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ABSTRACT: 
 
Accurate estimation of camera external orientation with respect to a known object is one of the central problems in photogrammetry 
and computer vision. In recent years this problem is gaining an increasing attention in the field of UAV autonomous flight. Such 
application requires a real-time performance and robustness of the external orientation estimation algorithm. The accuracy of the 
solution is strongly dependent on the number of reference points visible on the given image. The problem only has an analytical 
solution if 3 or more reference points are visible. However, in limited visibility conditions it is often needed to perform external 
orientation with only 2 visible reference points. In such case the solution could be found if the gravity vector direction in the camera 
coordinate system is known. A number of algorithms for external orientation estimation for the case of 2 known reference points and 
a gravity vector were developed to date. Most of these algorithms provide analytical solution in the form of polynomial equation that 
is subject to large errors in the case of complex reference points configurations. This paper is focused on the development of a new 
computationally effective and robust algorithm for external orientation based on positions of 2 known reference points and a gravity 
vector. The algorithm implementation for guidance of a Parrot AR.Drone 2.0 micro-UAV is discussed. The experimental evaluation 
of the algorithm proved its computational efficiency and robustness against errors in reference points positions and complex 
configurations. 
 
 

1. INTRODUCTION 

The problem of external orientation estimation is one of the 
central problems in photogrammetry and computer vision. It 
could be stated as an estimation of six parameters of the external 
orientation that define the spatial position and orientation of the 
camera coordinate system with respect to the global object 
coordinate system (Luhmann et al., 2014). This problem is 
commonly known as the problem of camera calibration. In 
computer vision society this problem is sometimes referenced as 
Perspective-n-Point (PnP) problem, where n represent the 
number of available reference points. 
 
1.1 Related work 

It was shown by (Fischler and Bolles, 1981) that at least 3 
reference points are required to find a solution to pose estimation 
problem. However direct solution for P3P problem may not be 
found from weak reference point configurations. A direct 
solution for P4P  problem for arbitrary reference point 
configuration was proposed in (Abidi and Chandra, 1995). A 
large number of algorithms were developed for solution of PnP 
problem with n ≥ 4. Such algorithms are more robust against 
noise in the detected reference points positions but require an 
iterative approach to solve an overdetermined system of 
equations. Hence the computational complexity of state-of-the-
art PnP algorithms usually has a O(n5) relation with respect to 
time. 
 
In (Lepetit et al., 2008) a non-iterative robust EPnP algorithm for 
n ≥ 4 was proposed. Due to the non-iterative approach the 
computational complexity of EPnP grows linearly with respect 
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to n. A different approach to the PnP problem utilizing an error 
metric based on collinearity in object space (as opposed to image) 
is proposed in (Lu et al., 2000). The LHM iterative algorithm is 
based on this approach and provide a fast and globally convergent 
solution for PnP problems with n ≥ 3.  
 
All methods presented above perform the pose estimation using 
only the information about the reference points positions in the 
object space and their projections in the image space. However 
even human operator may have problem with an interpretation of 
a scene on an image that was captured with unnatural camera 
orientation (i.e. zenith direction or local gravity vector doesn’t 
coincide with the vertical axis). In contrast, any human usually 
has no problem with interpretation of the scene that he perceives 
by his vision. However, human vision system has a hint for 
estimation of the head rotation because the direction of local 
gravity vector is provided by the vestibular system. 
 
Hence if the direction of a gravity vector with respect to the 
camera is known the pose estimation problem could be 
simplified. A closed-form solution to the pose estimation 
problem with known vertical direction was proposed by 
(Kukelova et al., 2011). A uP2P algorithm finds the solution for 
camera pose and an unknown rotation angle about a single axis 
using collinearly equations. To simplify the equations 
trigonometric functions in the rotation matrix are eliminated 
using a substitution. The resulting system of equations could be 
solved to obtain a single polynomial in one variable of degree 
two that could be solved for the unknown rotation angle. Such 
approach was proved to be robust against small errors in gravity 
vector direction and errors in reference point positions up to 1 
pixel. However, as the substitution use a square of a tangent 
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function of the unknown rotation angle the solution may become 
unstable when the unknown angle is close to 90°.	
	
Another solution for P2P problem with known gravity vector 
direction is proposed in (D'Alfonso et al., 2014). In this method 
it is assumed that both camera and object with reference points 
are equipped with sensors that provide the orientation of gravity 
vector. Hence pose estimation with respect to a moving object is 
possible. The performance of the method is close to the 
performance of uP2P. However, estimation of the rotation angle 
is also unstable if the angle is close to 90°. 
 
Pose estimation for an arbitrary configuration of 2 points is often 
required in practical applications such as initial estimation of 
parameters for bundle adjustment or UAV autonomous flight. It 
is obvious that if 2 points are projected into a single point in the 
image, the pose of the camera couldn’t be estimated. Such weak 
configuration occurs if the line that connects 2 points is normal 
to the image plane. Direct solutions of collinearity equations for 
weak configurations are generally unstable. 
 
However, the robustness of the solution could be improved if the 
estimation of the rotation angle will be performed using 
homogenous coordinates on a unit sphere. Such approach is 
widely used for vanishing point detection and rotation estimation 
(Barnard, 1983), (Kalantari et al., 2008), (Förstner, 2010). This 
paper is focused on the development of a new algorithm for 
Minimal number of points Linear pose estimation with known 
Zenith direction (MLZ). The MLZ algorithm provide robust P2P 
pose estimation for weak configurations of reference points2. 
 
1.2 Paper outline 

The rest of the paper is organized as follows: in the second part 
the developed MLZ algorithm is presented. The problem 
statement is given and unit sphere based rotation angle estimation 
is discussed. The second part is concluded with the solution of 
the pose estimation problem and the algorithm pipeline. The third 
part is dedicated to the experimental evaluation of the algorithm 
using a computer simulation and a Parrot AR.Drone 2.0 micro-
UAV. The paper is concluded with the analysis of the 
experiments and prospects for further research. 
  

2. MLZ ALGORITHM 

2.1 Problem statement 

Assume a camera and two reference points in the field of view of 
the camera. Three coordinate systems are defined. Object 
coordinate system ОoХoYoZo is related to some object of interest 
in the observed scene and defined as follows: ОоХоZо plane is 
normal to gravity vector, the Yо axis is normal to Хо, Zо axes. The 
point of origin is related to some point of the observed scene and 
is selected appropriately for a given problem (figure 1). 
 
The origin of the image coordinate system ОiХiYiZi is located in 
the upper left pixel, the Xi is directed to the right, the Yi axis is 
directed downwards. 
 
The origin of the camera coordinate system ОcХcYcZc is located 
in the perspective center, the Xc axis is collinear with the Xi axis, 
the Yc axis is collinear with the Yi axis, the Zc axis is normal to 
Xc and Yc axes. The rotation of the camera coordinate system 
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with respect to object coordinate system is defined using rotation 
matrix Roc: 
 
 𝑅"# = 	𝑅& ∙ 𝑅( ∙ 𝑅), (1) 
 
where Rα – rotation matrix around the axis Y, R⍵ – rotation matrix 
around the axis X, Rϰ – rotation matrix around the axis Z. 

 

  
Figure 1. Coordinate systems 

 
The developed algorithm should provide an accurate estimation 
of the camera external orientation for a given pair of reference 
points X0, X1, with known coordinates in image space x0, x1 and 
known direction of a gravity vector in the camera coordinate 
system provided as rotation angles 𝜔 and 𝜅. The estimation 
should be robust against outliers in coordinates of reference 
points in image space and weak configurations of reference 
points.  
 
2.2 Unit sphere based rotation estimation 

The unit sphere mapping provides a method to avoid singularity 
during estimation of the position of a vanishing point. In 
(Barnard, 1983) a method for camera rotation estimation based 
on pairs of parallel lines in object space is proposed. Each pair of 
parallel lines is projected onto a unit sphere with a center in the 
perspective center. Each projection is contained by a plane that 
intersect the center of a unit sphere. A vector from the center of 
the sphere to the point of intersection of planes gives a direction 
vector of parallel lines in the camera coordinate system. Hence 
the rotation of the camera with respect to a given pair of parallel 
lines could be found. 
 
In the MLZ algorithm it is proposed to estimate the rotation of 
the camera using unit sphere mapping. Let α be the rotation angle 
of the camera coordinate system with respect to a line L that pass 
through the reference points X0, X1 (figure 2). A second line G 
that is parallel to L is required to found the angle α. Assume that 
the line L is coplanar to the plane ОcХcZc. Let us introduce an 
ancillary plane P that contains line L and is parallel to axis Yi. 
Then the line G that is parallel to the line L could be found as the 
intersection of the plane P and the plane ОcХcZc. The projection 
g of the line G on the image plane will be collinear with the Xi 
axis. Then the rotation angle α could be found using the virtual 
line g and the projection l of the line L: 
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 𝛼 = 	 tan01 023
24

, (2) 

 
 𝒎 = 	𝒚	×	𝒏, 
  
 𝒏 = 	𝒙𝟏′	×	𝒙𝟎′, 
 

 𝒚 = 	
0
1
0

, 

 
where n is a cross product between direction vectors x1’, x2’ on 
the unit sphere, m is a cross product between the unit vector y and 
the vector n.  
 

 
Figure 2. MLZ rotation estimation for a case when line L is 

coplanar to plane ОcХcZc 
 
To find the rotation angle for a general case let us introduce 
ancillary coordinate systems ОpХpYpZp, Оc0Хc0Yc0Zc0 and 
Оc’Хc’Yc’Zc’ (figure 3). The origin of the point coordinate system 
ОpХpYpZp is located in the point X0, the Xp axis is parallel to line 
L, the Yp axis is coplanar with plane P and normal to the axis Xp, 
the Zp is normal to Xp, Yp axes. Let Rop be the rotation matrix 
from the object coordinate system to the point coordinate system. 
Let Roc0 be the rotation matrix from object coordinate system to 
camera coordinate system in the case when angle α is equal to 
zero, and angles ω and ϰ are known. Then the coordinate system 
Оc0Хc0Yc0Zc0 could be found by rotation of the coordinate system 
ОoХoYoZo with the matrix Roc0. The coordinate system 
Оc’Хc’Yc’Zc’ could be found by rotation of the coordinate system 
Оc0Хc0Yc0Zc0 with the matrix Rop.  
 

 
Figure 3. MLZ rotation estimation for a general case 

 
Let a line G’ be the line of intersection between the plane P and 
the plane Оc’Хc’Zc’. As planes ОpХpZp and Оc’Хc’Zc’ are coplanar 
the line G’ is parallel to the line L. Let the rotation angle α’ define 

the rotation matrix Rc’p with respect to the axis Yc’ from the 
coordinate system Оc’Хc’Yc’Zc’ to the coordinate system 
ОpХpYpZp. The the angle α’ to could be found using the projection 
g’ of the line G and the line l using equation (2). 
 
The final rotation matrix from the object coordinate system to the 
camera coordinate system could is given by: 
 
 𝑅"#01 = 	𝑅"?01 ∙ 𝑅#@? ∙ 𝑅"? ∙ 𝑅"#A (3) 
 
 
2.3 Determination of the perspective center 

To find the location of the perspective center O in the object 
coordinate system, direction vectors x0’, y0’ in the camera 
coordinate system could be used. Let Xc0, Xc1 be the direction 
vectors given by rotation of vectors x0’, y0’ with rotation matrix 
Roc

-1: 
 
 𝑿𝒄𝟎 = 𝑅"#01 ∙ 𝒙𝟎′, 
  
 𝑿𝒄𝟏 = 𝑅"#01 ∙ 𝒙𝟏′ (4) 
 
The point of intersection of lines l0 and l1 from points X0, X1 
defined by direction vectors Xc0, Xc1 correspondingly will give 
the location of the perspective center O. In real cases lines l0, l1 
will be skew due to measurement errors. Then the position of 
perspective center O could be defined as: 
 
 𝑶 = 	𝑿𝑺𝟎F𝑿𝑺𝟏

G
, (5) 

 
where 𝑿𝑺𝟎, 𝑿𝑺𝟏 – end points of the perpendicular between lines 
l0 and l1 (Luhmann et al., 2013): 
 

 𝑿𝑺𝟎 = 𝑿A + 	𝜆
𝑎A
𝑏A
𝑐A

,						𝑿𝑺𝟏 = 𝑿1 + 	𝜇
𝑎1
𝑏1
𝑐1

, (6) 

 
where a0, b0, c0 – direction cosine of the line l0; a1, b1, c1 – 
direction cosine of the line l1: 
 

 
𝑎A
𝑏A
𝑐A

= 𝑿𝒄𝟎
𝑿𝒄𝟎

	,  

 
𝑎1
𝑏1
𝑐1

= 𝑿𝒄𝟏
𝑿𝒄𝟏

	, (7) 

 

 𝜆 = −	

PQ0PR SQ0SR TQ0TR
U V #
UR VR #R

UQ VQ #Q
UR VR #R
U V #

,  

 

 	𝜇 = −	

PQ0PR SQ0SR TQ0TR
U V #
UQ VQ #Q

UQ VQ #Q
UR VR #R
U V #

, (8) 

 

 𝑎 = 	 𝑎A 𝑏A
𝑎1 𝑏1

,				𝑏 = 	 𝑏A 𝑐A
𝑏1 𝑐1

, 		𝑐 =
𝑐A 𝑎A
𝑐1 𝑎1 . (9) 

 
Hence both the rotation of the camera and the location of the 
perspective center could be found for arbitrary locations of points 
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X0, X1 except the case when the line l crosses the center of the 
projection (i.e. except the case when lines l and g’ coincide). 
 

3. ALGORITHM EVALUATION 

To evaluate the MLZ algorithm both real experiments and 
computer simulation were used. Experiments were performed 
using a Parrot AR.Drone 2.0 micro-UAV and an external motion 
capture system. The position of the UAV was measured 
independently by the motion capture system and the MLZ 
algorithm. Bellow the configuration of the evaluation system is 
presented. 
 

The MLZ algorithm 
 

1. Get coordinates of reference points X0, X1 in the 
object space and coordinates of their projections x0’, 
y0’ in the camera space  
2. Calculate the rotation matrix 𝑅"#A using equation 
(1) and known values of angles ω and ϰ. 
3. Calculate the rotation matrix 𝑅"? using equation 
(1) with: 

α = 	 tan01 0Y3
Y4

, ϰ = 	 tan01 Y[
Y4

, ω = 0, 
 

𝑫 = 	𝑿𝟏 − 𝑿𝟎 
 

4. Calculate vectors xg0, xg1 that lie on the virtual line 
g’: 

𝒙𝒈𝟎 = 	𝑅"?01 ∙ 𝑅"#A ∙ 𝒙𝟎′, 
 

𝒙𝒈𝟏 = 	𝑅"?01 ∙ 𝑅"#A ∙ 𝒙𝟏′ 
 
5. Calculate the angle α’ using vectors xg0, xg1 and 
equation (2). 
6. Calculate the rotation matrix 𝑅#@? using equations 
(1) and angle α = α’, ω = 0, ϰ = 0. 
7. Calculate the resulting rotation matrix 𝑅"#01 
using equation (3). 
8. Calculate direction vectors Xc0, Xc1 using equation 
(4). 
9. Calculate the position of the perspective centre O 
using equations (6), (7), (8), (9). 
 

Table 1. The MLZ algorithm  

 
3.1 System configuration 

The Parrot AR.Drone 2.0 UAV is a quadcopter equipped with 
two cameras. The first camera is forward looking and provide 
720p video at 20 fps. The second camera is directed downwards 
and provide 320p video at 60 fps. For evaluation of the algorithm 
the forward looking camera was used. The quadcopter is also 
equipped with a precise 3 axis gyroscope that provide an accurate 
measurement of angles ω and ϰ (pitch and roll angles). Technical 
specifications of the AR.Drone 2.0 UAV are presented in table 2. 
 
3.2 Motion capture system 

To record the ground truth position of the UAV with respect to 
the object coordinate system the ‘Mosca’ motion capture system 
was used (Knyaz, 2015). The ‘Mosca’ system could provide the 
information about the UAV position and its rotation with high 
accuracy and high sample rate.  

Unit Parameter Value 
   
Processor Name 

Speed 
ARM Cortex A8  

1 GHz 
Frontal camera Resolution 

FPS 
Field of view 

1280х720 
30 Hz 

60° х 36° 
Bottom camera Resolution 

FPS 
320х240 

60 Hz 
Motors Power 

Speed 
14.5 Wt 

500 RPM 
3 axis gyroscope Precision 2000°/с 
3 axis accelerometer Precision +/-50 mg 
3 axis magnetometer Precision 6° 
Pressure sensor Precision +/- 10 Pa 
Ultrasound altimeter - - 
WiFi interface Speed b, g, n, up to 54 Mb/s 
4x LED lamps Color Red/green 

Table 2. Technical specifications of AR.Drone 2.0 UAV 

 

The system includes up to four IEEE 1394 cameras that work in 
a synchronized mode at a frame rate up to 100 frames per second 
under the control of a personal computer (PC). The PC provides 
the possibility for accurate calculation of 3D coordinates of 
points of interest. The assembled system is shown on figure 4. 
The system could be extended to more cameras by including an 
additional PC station in the system. The control commands for 
the UAV are sent using WiFi interface. The synchronization is 
established by turning on LED lamps on the UAV at the 
beginning of the capture session. Technical characteristics of the 
motion capture system are presented in table 3. 

 

Camera resolution  656 x 491 pixels 

Acquisition speed up to 100 fps 

Number of tracking points up to 200 

Working space 2m x 2m x 2m 

3D point coordinate accuracy 0.2 mm 

Table 3. Technical characteristics of the motion capture system 

An original camera calibration and external orientation procedure 
was used to reach a high accuracy of 3D measurements. The 
calibration procedure is highly automated due to applying 
original coded targets (Knyaz, 2010) for identifying and 
measuring image coordinates of reference points. The system 
calibration provides accuracy of 0.01% of working area of the 
motion capture system.  
 
The external orientation of the motion capture system is 
performed after choosing a working space and a camera 
configuration for motion capture. For an external orientation a 
special test field is used. It defines the object coordinate system 
in which 3D coordinates are calculated. For registration of the 
UAV flight a flat upright standing test field was used. 
 
The motion capture works with special (optional retro-reflective) 
artificial targets that mark required points of interest on a 
captured object. The original technique for targets detection and 
identification is proposed based on similarity analysis of targets 
and epipolar based points correspondence determination. For 
artificial targets image coordinates are determined with sub-pixel 
accuracy using centroid operator.  
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Figure 4. Assembled motion capture system, the test 

field and Parrot AR.Drone 2.0 UAV 

 

To register the flight a set of circular targets was located on the 
bottom side of the UAV. They define the UAV coordinate system 
ОuХuYuZu. The targets #1, #2 defines the Zu axis. The origin of 
the coordinate system is located between points #1 and #2. The 
Xu axis passes through the point #3. The Yu axis is normal to Xu, 
Yu. The transformation from the UAV coordinate system to the 
camera coordinate system was estimated using a calibrated stereo 
image pair (figure 5). 
 

 
Figure 5. Orientation of the UAV coordinate system with 

respect to the UAV frame and circular targets. The UAV lies 
upside down, the bottom side is visible 

 
3.3 Algorithm evaluation using an UAV 

To evaluate the performance of the UAV the algorithm was 
implemented in a dedicated software for quadcopter guidance. 
Two kind of experiments were performed: a hovering flight and 
a flight along the given trajectory. For both experiments the MLZ 
algorithm provided the information about UAV position and 
rotation. A simple feedback control based on the distance 
between the next waypoint and the estimated UAV position was 
used. 
 
Two reference points are required as the input for the MLZ 
algorithm. During the flight experiment reference points were 
detected automatically at 18 FPS using circular targets detection 
algorithm. The coordinates of circular targets were calculated 
with sub-pixel accuracy. To compensate the significant distortion 
of the frontal camera lens Brown-Conrady distortion model was 
used (Brown, 1966). Two reference points were chosen from the 
test field. Hence the object coordinate system of the MLZ 
algorithm coincided with the motion capture coordinate system. 
Such approach simplified the processing of the sequences 
recorded by the motion capture system. 
 
10 hovering flight sessions and 10 flight along a simple trajectory 
sessions were recorded. The initial position of the UAV for each 
experiment was 1000 mm from the test field along Zo axis. The 

selected trajectory has a form of a rectangle in the plane ОoYoZo 
with a side of 800 mm. For each session coordinates of the 
camera estimated by the MLZ algorithm were recorded. The 
position and the rotation of the UAV were estimated using 
recorded coordinates. The averaged measurement errors for all 
sessions are summarized in table 4.  

 
 σX (m) σY (m) σZ (m) σα (°) 

Hovering 
flight 0,0121 0,036 0,074 0,85 

Trajectory 
flight 0,0527 0,061 0,093 1,57 

Table 4. Pose and rotation measurement error of the MLZ 
algorithm 

Figure 6 shows two trajectories of the UAV. The first trajectory 
was recorded by the motion capture system. The second 
trajectory was estimated by the MLZ algorithm. The analysis of 
the trajectories proves that the algorithm was accurate enough to 
guide the quadcopter along the desired trajectory. The distortion 
of the box trajectory was caused by an insufficient controllability 
of the UAV with a simple feedback control. 
 

 
Figure 6. Flight trajectory recorded by the motion capture 
system and the trajectory estimated by the MLZ algorithm 

 
3.4 Computer simulation 

To find out the dependency between the accuracy of coordinates 
of reference points in the image space and the measurement error 
of the MLZ algorithm a computer simulation was performed. For 
the simulation two points X0, X1 with random position were 
chosen. The distance from points to the origin of the object 
coordinate system was equal to 500 mm. All reference points 
configurations were used except those that result in the angle α 
between line l and the optical axis of the camera smaller than 1 
degree. The perspective center of the camera was located at the 
point 𝑶 = 0 −1000 4000 ` (coordinates in mm). The 
parameters of the internal orientation of the camera were equal to 
the parameters of the camera of the Parrot AR.Drone 2.0 UAV. 
 
The coordinates of the projection x0, y0 of points X0, X1 were 
found using collinearity equations. Uniform random error vector 
e was added to the coordinates of points x0, y0. The distorted 
coordinates were used as the input for the MLZ algorithm. For 
each position error e from 0 to 10 pixels 1000 point 
configurations with different values of angle α from 0° to 89° 
were calculated. For each configuration the position error of the 
MLZ algorithm was calculated. The averaged results are 
summarized in figure 7 using the boxplot representation. 
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Figure 7. Dependency between noise in the position of reference 

points and the measurement error of the MLZ algorithm 
 

4. CONCLUSIONS 

A new algorithm for estimation of an external orientation of a 
camera with known gravity vector was developed. The MLZ 
algorithm estimates the pose of a camera with respect to the given 
object coordinate system. To perform the estimation, the 
algorithm must be supplied with coordinates of two reference 
points in the object space, their projections in the image space 
and the direction of the gravity vector in the camera coordinate 
system. 
 
The algorithm was implemented in a dedicated software for 
guidance of the Parrot AR.Drone 2.0 UAV. The evaluation of the 
algorithm was performed using computer simulation and flight 
experiments. The assessment of the algorithm proved that it is 
robust against errors in the image space coordinates of reference 
points up to 5 pixels. The analysis of the computer simulation has 
shown that the algorithm is robust against complex 
configurations of reference points. 
 
The overall performance of the algorithm was accurate enough to 
perform a guided flight along the desired trajectory and a 
hovering flight with a quadcopter equipped with a frontal camera. 
The MLZ algorithm could also be used for a fast and robust 
estimation of the initial parameters of the external orientation for 
a bundle adjustment. 
 
In further work it is planned to compare the algorithm 
performance with the performance of other modern P2P 
algorithms for cameras with known gravity vector direction such 
as methods proposed in (Kukelova et al., 2011), (D'Alfonso et al., 
2014). To study the dependency between the field of view of the 
camera and the measurement error of the MLZ algorithm further 
experiments with different kinds of UAVs and different cameras 
are required. 
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