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ABSTRACT: 

 

This paper proposes a new technique for increasing the accuracy of direct geo-referenced image-based 3D point cloud generated from 

low-cost sensors in smartphones. The smartphone’s motion sensors are used to directly acquire the Exterior Orientation Parameters 

(EOPs) of the captured images. These EOPs, along with the Interior Orientation Parameters (IOPs) of the camera/ phone, are used to 

reconstruct the image-based 3D point cloud. However, because smartphone motion sensors suffer from poor GPS accuracy, 

accumulated drift and high signal noise, inaccurate 3D mapping solutions often result. Therefore, horizontal and vertical linear features, 

visible in each image, are extracted and used as constraints in the bundle adjustment procedure. These constraints correct the relative 

position and orientation of the 3D mapping solution. Once the enhanced EOPs are estimated, the semi-global matching algorithm 

(SGM) is used to generate the image-based dense 3D point cloud. Statistical analysis and assessment are implemented herein, in order 

to demonstrate the feasibility of 3D point cloud generation from the consumer-grade sensors in smartphones. 

 

 

1. INTRODUCTION 

The demand for dense 3D point clouds has been increasing over 

the past decade. This demand is to satisfy a variety of 

applications, including 3D object reconstruction and mapping. In 

general, 3D point clouds can be acquired through two different 

remote sensing systems; active and passive. An active system 

has the ability to acquire a precise and reliable 3D point cloud of 

an object directly (i.e., with a laser scanner). However, this 

system is expensive when compared to a passive system. Passive 

systems have the ability to acquire and reconstruct a 3D of an 

object from a set of overlapping images using digital cameras 

along with the knowledge of the EOPs of these captured images, 

the IOPs of the involved camera, and the corresponding points 

in the overlapping images. The IOPs can be obtained from the 

camera calibration process, while EOPs can be obtained using 

one of two geo-referencing approaches in photogrammetry; 

indirect and direct. The difference between the two depends on 

how EOPs are determined, which involves the position and 

orientation of the involved images. The indirect approach uses a 

set of control points to determine EOPs, while the direct 

approach uses on-board GPS/INS position and orientation 

systems for calculating EOPs at the time of exposure, using 

Mobile Mapping System (MMS) (El-Sheimy, 2008).  

Today's smartphones are getting ever more sophisticated and 

smarter reaching to close the gap between computers and 

portable tablet devices (such as iPad). Current generation of 

smartphones are equipped with micro-electro mechanical 

systems (MEMS) based navigation sensors (such as gyroscopes, 

accelerometers, magnetic compass, and barometers), offering 

the potential for integrating these sensors with GPS for outdoor 

applications (e.g. the IPhone6 integrates 3-accelerometers, 3-

gyroscopes, pedometer, compass, barometer, step detector, and 

step counter). These sensors are needed for a direct geo-

referenced system, as illustrated in Figure 2. Furthermore, 

nowadays smartphones are all equipped with high resolution 

digital cameras at the same resolution of current land-based 

MMS and thus allow mapping at large operational range (e.g. 

100m). As a result, smartphones are now getting quite popular 

for data collection projects including point data mapping tasks 

and it is not far before we see smartphones are adopted as mobile 

mappers and thus the importance of this paper. The objective of 

this paper is to explore the feasibility of using consumer-grade 

smartphones for direct geo-referenced 3D point cloud generation 

from overlapping imagery. 

2. RELATED WORK 

2.1 MMS and Smartphone  

MMS started in 1991 as land-based systems with the GPSVanTM 

developed by the Center for Mapping at Ohio State University 

(Ellum, 2001). This system integrated a code-only GPS receiver, 

two digital CCD cameras, two colour video cameras, two 

gyroscopes, and an odometer. The sensors were mounted on a 

van, and coordinated to calculate the position of an object relative 

to the vehicle. The relative accuracy of this system was within 

approximately 10 cm, while the absolute accuracy was between 

one to three meters. The GPSVanTM successfully showed how 

land-based multi-sensor systems improve the efficiency of GIS 

and mapping data collection. The absolute accuracy of the object 

space points, however, was too poor for many applications, 

especially when compared with competing technologies, such as 

total station. Furthermore, the dead-reckoning sensors in the 

GPSVan were not suitable for bridging GPS signal outages. 

 

The VISAT system was subsequently developed in order to 

obtain more accurate mapping results. This system was 

developed by the Department of Geomatics Engineering at the 

University of Calgary. The VISAT system consists of eight 

digital cameras, a dual frequency carrier phase differential GPS, 

and a navigation grade IMU, used for improving the accuracy of 

the mapping solution during GPS signal outages. The relative 

accuracy of this system was within 0.1m, with an absolute 

accuracy of 0.3 meters (El-Sheimy, 1996; Schwarz and El-

Sheimy, 1996). 

 

Smartphone motion sensors and consumer-grade cameras, in 

principle, are the essential elements of MMS. Al-Hamad (2014a) 

introduced the “Mobile Mapping Using Smartphones” method, 

where smartphone sensors (i.e., camera, GPS, IMU, and 

Magnetometer) are used as MMS. The initial position and 

orientation of the camera at the time of exposure was determined 
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using low-cost GPS and motion sensors. These position and 

orientation measurements were used within a bundle adjustment 

as initial values for EOPs, and were then corrected using imaging 

techniques (i.e., epipolar geometry).  The Speeded Up Robust 

Features (SUFT) algorithm was used to determine automatic 

matched points between each two consecutive images. The 

epipolar line, along with these matched points, was then used as 

a constraint to enhance the relative position and orientation of 

each captured image with respect to the first captured image. 

Although the relative position and orientation accuracy of each 

image increased, because the first image had not been corrected, 

and because it relied on the poor accuracy of the GPS, the 

mapping result were shifted by the error in the EOP of the first 

image. Consequently, some control points were used to rescale 

the mapping solution (Al-Hamad at el, 2014b). Al-Hamad et al. 

(2014c) suggested possible methods for solving the shifted 

solution problem, such as integrating the absolute and relative 

navigation systems (GPS/IMU), or developing a system using 

non-linear least square estimator to correct initial IOP and EOP 

values. Although this work was implemented in a small testing 

situation, it successfully illustrated that “Mobile Mapping Using 

Smartphones” is a promising low cost solution with the potential 

to expand the range of MMS technologies by creating new 

opportunities for low-cost and easy area coverage, into research 

fields. 

 

2.2 Image-based 3D point cloud Generation  

Generally, dense matching techniques can be divided into three 

types: Local, Global, and Semi-Global Matching (SGM). The 

difference between these techniques centres on the method used 

to locate corresponding pixels in image stereo-pairs. The local 

disparity optimization technique is based on finding the best 

matched pixel using a Winner-takes-all (WTA) strategy, and 

does not operate using images with uniform areas (He et al., 

2015). Several global methods have been deployed to overcome 

the inherent disadvantages of the local technique such as Graph-

Cut based (Boykov et al., 2001), Belief Propagation (Sun et al., 

2003), and Dynamic Programming (Forstmann et al., 2004), but 

these methods are fairly inefficient in terms of computational 

time. The SGM technique provides a trade-off between the two 

previous techniques and is based on minimizing the matching 

cost along several 1D directions in the image. This technique 

generally follows four steps: 1) matching cost computation; 2) 

cost aggregation; 3) disparity map optimization, and; 4) 

refinement (Hirschmüller, 2005, 2008). The SGM technique is 

used in this paper for generating the 3D point cloud. 

 

3. METHODOLOGY 

3.1 Direct geo-referencing using a smartphone: 

The direct geo-referencing procedure is conducted using 

smartphone motion sensors and a low-cost camera, as shown in 

Equation (1), and illustrated in Figure 1: 

 
 

Figure 1. Position of the object point with respect to the 

mapping system 
 

      𝐫𝐩
𝐦 = 𝐫𝐆𝐏𝐒

𝐦 (𝐭) + 𝐑𝐛
𝐦(𝐭) ∗ (𝐒𝐩 ∗ 𝐑𝐂

𝐛 ∗ 𝐫𝐩
𝐜 + 𝐫𝐛

𝐜 − 𝐫𝐛
𝐆𝐏𝐒)          (1) 

 

Where 𝑟𝑝
𝑚 and 𝑟𝐺𝑃𝑆

𝑚  are the object point and GPS or (INS) 

positions in the mapping coordinate frame, respectively, (𝑡) is 

time, 𝑅𝑏
𝑚(𝑡) is the rotation matrix between the IMU (body) frame 

and the mapping frame, 𝑟𝑏
𝑐 is the lever arm, a position vector 

between the IMU-body unit and the camera, and 𝑟𝑏
𝐺𝑃𝑆 a position 

vector from the IMU-body unit to the GPS receiver. 𝑆𝑝is the 

scale factor between the camera and  the mapping coordinate 

systems for each point,  𝑅𝐶
𝑏 is the boresight angle, the rotation 

matrix between the camera and IMU coordinate systems, and 𝑟𝑝
𝑐 

is the coordinate vector of the object point image coordinates in 

the camera frame.  

 

3.2 Data collection app 

Apple app software has been developed to capture and 

synchronize images with motion sensors at the time of exposure, 

as shown in Figure 2: 

 

 
 

Figure 2. Developed Apple App 

 

3.3 Workflow 

As shown in Figure 3, the workflow of the proposed 

methodologies begins with the calibration of the smartphone’s 

camera in order to determine its IOPs. Concurrent to this initial 

calibration, the collection and synchronization of captured 

images using their position and orientation measurements at time 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B5, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B5-621-2016

 
622



of exposure, using the low-cost motion sensors from the 

smartphone. Consequently, the initial EOPs of each image are 

determined directly 

 

 
Figure 3. Methodologies Chart 

 

3.4 Camera Calibration 

Most smartphone uses cameras with unstable IOPs, 

consequently, the stability of this camera must be tested 

frequently and compared frequently with a reference value. 

Therefore, robust calibration procedure is required before using 

the phone in mapping, in order to obtain ideal IOP values. The 

camera in the iPhone 6 is calibrated in the laboratory using test 

fields (coded targets) with known ground control and tie points, 

as shown in Figure 4 (Lari et al., 2014) through the collinearity 

conditions ( Equations (2-3)) resulting in the IOPs listed in Table 

2. The IOP values, especially the focal length, are very close to 

the values provided in the iPhone-6 manual.  

  

 
 

Figure 4. Coded Targets 

 

IOPs Parameters  (mm) 

𝒙𝒑 Principle point 0.0723 

𝒚𝒑 Principle point 0.0077 

𝒄 focal length 4.2029 

𝒌𝟏 radial lens distortion 0.00533 

𝒌𝟐 radial lens distortion -0.000406 

𝑷𝟏 decentric lens distortion 0.001376 

𝑷𝟐 decentric lens distortion 0.00092 

Pixel size 0.0015 

Table 1. IOPs Result 

3.5  3D Object Reconstruction (Collinearity Equations) 

Collinearity equations (conditions) represent the functional 

(mathematical) mode, exploiting the general relationship 

between the image and the ground coordinate systems. Therefore, 

the image point, the object point, and the perspective center of 

the camera, must lie on a line in the 3D space in order to fulfil 

this condition of collinearity (Mikhail et al., 2001; Wolf and 

Dewitt, 2000). The collinearity concept is illustrated in Figure 5 

and represented by equation. 

 

 𝒙𝒂 = 𝒙𝒑 − 𝒄
𝒓𝟏𝟏(𝑿𝑨 − 𝑿𝟎) + 𝒓𝟏𝟐(𝒀𝑨 − 𝒀𝟎) + 𝒓𝟏𝟑(𝒁𝑨 − 𝒁𝟎)

𝒓𝟑𝟏(𝑿𝑨 − 𝑿𝟎) + 𝒓𝟑𝟐(𝒀𝑨 − 𝒀𝟎) + 𝒓𝟑𝟑(𝒁𝑨 − 𝒁𝟎)
+ ∆𝒙 

 

(2) 

 

𝒚𝒂 = 𝒚𝒑 − 𝒄
𝒓𝟐𝟏(𝑿𝑨 − 𝑿𝟎) + 𝒓𝟐𝟐(𝒀𝑨 − 𝒀𝟎) + 𝒓𝟐𝟑(𝒁𝑨 − 𝒁𝟎)

𝒓𝟑𝟏(𝑿𝑨 − 𝑿𝟎) + 𝒓𝟑𝟐(𝒀𝑨 − 𝒀𝟎) + 𝒓𝟑𝟑(𝒁𝑨 − 𝒁𝟎)
+ ∆𝒚 

 

(3) 

 

Where 𝑐 is the perspective distance of the camera. The image 

coordinates of the principal point are 𝑥𝑝, 𝑦𝑝; the image 

coordinates of the object point are 𝑥𝑎,𝑦𝑎; the perspective centre 

ground coordinates are 𝑋0, 𝑌0, 𝑍0, and the object point ground 

coordinates are 𝑋𝐴, 𝑌𝐴, 𝑍𝐴. 

 
 

Figure 5. Collinearity Equation Concept 

 

3.6 Mathematical Model (Bundle Adjustment) 

The Bundle adjustment technique is based on the non-linear least 

square method, used to estimate and recover object point co-

ordinates, EOPs, and occasionally IOPs.  Equations (4, 5, and 6) 

show the Gauss Markov observation model of the non-linear least 

squares method, demonstrating the general relationship between 

a set of observation quantities, and the unknown parameters. 

 

𝛅𝐳 = 𝐀𝛅𝐱 + 𝐯 (4) 

Where 𝑧  is the observation vector, 𝐴 is the design matrix 

describing the mathematical relation between the observations 

and the unknown's vector, 𝑥 is the unknown vector, and 𝑣 is the 

measurements error vector. 

 

Given that the bundle adjustment is not a linear problem, the final 

least square equation can be expressed using Equation (5) 

 

𝛅�̂� = (𝐀𝐓𝐑−𝟏𝐀)−𝟏 𝐀𝐓𝐑−𝟏𝛅𝐰 
 

(5) 

Where 𝛿�̂�  is a correction for the expected unknown’s vector, (𝐴) 

is the design matrix, derived by the partial derivative of the 

measurements with respect to the unknowns, and 𝛿𝑤 is the 

misclosure vector, derived by the difference between the 
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measured and the expected observations using the expected 

unknown vector. Equation (5) can be written in a more general 

structure as shown in Equation (6). 

 

𝛅�̂� = 𝐍−𝟏 ∗ 𝐮 (6) 

Where 𝑁 is the Normal matrix, and (u) is known as the Normal 

vector. 

 

The unknown’s parameters can be split into two homogeneous 

groups, namely: EOPs denoted with subscript (EOPs) and object 

points (OP) parameters, denoted with subscript (OP), as shown 

in Equation (7). 

 

(
𝛅�̂�𝐄𝐎𝐏𝐬

𝛅�̂�𝐎𝐏
) = (

𝐀𝐓
𝐄𝐎𝐏𝐬𝐑−𝟏𝐀𝐄𝐎𝐏𝐬 𝐀𝐓

𝐄𝐎𝐏𝐬𝐑−𝟏𝐀𝐎𝐏

𝐀𝐓
𝐄𝐎𝐏𝐬𝐑−𝟏𝐀𝐎𝐏 𝐀𝐓

𝐎𝐏𝐑−𝟏𝐀𝐎𝐏

)

−𝟏

∗ (
𝐀𝐓

𝐄𝐎𝐏𝐬𝐑−𝟏𝐰

𝐀𝐓
𝐎𝐏𝐑−𝟏𝐰

) 

 

(7) 

 

3.6.1 Vertical and Horizontal Linear Features Constraints in 

Bundle Adjustment: Geometric information in the images can 

be used to enhance coordinate determination and to achieve a 

higher quality, more reliable, solution. A common example of 

geometric information are straight lines, either vertically or 

horizontally. The constraints for two points of line can be 

expressed using Equation (8) (El-Sheimy, 1996). 

 

𝐗𝐢 − 𝐗𝐣 = 𝐘𝐢 − 𝐘𝐣 = 𝟎 

𝐙𝐢 − 𝐙𝐣 = 𝟎 

(8) 

 

Where 𝑖, 𝑗 are any two points on straight line. 

 

As illustrated in Figure 6, the only change between any two 

points along the blue vertical line is in height, while (x, y) 

dimensions for each point are similar. Similarly, any two points 

along the red horizontal line have the same value for height, while 

the (x, y) dimensions for each point are different. 

 

 
 

Figure 6. Straight Linear Feature Constraints 

 

These linear features are independently determined observations, 

capable of being added to the system equations as constraints in 

the Normal matrix. These linear features conditions are denoted 

with subscript c, and are added to the object space group as they 

are measured in the object space domain. Therefore, Equation (7) 

can be rearranged as follows: 

 

(
𝛅�̂�𝐄𝐎𝐏𝐬

𝛅�̂�𝐎𝐏
) = (

𝐀𝐓
𝐄𝐎𝐏𝐬𝐑−𝟏𝐀𝐄𝐎𝐏𝐬 𝐀𝐓

𝐄𝐎𝐏𝐬𝐑−𝟏𝐀𝐎𝐏

𝐀𝐎𝐏
𝐓 𝐑−𝟏 𝐀𝐄𝐎𝐏𝐬 𝐀𝐓

𝐎𝐏𝐑−𝟏𝐀𝐎𝐏 + 𝐀𝐂
𝐓 𝐑−𝟏𝐀𝐜

) ∗

                        (
𝐀𝐓

𝐄𝐎𝐏𝐬 𝐑−𝟏 𝐰

𝐀𝐓
𝐎𝐏𝐑−𝟏𝐰 + 𝐀𝐂

𝐓 𝐑−𝟏𝐰𝐜

)                            (9) 

 

3.6.2 Free Network Adjustment: Since the smartphone uses 

low cost GPS and INS sensors, EOPs obtained by this system 

need to be corrected inside the bundle adjustment. Hence, if the 

bundle adjustment is performed without GCPs, then the datum 

seven parameters need to be defined using alternative method. 

Therefore, a free bundle-adjustment procedure is used to 

overcome the problem of datum deficiency, where the inner 

constraint matrix is used to remove the rank defect of the Normal 

matrix (Granshaw, 1980) using the estimated initial ground 

coordinate of the tie point’s values as shown in Equation (10). 

Figure 7 demonstrate the general layout of the final result of 

using linear features constraints with free network adjustment 

method. 

 

𝑮 = (

𝟏 𝟎 𝟎 𝟎 −𝒁𝑨 𝒀𝑨 𝑿𝑨

𝟎 𝟏 𝟎 𝒁𝑨 𝟎 −𝑿𝑨 𝒀𝑨

𝟎 𝟎 𝟏 −𝒀𝑨 𝑿𝑨 𝟎 𝒁𝑨

) 

 

(10) 

 

    

 
 

Figure 7. Final Form of Normal Matrix 

 

3.6.3 Semi-Global Dense Matching (SGM): The enhanced 

EOPs of each image are obtained from the bundle adjustment 

procedure using initial values acquired directly through the 

smartphone sensors and geometric constraints technique. These 

enhanced EOPs, along with IOPs obtained through the camera 

calibration procedure, are used to generate rectified images. 

Then, the epipolar geometry between each rectified stereo-pair of 

images is reconstructed. By using epipolar geometry, the search 

for the corresponding pixel between each stereo-pair is 

minimized. Then, the matching cost is computed using the 

Normalized Cross Correlation (NCC) algorithm and cost 

aggregation, eventually resulting in the production of a course 

disparity map. Using this map, a dense 3D point cloud is finally 

generated using a linear spatial intersection of light rays from all 

matched pixels. 
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4. EXPERIMENT RESULT AND DISCUSSION 

Seven images, along with their EOPs, are captured using the 

developed Apple app over an area with well distributed ground 

control points (GCPs), shown in Figure 8. The bundle adjustment 

procedure was implemented once with GCPs, and again without 

GCPs. In total, five different GCPs were used to recover the 

EOPs of the captured imagery, the IOPs of the iPhone 6’s camera, 

and the ground coordinates of object points. Then, using the free 

network adjustment approach, along with the proposed linear 

feature constraints, resulted in enhanced accuracy of Euler angles 

(omega, Phi, and Kappa).   

 

 
 

Figure 8. Captured overlapped images using IPhone6’s 

camera 

 

Table 2 shows the difference in position for each camera station 

at the time of exposure with and without the use of GCPs. These 

positions are calculated using a single point positioning 

technique.  

 

Position 

error 

East (m) North (m) Height (m) 

Image1 3.71 2.89 2.45 

Image2 2.011 3.09 2.177 

Image3 1.101 4.61 1.73 

Image4 0.42 3.12 2.18 

Image5 0.60 4.01 2.23 

Image6 7.13 2.61 2.57 

Image7 0.43 2.41 2.58 

 

Table 2. Camera Position Error 

 

The 3D reconstruction result for several object points, using a 

free network adjustment, is compared with ground truth data, and 

the root mean square error is then calculated, as illustrated by 

Table 3 and Figure 9.   

 

Position 

error 

East (m) North (m) Height (m) 

RMS 3.82 4.27 3.85 

 

Table 3. Final Solution Error 

 

 

 
 

Figure 9. Horizontal error 

 

4.1 Generated 3D point cloud  

Figure 10 illustrates the smartphone-generated 3D point cloud, 

which clearly shows the potential of smartphone sensors. 

Although, seven images were used, someone can identify and 

recognize different features in 3D. Furthermore, higher quality 

3D point cloud can be produced if dense matching technique and 

more images are used.  

 

 
 

Figure10. Image-based 3D point cloud result 

 

4.2 Measuring Lengths Application 

Several feature lengths, shown Table 4 and Figure 11, are 

measured using the generated point cloud and these are compared 

to the truth data in order to ascertain the effectiveness of using 

the point cloud for mapping applications. The results indicate a 

relatively high level of accuracy for the final mapping solution. 

 

Measured Feature 

number 

True length (m) Measured length 

(m) 

1 0.90 0.98 

2 1.02 1.05 

3 2.56 2.61 

4 2.24 2.33 

5 1.09 1.012 

 

Table 4. Measured length 
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Figure11. Image-based 3D point cloud result 

 

5. CONCLUSION 

In this paper, a new technique for increasing the direct geo-

referencing accuracy of image-based 3D point cloud using a 

smartphone is proposed. Vertical and horizontal linear feature 

constraints are used in the bundle adjustment procedure to correct 

initial EOPs acquired through smartphone motion sensors. The 

results demonstrate the ability of smartphone sensors for 

generating 3D point clouds with a relatively acceptable level of 

accuracy.  
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