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ABSTRACT:

3D urban models are valuable for urban map generation, environment monitoring, safety planning and educational purposes. For 3D
measurement of urban structures, generally airborne laser scanning sensors or multi-view satellite images are used as a data source.
However, close-range sensors (such as terrestrial laser scanners) and low cost cameras (which can generate point clouds based on
photogrammetry) can provide denser sampling of 3D surface geometry. Unfortunately, terrestrial laser scanning sensors are expensive
and trained persons are needed to use them for point cloud acquisition. A potential effective 3D modelling can be generated based on a
low cost smartphone sensor. Herein, we show examples of using smartphone camera images to generate 3D models of urban structures.
We compare a smartphone based 3D model of an example structure with a terrestrial laser scanning point cloud of the structure. This
comparison gives us opportunity to discuss the differences in terms of geometrical correctness, as well as the advantages, disadvantages
and limitations in data acquisition and processing. We also discuss how smartphone based point clouds can help to solve further
problems with 3D urban model generation in a practical way. We show that terrestrial laser scanning point clouds which do not have
color information can be colored using smartphones. The experiments, discussions and scientific findings might be insightful for the
future studies in fast, easy and low-cost 3D urban model generation field.

1 INTRODUCTION

Low-cost sensors are potentially an important source for auto-
matic and instant generation of 3D models which can be useful
for quick 3D urban model updating. However, the quality of the
models is questionable and the user may not have a good opinion
about how to collect images for the best 3D modelling results.

In this paper, we evaluate the reliability of point clouds generated
automatically by multi-view photogrammetry applied on smart-
phone camera images. Next, we show how to align uncalibrated
smartphone based point clouds with laser scanning point clouds
for comparison. We also discuss further applications where smart-
phone based point clouds can be useful in terms of time, budget
and man effort efficiency.

2 RELATED LITERATURE

Modelling 3D urban structures gained popularity in urban mon-
itoring, safety, planning, entertainment and commercial applica-
tions. 3D models are valuable especially for simulations. Most of
the time models are generated from airborne or satellite sensors
and the representations are improved by texture mapping. This
mapping is mostly done using optical aerial or satellite images
and texture mapping is applied onto 3D models of the scene. One
of the traditional solutions for local 3D data capturing is the use
of a Terrestrial Laser Scanner (TLS). Unfortunately, these devices
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are often very expensive, require careful handling by experts and
complex calibration procedures and they are designed for a re-
stricted depth range only. On the other hand, high sampling rates
with millimetre accuracy in depth and location makes TLS data
a quite reliable source for acquiring measurements. Therefore,
herein we use TLS data as reference to evaluate the accuracy of
the iPhone point cloud. An overview and the major differences
between TLS and multi-view 3D model generation technologies
are explained by Baltsavias (1999).

In last years, there has been a considerable amount of research on
3D modelling of urban structures. Liu et al. Liu et al. (2006) ap-
plied structure-from-motion (SFM) to a collection of photographs
to infer a sparse set of 3D points, and furthermore they performed
2D to 3D registration by using camera parameters and photogram-
metry techniques. Another work by Zhao et al. Zhao et al. (2004)
introduced stereo vision techniques to infer 3D structure from
video sequences, followed by 3D-3D registration with the iter-
ative closest point (ICP) algorithm. Some of the significant stud-
ies in this field focused on the alignment work Huttenlocher and
Ullman (1990) and the viewpoint consistency constraint Lowe
(2004). Those traditional methods assume a clean, correct 3D
model with known contours that produce edges when projected.
2D shape to image matching is another well-explored topic in
literature. The most popular methods include chamfer match-
ing, Hausdorff matching introduced by Huttenlocher et al. (1993)
and shape context matching as introduced by Belongie et al. Be-
longie and Malik (2002). Koch et al. (1998) reconstructed out-
door objects in 3D by using multi-view images without calibrat-
ing the camera. Wang (2012) proposed a semi-automatic algo-
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rithm to reconstruct 3D building models by using images taken
from smart phones with GPS and g-sensor (accelerometer) in-
formation. Fritsch et al. (2011) used a similar idea for 3D re-
construction of historical buildings. They used multi-view smart
phone images with 3D position and G-sensor information to re-
construct building facades. Bach and Daniel (2011) used iPhone
images to generate 3D models. To do so, they also used multi-
view images. They extracted building corners and edges which
are used for registration and depth estimation purposes between
images. After estimating the 3D building model, they have cho-
sen one of the images for each facade with the best looking angle
and they have registered that image on the 3D model for tex-
turing it. They have provided an opportunity to the user to se-
lect their accurate image acquisition positions on a satellite map
since iPhone GPS data does not always provide very accurate po-
sitioning information. Heidari et al. (2013) proposed an object
tracking method using the iPhone 4 camera sensor. These stud-
ies show the usability of iPhone images for feature extraction and
matching purposes which is also one of the important steps of
3D depth measurement from multi-view images. On the other
hand there are some disadvantages. Unfortunately, videos gener-
ally have higher compression effects, besides they might contain
errors because of the rolling shutter. In order to cope with these
physical challenges, Klein and Murray (2009) applied a rolling
shutter compensation algorithm at the Bundle adjustment stage.
In order to test effect of the camera sensor on the point cloud
reconstruction accuracy, Thoeni et al. Thoeni et al. (2014) re-
constructed a rock wall using five different cameras of different
quality and compared the reconstructed point clouds with TLS
scanning of the same wall. Besides, discussing performances of
different cameras, they also concluded that having multi-view im-
ages orthogonal to the object of interest increases the accuracy of
the point cloud generation process.

When the point clouds are generated from multi-view images
based on photogrammetry, illumination conditions play a crucial
role for dense and accurate reconstruction. In order to make the
reconstruction approaches independent from illumination, Laf-
font et al. (2013) proposed a 3D multi-view imaging based point
cloud reconstruction method using images separated into reflectance
and illumination components. The method also showed success-
ful results to remove self-shadows of urban structures which re-
duced the reconstruction error.

In order to increase the quality of the urban structure point cloud,
researchers developed intelligent post-processing techniques to
apply on the generated point cloud. Friedman and Stamos (2012)
introduced a method to fill the gaps in the point clouds which
are caused by occluding objects. The proposed approach fills the
point cloud gaps successfully if the building facades have regu-
lar repetitive patterns.Turner and Zakhor (2012) proposed a sharp
hole filling method under the assumption that buildings are com-
posed of axis-aligned 3D rectilinear structures. They separated
the point clouds into planer surfaces and fit a plane on each point
cloud group. Then, the missing points are obtained by interpola-
tion and sharpened by resampling the new points considering the
planer surfaces.

We see that smartphone camera based point clouds of the ur-
ban structures need to be validated by comparing their geomet-
rical properties with airborne and terrestrial laser scanning point
clouds. Therefore, our paper focuses on this comparison, as well
as the other extra benefits that smartphone camera based point
clouds can provide.

3 POINT CLOUD ACQUISITION

For smartphone point cloud generation and laser point cloud ac-
quisition, we have selected a windmill as an example urban struc-
ture. Windmill has specific challenges compared to many other
regular buildings. The windmill structure does not have flat walls
and the top part of the mill rotates while it is being used. The ex-
ample windmill is a historical structure in Delft, the Netherlands.
It is 3D model generation is important to keep it as a documen-
tation and also for monitoring 3D changes like possible deforma-
tions and damages of this old structure.

The Leica C10 Scan Station scanner is a time-of-flight scanner
with an effective operating range of +/- 1-200 m (up to 300 m
with 90% reflectivity). It’s motorized head allows scanning of
a complete 360 degree by 270 degree area. Data is acquired at
a rate of 50,000 points/second and can be stored on-board or on
a wireless or wired laptop. The C10 has a number of features
which make it particularly effective. It has an on-board camera
which can provide images to be automatically aligned with the
scans to texture the point clouds. The published datasheet (2011)
specifications indicate that the accuracy of a single measurement
is 6 mm in position and 4 mm in depth (at ranges up to 50 m).
A windmill is scanned by the Leica C10 laser scanner in order to
discuss the accuracy of the smartphone based point cloud. The
Leica C10 laser scanner and the generated point cloud from a
single scan station are presented in Figure 1.

Although Leica C10 laser scanner provides very high density and
very high quality point clouds, the practical difficulties of trans-
porting the scanner to different stations make it challenging to use
in every day life, especially when the point clouds need to be gen-
erated urgently. Besides, the device must be used by a trained per-
son who has experience with target installation, data acquisition
and post-registration steps. A smartphone based point cloud gen-
eration process provides practical advantages to overcome many
of those difficulties. There are of course new laser scanning de-
vices, such as hand-held laser scanners which might be physically
more practical to use. However, as introduced by Sirmacek et al.
(2016), point clouds acquired by these scanners need to be sent
to an paid-online service to be post-processed and be ready to be
used.

Another issue with Leica C10 laser scanner point clouds is that
the acquired point cloud does not contain color information of
points. Some laser scanners do not have option for providing
color registration on the point clouds. For Leica C10 laser scan-
ner this is not the case. The scanner has capability to register
color information to points. However, choosing this coloring op-
tion increases the point cloud acquisition time immensely. When
exteriors of the urban structures need to be scanned with a laser
scanner, most of the time the scan station must be set in a public
place which is most of the time a busy area that cannot be occu-
pied for more than few minutes. This issue creates challenges for
color information registered point cloud generation. The easiest
and the fastest way is to generate point clouds without color in-
formation, was the case for the windmill point cloud represented
in Figure 1.

After cutting only the windmill from the original point cloud, the
laser scanning point cloud -which can be scene in Figure 2 to-
gether with the iPhone point cloud- consists of 160, 501 points
where each point has only (x, y, z) attributes.

The iPhone point cloud is generated using multi-view images
taken by iPhone 3GS smartphone sensor. The algorithm starts
by extracting local features of each input image, as introduced
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Figure 1: Left; Leica C10 laser scanner. Right; Point cloud obtained by the laser scanner. The red marker shows the scan station
position.

by Lowe (2004). The smallest Euclidean distances between the
descriptor vectors are considered for matching local features of
overlapping input images. After local feature matching process,
the relative rotation, translation and position matrices are calcu-
lated and these matrices are used as input for the structure from
motion (SfM) algorithm represented by Hartley (1993), in order
to estimate the internal and external camera parameters. These
are used for initializing the bundle adjustment algorithm which
helps us by calculating the complete 3D point cloud. Figure 2
shows some of the input images and the resulting point cloud. In
total 50 iPhone images are used for point cloud generation. The
resulting point cloud consists of 161, 524 points where each point
is represented by (x, y, z, r, g, b) attributes.

Figure 2: Top; a collage of the sample iPhone images which are
used for point cloud generation. Bottom; The point cloud

obtained based on multi-view photogrammetry.

4 ASSESSMENT OF THE SMARTPHONE AND LASER
SCANNING POINT CLOUDS

In order to compare the smartphone based point cloud with the
terrestrial laser scanning point cloud, the point clouds must be
aligned. The major problem with smartphone based point clouds
is that they are not calibrated. Their scale, rotation and location in
3D space does not show realistic information. On the other hand,
our terrestrial laser scanning point cloud shows the 3D distance
relationships of the scanned object sampling points in very high
accuracy.

The alignment of smartphone point cloud on the laser scanning
point cloud is performed in two steps; (1) a course re-scaling and
alignment is performed by applying a transformation function to
the smartphone point cloud, based on manual tie point selection
between the smartphone and laser scanning point clouds, (2) Fine
alignment of the smartphone point cloud on the laser scanning
point cloud is performed using the Iterative Closest Points (ICP)
approach.

One challenge with the example structure is that, since it is a
functioning windmill, its top mill rotates. Therefore, the time dif-
ference between the smartphone point cloud generation and laser
scanning, causes different positions of the moving parts. One
part which is sure to be found stable in different data is the bal-
cony of the windmill structure. Therefore, for the smartphone
point cloud accuracy assessment, we compare the geometry of
the point clouds only for the balcony area. Figure 3 shows the
balcony of the smartphone point cloud and its fine alignment on
the laser scanning point cloud.

In Figure 4, we show some screenshots of the 3D geometry com-
parison of the smartphone and laser scanner point clouds. The top
row shows the comparison of the 3D distance between the same
reference points. A distance of 4.489meters in the laser scan-
ning point cloud is measured as 4.317meters in the smartphone
based point cloud based on the laser scanning point cloud mea-
surements taken as reference. This shows that the measurement
is done with 3.8% error with smartphone. The bottom row of the
Figure 4, shows that the balcony edge angle which is 146.833 de-
grees in laser scanning data is measured as 149.345 degrees in the
smartphone point cloud. This shows that the angle measurement
is done with 1.7% error when smartphone is used. The results
show the very low 3D geometrical error values of the smartphone
based point cloud.

After the two alignment steps are performed, on the intersection
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area of the two point clouds the error values (3D Euclidean dis-
tance of the iPhone point cloud points to the closest laser scanning
points) are computed. The error values and their histogram are
represented in Figure 5 (based on comparison of 19163 points in
the intersection area). Mean error of the smartphone based point
cloud is calculated as 0.16 meters. This is mainly because of the
thin line like structure details of the balcony which could not be
modelled with smartphone.

Figure 5: Top; Error values are computed by comparing the
distance of the iPhone point cloud points to the closest laser
scanning points. Bottom; a histogram of the error values is

presented.

5 USING SMARTPHONE DATA FOR COLORING
LASER SCANNING POINT CLOUD

As we mentioned earlier, color registration to the laser scanning
point clouds might require very long data acquisition time which
is most of the time undesirable. For this reason, most of the time
it is preferred to acquire point clouds without color information.
However, coloring point clouds is very important for represent-
ing realistic and more informative 3D rendering. In this point,
smartphone point clouds might be very helpful to assign color in-
formation to the laser scanning point clouds. To do so, herein we
propose a new technique for coloring laser scanning point clouds
based on smartphone data.

The point cloud coloring approach works as follows. For each
point in the laser scanning point cloud, the closest three points
of the smartphone point cloud is determined. The mean of red,
green and blue attributes of these three smartphone point cloud
are computed. Finally, they are assigned as attribute values to the
laser scanning point sample. Figure 6 shows the laser scanning
point cloud after its colored with smartphone data.

6 CONCLUSION

3D reconstruction of urban structures is crucial for many field
such as 3D urban map generation, observing changes in three

Figure 6: Leica C10 laser scanner point cloud colored using
smartphone data.

dimensions, developing 3D entertainment, engineering applica-
tions, disaster preparation simulations, storing detailed informa-
tion about cultural heritage. Point clouds are developing towards
a standard product for 3D model reconstruction in urban man-
agement field. Still, outdoor point cloud acquisition with active
sensors is a relatively expensive and involved process. Genera-
tion of point clouds using smartphone sensors could be a rapid,
cheap and less involved alternative for local point cloud gener-
ation, that could be applied for 3D archive updating. Besides,
accuracy computation for practical point cloud generation, we
present a method to add color information to existing point clouds
with smartphone sensors.
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Figure 3: Left; balcony of the windmill from the smartphone point cloud. Middle and right; after fine alignment process on the laser
scanning point cloud.

Figure 4: Top; measuring the distance between the same reference points based on iPhone and laser scanning point clouds
respectively. Bottom; measuring the angle between two edges based on iPhone and laser scanning point clouds respectively.
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