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ABSTRACT:

The creation of large photogrammetric models often encounter several difficulties in regards to geometric accuracy, scale and geoloca-
tion, especially when not using control points. Geometric accuracy can be a problem when encountering repetitive features, scale and
geolocation can be challenging in GNSS denied or difficult to reach environments. Despite these challenges scale and location are often
highly desirable even if only approximate, especially when the error bounds are known. Using non-parametric belief propagation we
propose a method of fusing different sensor types to allow robust creation of scaled models without control points. Using this technique
we scale models using only the sensor data sometimes to within 4% of their actual size even in the presence of poor GNSS coverage.

1. INTRODUCTION

As the number and quality of sensors increases the need to have
a method of fusing this information also increases. There is cur-
rently a significant amount of research into fusing multiple dif-
ferent sensors, each for different purposes, these include reliabil-
ity (Lhuillier, 2012) and reducing drift (Kerl et al., 2013). This
research has resulted in several different forms of sensor fusion
each with its own limitations. For instance Bayesian based meth-
ods are popular, however need to have the error distributions of
the sensors specified a priori (Koks and Challa, 2003). Dempster-
Shaefer based methods do not require this information however
struggle to deal with conflicting measurements from sensors (Ali
et al., 2012), (Jøsang and Pope, 2012), (Klein, 1993).

The number of sensors available at a reasonable cost to the con-
sumer is also increasing, for example the number of sensors on
smart phones increasing in number and quality each year. How-
ever, when compared to sensors specifically designed for naviga-
tion their accuracy is lacking. Despite their lower accuracy these
sensors still find uses in many applications such as orientation
finding (Ayub et al., 2012), activity identification (Tundo et al.,
2013) and geotagging for Structure from Motion (Crandall et al.,
2013).

In this paper we present a method of fusing accelerometer, baro-
metric and GNSS measurements along with images using a non-
parametric belief propagation and photogrammetry. We show
preliminary results with real-world data from a commodity smart
phone and digital camera. In section 2 we outline belief propa-
gation in both the discrete and non-parametric forms. We then
describe our method in section 3 followed by some initial results
and comparisons in section 4. Finally, our conclusions and out-
line of intended future work is presented in section 5.

2. BELIEF PROPAGATION

2.1 Discrete Belief Propagation

Belief Propagation over discrete variables was first published by
Judea Pearl in 1982 as an efficient method of solving the marginal
∗Corresponding author

probabilities inside Bayesian Tree graphs (Pearl, 1982). Since
then it has proven useful on the more general cyclic graphs. How-
ever, the conditions for convergence on these graphs, if indeed it
does converge, are not well understood at this point (Murphy et
al., 1999), (Yedidia et al., 2000) and (Yedidia et al., 2003). De-
spite this, in many cases the resulting approximations are still
useful (Murphy et al., 1999), (Ihler et al., 2005).

Belief propagation also has the advantage that the state of each
node is dependant only on the messages coming into it. This
means that once the network stabilises, if new data is inserted
or a change is made. The change will flow through the network
and only those nodes that receive a new and different message
will change their state. Depending on the network this may mean
that a significant number of the nodes do not need to redo their
calculations.

One of the most important parts of belief propagation are the
conditional probability functions linking the various nodes in the
graph (Pearl, 1982), (Yedidia et al., 2003) as these functions de-
fine the computation that will take place.

The following steps outline the general belief propagation algo-
rithm (Yedidia et al., 2003):

1. Define graph structure and compatibility functions.
2. Set variables where known to their desired states.
3. During each iteration node i sends message Mi,j to neigh-

bour j. Where Mi,j contains a set of states and the prob-
abilities that node j will be in those states according to the
information available at node i. Excluding the message from
node j.

4. Step 3 is repeated until either the messages no longer change
or the number of allowed iterations has been reached

The messages passed between nodes are calculated using equa-
tion 1 below:

Mi,j =
∑
xi

φ(xi)ψij(xi, xj)
∏

∀k∈N(i)\j

Mki (1)
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Where Mij is the message from node i to j, φ(xi) is the evi-
dence at node i and ψ(xi, xj) is the compatibility function be-
tween nodes i and j. In the case of discrete belief propagation
this is a vector with as many elements as possible states.

When the algorithm described above has completed the final states
of the nodes is calculated using the following equation:

bi = kφ(xi)
∏

∀k∈N(i)

Mki (2)

where φ and Mij are defined as above and k is a constant such
that |bi| = 1.

2.2 Non-Parametric Belief Propagation

Belief propagation was initially described for discrete states, how-
ever for many complex systems discretising the variables of in-
terest is either infeasible or impossible. Sudderth et al. (2003)
proposed a non-parametric form of belief propagation that uses
Gaussian Mixture Models (GMMs) to represent the variables of
interest. This avoids the problems associated with discretising the
variables and allows any state space to be used.

This non-parametric form retains many of the benefits of the dis-
crete belief propagation the only significant difference is that the
variables are represented by probability distributions. These dis-
tributions can be of any form that allows operations to be per-
formed on them. One limitation of this technique is that the num-
ber of kernels in each of the GMMs increases as a result of many
operations. This has computational implications as the more ker-
nels there are the longer the computation will take. In order to
reduce this problem, Sudderth et al. (2003) propose to use Gibbs
sampling to reduce the number of kernels in a GMM. This ef-
fectively trades computation time for accuracy and a balance is
required.

3. METHOD

3.1 Coordinate Systems

The process of fusing the different sensors requires that we main-
tain a common coordinate system or transform between differ-
ent systems suitable for each sensor so that we can define rela-
tionships between them. We use the right handed East-North-Up
(ENU) coordinate system. This has several advantages including
the natural separation of height and position. This also allows us
the freedom to use either a local or globally referenced coordinate
system as the only difference between them is the georeferencing.
This is also the same coordinate system as the Android environ-
ment (Google, 2016b) which simplifies our modelling as extra
transforms are not required.

When global positioning such as GNSS is used, we use the first
valid coordinate as the origin and build up from there. In the case
of barometric data we can lock the initial heigh to zero or set one
of the known heights without requiring the other axis to be set.

We store all our orientations as (θ, φ, ρ) where θ, φ encode ’down’
and ρ is the heading. We also limit each of θ, φ, ρ to (0, π),
(0, 2π) and (0, 2π) respectively. We can then compute the rota-
tion from a local coordinate system to a global system as shown
in equation 6

Ry(θ) =

cos(θ + π) 0 −sin(θ + π)
0 1 0

sin(θ + π) 0 cos(θ + π)

 (3)

Rz(φ) =

 cos(φ) sin(φ) 0
−sin(φ) cos(φ) 0

0 0 1

 (4)

Rz(ρ) =

 cos(ρ) sin(ρ) 0
−sin(ρ) cos(ρ) 0

0 0 1

 (5)

combining to give a rotation of

R(θ, φ, ρ) = Rz(ρ)Ry(θ)Rz(φ) (6)

where θ is the latitude where 0 is +z and π is −z
φ is longitude such that when θ = π/2, 0 is +x
and π/2 is +y
ρ is the heading clockwise from north

Using this system of coordinates we can independently calculate
up and the heading which allows certain useful cases. For ex-
ample, with accelerometer data we can easily calculate the direc-
tion of gravity, whereas the heading cannot be determined. Once
global coordinates are introduced the heading can be determined
without changing our coordinate system.

3.2 Sensor Models

The measurements from a barometer can be used in two ways,
firstly to calculate an absolute height and secondly to calculate
the relative height difference between two points. Currently in
our work we do not attempt to calculate the absolute height as
this would require a reference pressure. This reference would
change over time making the calculation unreliable unless this
reference is constantly updated. Instead we use the barometer to
calculate relative heights between successive measurements. The
calculation for relative height difference is given in equation 7
below (Engineering Toolbox, 2016):

h2 − h1 =

exp

(
ln

(
P1
C1

)
C3

)
− exp

(
ln

(
P2
C1

)
C3

)
C2

(7)

where P1, P2 = Pressure in Pa at points one and two
h1, h2 = Heights at points one and two
C1 = 101, 325
C2 = 2.25577× 10−5

C3 = 5.25588

When taking measurements from the accelerometer we generate
an estimate of ’down’, allowing us to estimate the orientation
of the sensor platform at each measurement using the following
equations:

θ = sin−1(
Az

|[Ax, Ay, Az]|
) +

π

2
(8)

φ = cos−1(
−Ax

|[Ax, Ay]|
) (9)

where Ax, Ay , Az are the accelerometer measurements
θ, φ are defined as above.
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In order to resolve the ambiguity of φ when Ax > 0 we set

φ = 2π − φ (10)

While we model many primitive sensors there are some sensor
platforms such as digital cameras which are a combination of sen-
sors and as such we construct the sensor platforms from a combi-
nation of our primitive sensors. A modern digital camera records
many more details that just image data, other common data may
include: focal length, timestamp, geolocation from GNSS and
orientation. We intend to use all of these details in future ver-
sions of our fusion algorithm. When using a smart phone to log
different sensors we take the latest value from the available sen-
sors and tag the image with those values.

3.3 Sensor Calibration

In our work we assume that sensor measurements from the ac-
celerometer and barometer can be calibrated by using a scale and
offset as shown in equation 11 below and their errors modelled
with a Gaussian distribution. In the case of GNSS these error dis-
tributions are provided directly by the sensors otherwise are the
result of calibrations.

Xc = Xu ·M +O (11)

where Xu are the uncalibrated measurements
M are the scales for each axis
O are the offsets after scaling
Xc are the calibrated measurements

Accelerometers and barometers generally do not record their un-
certainties, so we are required to perform a calibration in order
to specify the uncertainties in our model. We then assume that
this calibration is stable and holds for the whole data collection
period.

For an accelerometer this calibration is performed by recording
a series of measurements while the device is stationary in sev-
eral different orientations. We then solve equation 11 such that
|Xc| = 9.81ms−1 in order to find the scale and offset values for
each axis. We also assume that the axis of the sensors are orthog-
onal, again negating the need for more complex calibrations.

For GNSS sensors we use the accuracy reported by the GNSS
system to provide the variance of the Gaussian error distribution.
On Android systems the error reported by the GNSS system is
the standard deviation of a Gaussian distribution which fits our
model (Google, 2016a).

Calibration of the barometer has been performed by recording
barometer measurements for 5 minutes then computing the stan-
dard deviation of the results. At this stage calibration for possible
scale error is not performed as for the heights and time periods in
current testing this is unlikely to be significant.

For barometers there is another step that should be performed
at the time the measurements are taken for greater accuracy. In
many places for the scales we are looking at the local air pressure
changes significantly even in short periods of time. To combat
this we record the air pressure at the beginning and end of the cap-
ture period from the same point and calculate a correction factor
using equation 12 below. This increases accuracy significantly.

correction(τ) = τ
P2 − P1

t2 − t1
(12)

In our calibrations at this stage we assume that the offset between
the different sensors is negligible, allowing us to omit several
variables from our model. However, with more accurate sensors
or larger distances between them this is something we would have
to take into account.

3.4 Belief Propagation Algorithm

A non-parametric belief propagation algorithm is implemented
following similar principles to Sudderth et al. (2003) and Crandal
et al. (2013). Each of our variables is represented as a bounded
GMM with a uniform component as described in equation 13:

{µi, σ
2, wi}Ki=1, u, {λlower, λupper} (13)

where {µi, σ
2, wi} are the mean, variance and weight of

the ith kernel in the GMM
u is the uniform distribution
{λlower, λupper} are the upper and lower bounds

The use of a uniform distribution is not universal, it is not de-
scribed by Sudderth et al. (2003), however Crandall et al. (2013)
find that it assists with convergence when conflicting messages
are present.

Many operations on GMMs increase the number of elements in
the result. Which results in increased computation time. To
combat this resampling methods are often used. Sudderth et al.
(2003) use Gibbs sampling, whereas we use a more simple hill
climbing method. We use the means of the kernels as a potential
starting point. Firstly, selecting the mean with the largest value
of the GMM at that point then using Newton-Raphson to refine.
Using this value we calculate the variance and weight then create
a new distribution in the new resulting sub-sampled GMM. This
algorithm is detailed below:

1. Find the maximum of the current GMM by testing each of
the internal distributions and the upper and lower bounds
then use up to 10 iterations of Newton-Raphson to refine to
local maximum saving the best µ and v. Where µ is the
position of the maximum and vmax is the value.

2. If v < threshold then end.
3. Set σ2 to the average kernel variance in the GMM.
4. Set varStep = σ2/2

5. Calc w = vmax

√
2πσ2

6. err = f(x|µ, σ2)−GMM(µ+ σ2)−GMM(µ− σ2)
7. If |err| < allowErr then goto 11
8. If err > 0

(a) then σ2+ = varStep
(b) else σ2− = varStep

9. Set varStep/ = 2
10. Goto 5
11. Add new kernel to current GMM with {µ, σ2,−w} and new

kernel to new GMM with {µ, σ2, w}.
12. Repeat from 1 until K kernels are in the new GMM.

Where f(x|µ, σ2) is the evaluation of an individual Gaussian dis-
tribution with mean and variance σ2. GMM(x) is the evalua-
tion of a Gaussian Mixture Model at x. Once this algorithm has
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completed we combine the remaining probabilities into the uni-
form distribution of the new GMM. Afterwards, we normalise the
weights so that the sum of all weights and the uniform distribu-
tion equals one.

This resampling is run after the calculation of message values so
that the messages are both normalised and not ’too large’. In our
implementation we have chosenK = 20, allowErr = 0.01 and
threshold = 0.001. These values are chosen as a compromise
between speed and accuracy, larger values of K and lower values
of allowErr and threshold are more accurate but slower.

3.5 Belief Propagation Nodes

We define three different types of nodes in our implementation
of belief propagation, these are constant, function and variable
nodes. The constant and variable nodes are essentially the same
in that they do not perform any significant processing and only
maintain a value. The difference is that the constant nodes have
their variable set on initialisation and thereafter it does not change
whereas the value of the variable nodes changes in response to
incoming messages.

The function nodes on the other hand implement various process-
ing steps and in many cases also store a value. This is done to
simplify the resulting graph that is created. While it would be
possible to create a graph from only variable and function nodes
that do not have state it would be much larger and more complex.

Our barometer nodes are functional nodes that combine both a
sensor measurement and a functional node that calculates the rel-
ative height change between connected nodes. Each barometer
node passes its estimated height and local pressure measurement
to the nodes around it. This allows the neighbouring barometer
node to estimate the height difference using the pressure differ-
ence and equation 7 hence calculating its local height. This is
then combined with other height estimates passed to this node to
give an estimate of the height at this node.

Our accelerometer node uses equations 8 and 9 internally to esti-
mate its own orientation which is then passed as part of the out-
going message along with the acceleration values measured.

We implement our image nodes as simple variable nodes that do
not do any processing but just combine position and orientation
estimate from connected nodes.

The last node required for this implementation is an ’Image Match’
function node. This node contains the relative orientation be-
tween two images as calculated using photogrammetry. In a sim-
ilar way to the barometer node outlined above this node takes the
orientation of one image then provides an estimate of the orienta-
tion of the other connected image. At this point this relative ori-
entation is precalculated using Agisoft Photoscan (Agisoft, LLC,
2016).

3.6 Graph Generation

Using the nodes described above we can automatically generate a
graph from a dataset of sensor measurements at run-time. At this
stage we create an image node for each image and constant or
function nodes from the sensor measurements as described above.
These constant nodes apply the calibrations and coordinate trans-
forms described above and cache the results internally so they are
not recomputed at each iteration step. We then take the relative
orientation of the images from another piece of software and cre-
ate a set of ’Image Match’ nodes linking the images. This results
in a graph similar to Figure 1 below.

Figure 1: Illustration of a section of a graph generated using our
technique. Function nodes in blue and sensor measurement nodes
in orange.

3.7 Scale

In order to generate a scaled and oriented point cloud we first take
a set of images of the object or scene of interest with one or more
sensor platforms while logging the relevant sensor information.
The process is then as follows:

1. Use Photoscan to generate a point cloud and set of camera
positions and orientations.

2. Run our belief propagation algorithm as defined above on
the sensor data to generate a geolocation, orientation and
position estimates.

3. Take the most likely value for the height and orientation of
each camera

4. Rotate Photoscan point cloud using the generated rotation
5. Use least squares to translate and scale the point cloud

The coordinate system used by Photoscan is a right handed coor-
dinate system where the local coordinates for each image are such
that x-y-z is down-right-backwards. To transform this into our
coordinate system we apply the following transform. Firstly, we
apply the inverse rotation of the first camera, then we transform
to the coordinate system used by Android so that the coordinates
from Photoscan match the coordinates from the Belief Propaga-
tion. Finally, we apply our calculated rotation of the first camera
so that everything is in our ENU world coordinate system.

X̃ENU = R(θ, φ, ρ)

 0 1 0
−1 0 0
0 0 1

R−1
0 X̃PS (14)

where R0 is the rotation of the first camera
X̃PS a camera location from Photoscan
X̃ENU a camera location in our ENU system

We then use least squares to resolve the scale of the final model by
minimising the difference between the relative heights as calcu-
lated by belief propagation and the relative scaled relative heights
from the oriented Photoscan point cloud.
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4. RESULTS

4.1 Sensors

Real data from a Galaxy SIII smart phone and a Canon 6D digital
camera have been used to evaluate our approach. The Galaxy SIII
contains a GNSS sensor which reports at approximately 1 Hz us-
ing both GPS and GLONASS. It also contains an accelerometer
and barometer which report at approximately 100 Hz and 25 Hz
respectively. We also use the built in camera to provide image
data with the camera fully zoomed out. Under the Android oper-
ating system the exact reporting rate is not guaranteed, however
timestamps in nanoseconds are given for each of the measure-
ments. Images are not timestamped like the other sensor mea-
surements, so we place a tag in the log file when an image cap-
ture was triggered. Then, we assign the image the same times-
tamp as the previous sensor measurement. The images captured
are 8 megapixels (3264x2448 pixels). The Canon 6D records 20
megapixel (5472x3648 pixels) photographs using a 50 mm prime
lens.

4.2 Calibrations

Using the calibration methods described in section 3.3 above, our
calibration values for the Galaxy SIII sensors are given in Ta-
bles 1 and 2. The error reported by the GNSS system for each
measurement was used for the standard deviation. The average
standard deviation for each sensor is recorded in Table 3 below.

Parameter Mx My Mz

Accelerometer 1.0023 0.9904 0.9888
Barometer - - 1.0000

Table 1: Calibration scales for sensors.

Parameter Ox Oy Oz

Accelerometer 0.1149 0.0889 0.5064
Barometer - - 0

Table 2: Calibration offsets for sensors.

Sensor σx σy σz

Accelerometer 0.0206 0.0198 0.0298
Barometer 7.5400
GNSS - Limestone Blocks 199.89
GNSS - War Memorial 442.07

Table 3: Sensor standard deviations after calibration

To give an idea of scale, a standard deviation for the barometer of
7.54 Pa in Table 3 results in approximately 0.63 m of elevation at
the standard atmospheric pressure of 100 kPa.

4.3 Datasets

We have collected data from two areas. Figures 2 and 3 show
an example image of each dataset with measurements. For the
Limestone Block dataset 35 images from the 6D and 13 images
from the Galaxy SIII were captured. For the War Memorial, 36
images from the 6D and 17 images from the Galaxy SIII were
captured. These provided enough coverage to create a mesh of
the relevant parts in Photoscan.

Neither of these datasets has full GNSS coverage with the Galaxy
SIII. Only 8 of the 13 images from the Limestone Block dataset
and 15 of the 17 images from the War Memorial dataset have
GNSS measurements. In addition, the very large average stan-
dard deviations shown in Table 3 for the GNSS suggest that the
GNSS data is rather poor.

Figure 2: Illustration of the three measurements made on the war
memorial dataset. Measurements numbered one to three from top
to bottom.

Figure 3: Illustration of the three measurements made on the war
memorial dataset. Measurements numbered one to three from top
to bottom.

4.4 Accuracy

Tables 4 and 5 show the resulting measurements shown in Figures
2 and 3 after the point cloud and mesh have been scaled using the
procedure in 3.7.

It is clear that using GNSS alone in this case is near useless as
there is just too much error. The scales calculated for these re-
sults were 0.000 and −0.020 respectively, hence the nonsense
results. However, the barometric data by itself is reasonably good
and in the case of the War Memorial dataset the combination of
barometric and GNSS measurements proves to be quite accurate
especially given the errors of the input data.

Using the results shown in Tables 4 and 5 we calculate the per-
centage error of each dataset (Table 6). Here it is clear that GNSS
measurements do not always increase the accuracy of the results.
In the case of the Limestone Blocks the GNSS measurements ac-
tually make the final result worse. This suggests that a method
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of excluding truly bad data needs to be implemented in order to
resolve this problem.

Measurement Actual GNSS Barometer Both
1 0.355 0.000 0.290 0.251
2 0.600 0.000 0.502 0.435
3 0.743 0.000 0.603 0.522

Table 4: Measurements for the Blocks

Measurement Actual GNSS Barometer Both
1 1.095 -0.024 1.201 1.064
2 0.430 -0.009 0.444 0.394
3 2.130 -0.049 2.405 2.130

Table 5: Measurements for the War Memorial.

Dataset GNSS Barometer Both
Limestone Blocks -100% -17.9% -28.9%
War Memorial -102% 8.65% 3.76%

Table 6: Percentage error for each set of sensors.

5. CONCLUSION

In this paper we present a sensor fusion method to fuse accelerom-
eter, barometer and GNSS data using Non-Parametric Belief Prop-
agation. Once a device is calibrated this method requires no
setup, control points or extra work on behalf of the person captur-
ing the data. All of the analysis and scaling is performed without
extra input or physical measurement on the actual objects being
reconstructed. This is potentially useful in several cases where
access is difficult or impossible or it is not possible to touch or
actively scan the objects.

While these results are preliminary the data is less than ideal sug-
gesting that there is potential to get useful results even in the pres-
ence of significant outliers. For example, despite the very large
errors in the GNSS data we are still able to achieve results that
have much less error that the input data.

5.1 Future Work

While this implementation of sensor fusion shows improvement
over just using the raw sensor data there is scope for improve-
ment in several ways. For example, when there are other sensors
available it would be useful to attempt to automatically calibrate
sensors such as the barometer using the additional data. This
would remove the current method of returning to the start point
which is not always possible in many situations.

In this implementation we utilise Photoscan to perform the pho-
togrammetry component. This is not ideal for several reasons. At
the current time the algorithms used by Photoscan are not pub-
licly known which limits transparency and understanding of what
causes a particular error. Secondly, with the extra information
available from multiple sensors as either constraints or as initial-
isation values implementation of our own or modification of an
existing open source photogrammetry package would be ideal for
making use of this data.
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