 2015; Srivastava 
and Singh, 2015). They improve properties of the jointed rocks, 
frequently combined with wire mesh and sprayed concrete. The 
latter is a cement-based product that is pneumatically sprayed at 
a high velocity on the exposed surfaces after excavation to 
provide ground support.  
Spraying concrete is without doubt one of the most demanding 
activities in construction (EFNARC, 1996). Some researchers 
(Ginouse and Jolin, 2014, 2015) have been studying the 
rebound and consolidation mechanisms controlling the 
shotcrete placement process. Others have been focused on 

analyzing a number of factors that influence the adhesion or 
bond strength of the shotcrete to the underlying substrate 
material (Kuchta, 2002; Malmgren et al., 2005). However, very 
few empirical approaches have been proposed to compute the 
shotcrete layer thickness, and they tend to use parametric or 
statistical models to study the distribution of sprayed concrete 
on the wall (Rodríguez et al., 2009). 
 
On the other hand, the interest in exploiting the terrestrial 
remote sensing data for deformation and monitoring purposes 
has increased notably (Monserrat and Crosetto, 2008; Puente et 
al., 2012; Puente et al., 2014). This interest is surely due to the 
key advantages of Terrestrial Laser Scanning (TLS), which 
acquires high density, high accuracy point clouds in a short time 
span. In particular, TLS can remotely obtain extensive 
information on rock slopes, excavations, underground 
environments and data of inaccessible outcrops without costly 
delays or disruption of the construction workflow and is 
therefore a suitable instrument for the abovementioned task 
(Abellán et al., 2014; Fekete et al., 2010). However, TLS data 
processing is time consuming and it is obvious that introducing 
more automated processes towards a change detection, e.g., to 
detect the amount of sprayed concrete on the scene, will 
minimize the manual work and save time and money.  
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So in this study, we propose an automatic, non-destructive, 
LiDAR-based method to accurately estimate the thickness and 
volume of sprayed concrete on anchored walls from data points 
acquired by a three-dimensional TLS.  
This paper is organized as follows. Section 2 presents the 
framework of our proposed methodology on rock bolts 
localization and detection, which also discusses how to estimate 
the sprayed concrete thickness and volume on the retaining 
wall. The experimental results and their analysis are provided in 
Section 3. Finally, Section 4 summarizes the main points of our 
study and looks into the future works. 
 

2. METHODOLOGY 

Our approach consists of three parts: location of rock bolts, co-
registration of independent data sets before and after shotcreting 
and reverse thickness and volume estimation. The algorithm 
overview summarizes the following steps, as shown in Figure 1. 

 
Figure 1. Algorithm overview for thickness and volume 

estimation of sprayed concrete. 
 

2.1 Rock bolts localization 

Artificial intelligence includes the ability of computers to learn 
how to classify and recognize patterns in data for interpreting 
formal and abstract problems that are difficult to solve for 
humans. On the contrary, ordinary tasks like recognizing faces 
or spoken words are difficult to solve for machines. As an 
imitation of human brain, artificial neural networks (ANN) were 
applied to these tasks.  

Conventionally, this approach implies combining many simple 
features using a growing number of hidden layers or deep 
networks. Autoencoders are a kind of ANN that are trained to 
obtain at their output an approximate copy of the input. 
Therefore, an autoencoder consists of an encoder followed by a 
decoder. If the number of hidden layers in the encoder is lower 
than the dimension of the input, the encoder learns the salient 
features of the data (Goodfellow et al., 2016). 
 
In this work, a deep network that consists of two autoencoders 
and an output layer was trained to detect rock bolts that are 
tightened in a slope. Figure 2 shows a diagram of the network. 
Both encoders contain 15 hidden layers and, while encoder 1 is 
trained to learn the characteristics of the input data, the second 
encoder is trained with the features obtained in encoder 1. 
These second features are used as inputs for the final layer that 
maps them to the target classes.  
The detector is designed to be directly applied to the points 
obtained from a laser scanner with little or none pre-processing. 
Therefore, it was assumed that each azimuth line of the 
scanning is stored successively in the point cloud.  
A neighbourhood of a point was used as the input to the 
network. The spherical coordinates of the points were used as 
well as their intensity values. The azimuth angle was discarded 
and the vicinity consists of 21 values for radius coordinate and 
5 values for elevation and intensity values X=[r-10 r-9...r0...r9 r10 
el-2 el-1 el el+1 el+2 I-2 I-1 I0 I+1 I+2]. This design results in a final 
dimensionality of 31 coordinates for the input.  
For the output of the network, three classes were defined: bolt, 
bolt neighbourhood and general. The first two labels were 
assigned respectively to the vertical points on the bolt and the 
points on the bolt plate and those affected by the shadows 
caused by the orientation of the bolt with respect to the TLS 
position. Figure 3 shows an example of a rock bolt after the 
scanning. 
 
2.2 Registration of data sets 

Point cloud registration is a demanding task that is usually 
divided in two successive procedures: an initial coarse 
registration followed by a fine registration. This rigid body 
transformation supports a reference between a source (initial) 
and a model (posterior) point cloud. 
The registration procedure regularly includes a down-sample 
step which in this work is represented by the rock bolt detection 
described earlier.  
The fixed points obtained, are roughly aligned by means of a 
geometric transformation including a variant of the Random 
Sample Consensus (RANSAC). Results of coarse registration 
may not be identical because of the random behaviour of this 
step. On the other hand, identification of inliers is an essential 
feature of coarse registration, especially when, as in our case, 
the data contains an appreciable number of classification false 
positives. 

 

 
Figure 2. Deep Network diagram view. 
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Figure 3. Example of rock bolt point cloud  

 
The rigid registration procedure begins with a matching 
between initial and posterior point clouds using a kd-Tree. 
These matched point clouds are afterwards inspected for outlier 
detection and removal. The alignment error is dependent on the 
number of inliers in the transformation and the distance 
between them. In our case, this step is crucial, because there are 
false positives of the classification that must be avoided in 
calculations. Further iteration of matching and checking 
passages end when the alignment error is below a tolerance 
value that stops the algorithm. 
 
2.3 Sprayed concrete thickness and volume estimation 

This section describes the procedure followed to compute the 
thickness and volume of sprayed concrete layers from scanned 
data. To accomplish this, those layers must initially be co-
registered all together in the same reference frame, as mentioned 
previously in section 2.2. 
 
The proposed procedure was designed as follows and is 
completed in two steps: (1) thickness calculation based on the 
signed distances between epochs and (2) volume estimation. 
 
For the thickness calculation the signed distances from the pre-
sprayed to the post-sprayed epochs were computed using Cloud 
Compare (CloudCompare 2.6.2, 2016). In order to obtain the 
signed distances, the posterior point cloud was transformed to a 
mesh. The reason to choose the posterior point cloud was the 
presence of objects on the site and the difficulty to mesh 
elements like concrete armours.  
As a result, the values for the distances should be below zero 
for a majority of the points in the case study and represent the 
local thickness of the sprayed concrete. The mean of those 
values represents the average thickness for this specific layer 
and the histogram for this result is also provided to check how 
far the data is spread apart. 
 
The volume estimation method is based on the integration of the 
signed-distances point cloud. For the volume estimation, we 
need to first create a rectangular grid superimposed over the 
layer. A data interpolant for scattered data (x,y,z) was used as 
well to create a volume similar to that used in Puente et al, 
2013. The spatial resolution of the volumetric interpolated 
values defined by the grid-space was set to 5 cm. We then 
estimate the volume of concrete as the integration of the 
negative distances in the interpolated volume.  
This methodology was implemented using MATLAB and Cloud 
Compare. For visualization purposes, RiScan Pro software was 
used as well.  
 
 

3. RESULTS AND DISCUSSION 

In this section, an example of the possibilities of the 
methodology stated in section 2 is demonstrated on a real-life 
case study, an anchored retaining wall in the center of Vigo, 
Spain, see Figure 4. In order to evaluate the method and 
estimate the consumption of concrete sprayed on the wall, the 
acquisition of repeated point clouds were carried out on site 
during different phases of the construction project. 

 
Figure 4. Overview of the project area. (a) View of shotcrete-
pumping truck in operation on wall and excavation works in 
progress. (b) Impression of the new shopping mall (Source: 

www.farodevigo.es) 
 
3.1 Area of study 

The rapid transformation of its city economics has become Vigo 
in the European city with the fastest growing population during 
the last century, being today the 14th largest city of Spain with a 
metropolitan area of almost a half million inhabitants. However, 
this resulted in continuous urban planning changes, making 
Vigo less structured than other Galician cities (Alvarellos, 
2004). During the last five years, the municipality of Vigo has 
led to a desire for modernization and rehabilitation of the older 
facilities. Nowadays, it aims at improving the local shopping 
options of its city center with the upcoming construction of a 
modern-style shopping mall. The project is expected to be 
finished by winter of 2016 and involves the design of an 
anchored wall on the building site, which is still underway. This 
type of wall, with an actual length and height of 71 and 21 
meters respectively, is typically constructed in cut situations in 
which construction proceeds from the top down to the base of 
the wall, as shown in Figure 4a. 
The building pit was excavated to a depth of 12 meters below 
the current street level where an underground parking lot with 
three levels for 240 cars is going to be built. Two upper levels 
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will complete the building. Figure 4b gives an impression of the 
shopping mall.  
 
3.2 Acquisition of terrestrial LiDAR data 

Authors selected a Riegl LMS-Z390i (Riegl, 2010) for data 
acquisition. This is a Time-of-Flight (ToF) system with a high 
range. This fact makes it suitable for precise surveys with no 
access to the area of interest, which is very useful for surveying 
hazardous locations like this one. 
Processing LiDAR data can be very demanding for computer 
memory, as there are for example, more than 100 million data 
points in a detailed view of the whole wall. Therefore, we 
selected a case considering a smaller subset of the full data set, 
focusing on a test area of approximately 40 x 5 m. The 
remaining of the site area collected with LiDAR data was used 
for data registration but discarded for volume calculation. 
 
Two individual scans of the unshotcreted and shotcreted test 
area were captured at different epochs, see Figure 4. Proximate 
scan positions were located in front of the building site at an 
estimated distance of 70 m from the wall. As a consequence, 
point clouds will need to be registered in a common coordinate 
system and rock bolts will serve as control points for the 
purpose. This allows direct comparison and estimation of 
sprayed concrete thickness and volume by doing a detailed 
analysis of the two surfaces (pre- and postshotcreting). 
Figure 5 (left) shows an example point cloud which contains a 
number of rock bolts to be detected. On the right, an individual 
bolt is modelled as a cylinder. The radius of the cylinder is 20 
mm and therefore, in order to detect the bolt, an approximate 
point spacing of 10 mm was set in the acquisition. These 
settings resulted in point clouds of 8766144 and 9993814 
points for the two epochs respectively. 
 
3.3 Processing of terrestrial LiDAR data 

The results of the application of an automatic procedure for 
rock bolt detection and layer thickness and volume analyses on 
the available anchored wall data are given here.  
 
3.3.1 Bolt detection: As aforementioned, the deep network 
used in this work consists of two autoencoders and a softmax 
output layer. The input to the system consists of a series of 31-
dimensional vectors from the point cloud of the site. The output 
is a probabilistic 3D vector showing the class that the vector 
belongs to among the targets: rock bolt, bolt neighbourhood and 
general. 
The first step involves the selection of a number of vectors that 
will act as the training dataset. For rock bolt class, a number of 
119 vectors corresponding to bolts with different orientations to 
the laser scanner position were selected. 
 

 
 

Figure 5. Example point cloud showing a number of rock bolts  
on site (left). On the right, a detailed geometric approximation 

of a cylindrical bolt and corresponding point cloud.  
 

The training dataset contains 67 examples for rock vicinity. 
These vectors include examples of the plates that tighten the 
bolt to the concrete and some examples of the shadows in the 
point cloud that cause the bolts orientation as shown in Figure 
3. The remaining vectors up to a total of 744 training examples 
were selected from the region of interest and the site area. 
Figure 6 shows the errors in the training of the autoencoders 1 
(up) and 2 (down). The first autoencoder obtains the features 
that describe the hidden relationships in the training data. The 
second autoencoder is based on the features obtained by the 
previous one, and consequently, the minimization of training 
error is faster. Consistently, the training performance is more 
accurate for the second autoencoder, yielding a comparison of 
0.0011 versus 0.0208 mean squared error (MSE). 

 
Figure 6. Training performance in terms of Mean Squared Error 

for autoencoders 1 (Up) and 2 (Down).  
 

The following steps consist of training the SoftMax layer 
considering the target class as an output and the features of 
encoder 2 as input. The performance of this layer is based on 
the crossentropy and yields a final result of 0.366. Afterwards, 
both autoencoders and the output layer are stacked in the deep 
network described by Figure 2.  
This deep network is trained taking as inputs the vectors in the 
training dataset and as outputs the target class for each vector. 
The final performance indicator for the whole network is 0.242 
and the confusion matrix for the trained detector is shown in 
Figure 7. 

 
Figure 7. Confusion matrix of the deep network detector. 
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Figure 8. Results for rock bolts detection. The false positives 
are mainly located out of the slope of interest.  

 
The total number of rock bolts is 159 and 14 of them were not 
detected, which corresponds to a detection rate of 91%. Figure 
8 shows a screen capture. Due to the design of the input vector 
to the network, there occur border issues and, as a consequence, 
a large number of false positive points. In our case, the presence 
of false positives is not dramatic as they are considered as 
outliers in the registration step. 
 
3.3.2 Point cloud registration and volume estimation: 
Point cloud registration was achieved by two successive 
procedures: an initial coarse registration followed by a fine 
registration. The rough alignment was obtained by a 
transformation and RANSAC. The RMSE error for this 
registration was of 0.434 m. The registration procedure finished 
with a rigid body transformation based on ICP and showed an 
error of 0.052 m. A detail of the point clouds resulting of this 
two-step alignment are shown in Figure 9. 
 
For the volume of concrete estimation and thickness 
calculation, the signed distances from the initial to the 
successive point cloud were obtained using Cloud Compare. In 
this case, the latter point cloud was used as a reference.  

 
Figure 9. Point cloud registration based on rock bolt locations. 
Points registered after the initial geometric procedures (grey) 
are transformed by ICP (purple) and registered to previous 

points (teal).  

 
Figure 10 shows the results for thickness estimation in form of 
point cloud. The histogram of the distances was overlaid in the 
picture for readability. As expected, most of the points are 
consistently negative. The integration of the negative distances 
in this point cloud of signed differences with a grid space of 5 
cm permits to obtain an estimation for the volume of sprayed 
concrete. This volume was of 3597 litres. 
 
 
4. CONCLUSIONS AND FUTURE TRENDS 

An automatic LiDAR-based method has been proposed for 
estimating the thickness and volume of sprayed concrete on an 
anchored retaining wall. The high density, high accuracy 3-D 
point cloud models obtained from a terrestrial laser scanner 
during the active construction phases were used to retrieve 
rockmass information remotely and complete volume 
calculations.  
 
 

 
 

Figure 10. Point cloud of signed distances between the two surveying epochs. The last epoch was used as a reference for distance 
calculation and as a result most of the points are below zero. The overlaid histogram shows the thickness estimation more in detail. 
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In particular, the algorithm first detects and segments rock bolts 
using a deep network diagram based on autoencoder. 
Furthermore, it uses these bolts to corregister the point clouds 
of different epochs. The alignment of successive scans provides 
valuable rockmass information, letting the user to conduct 
punctual thickness measurements, but also to measure the 
volume of shotcreted layers, avoiding the overestimation of 
costs by contractors.  
 
A future trend from this work is related to the improvements 
that can be made in order to increase the productivity of the 
segmentation process. A parallelization of the method, making 
use of additional instances of the detector, would decrease the 
processing time. Compilation to a native application using 
C/C++ or a similar language would also benefit the computation 
time.  
 
Moreover, the bolt detector could be suitable for mobile laser 
scanner (MLS) data processing by changing the azimuth angle 
for linear displacement, i.e., changing from spherical 
coordinates in TLS to cylindrical coordinates in MLS. 
Particular considerations should be made for speed and 
resolution requirements. 
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