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ABSTRACT: 
 
Despite the tremendous advantages of the laser scanning technology for the geometric characterization of built constructions, there 
are important limitations preventing more widespread implementation in the structural engineering domain. Even though the 
technology provides extensive and accurate information to perform structural assessment and health monitoring, many people are 
resistant to the technology due to the processing times involved. Thus, new methods that can automatically process LiDAR data and 
subsequently provide an automatic and organized interpretation are required. 
This paper presents a new method for fully automated point cloud segmentation of masonry arch bridges. The method efficiently 
creates segmented, spatially related and organized point clouds, which each contain the relevant geometric data for a particular 
component (pier, arch, spandrel wall, etc.) of the structure. The segmentation procedure comprises a heuristic approach for the 
separation of different vertical walls, and later image processing tools adapted to voxel structures allows the efficient segmentation 
of the main structural elements of the bridge. The proposed methodology provides the essential processed data required for structural 
assessment of masonry arch bridges based on geometric anomalies. The method is validated using a representative sample of 
masonry arch bridges in Spain. 
 
 

1. INTRODUCTION 

Geomatic technologies gained popularity in the last years 
related to the tasks involving geometric characterization. The 
main advantage of these technologies is the non-destructive 
nature together with the transversal applications of the 
technologies to many different fields. Thus, these technologies 
represent a very attractive and powerful tool for the study of 
historic constructions. Among other technologies, Laser 
Scanning gained popularity in civil engineering in the last years 
due to its diverse applicability, that goes from the creation of 
geometric 3D models that can be used for the creation of 
accurate updated drawings, serve as the geometric basis for 
subsequent structural analysis or contribute to the objective 
quantification of structural damages. 
 
According to (Orbán, 2007) more than 200,000 masonry arch 
bridges, representing approximately 60% of the total bridge 
stock, are in service. Even more than 70% date from XIX 
century, approximately 12% are older than 150 years (dating 
from Mediaeval or even from the Roman period). This fact 
makes that modern society realize that apart from their value as 
elements of the transport network, they also have an 
incalculable value as heritage elements. 
 
After several centuries in service, masonry arch bridges have 
been in many cases subjected to a significant increase in the 
loading for which they were designed. The effect of different 
loading (static, dynamic, cyclic) together with accumulative 
effects, provokes gradual changes of geometry along time. It is 
well known that the geometry of this typology of bridge is a key 
factor in terms of they load carrying capacity (Heyman, 1969; 
Livesley, 1978; Gilvert, 2007). The change of use, incorrect 
conservation policies and the increase of the loadings along 

their life has probably provoked changes in geometry, and so, 
changes in the shape of the arches may be comprising the 
stability and load capacity. Most of the problems of these 
bridges are detectable through geometric anomalies, however 
the signs of structural problems are commonly manifested by 
subtle geometric changes so very accurate and detailed 
geometric characterization is required to provide a proper 
diagnosis. 
 
Automation is nowadays one of the main challenges of the 
technology, and thus, many authors have proposed semi-
automatic or automatic methods to contribute to the application 
of that powerful source of data to different fields of engineering: 
Laefer et al. (2010) use TLS as a method to collect data that can 
be used later for the automatic crack detection in building 
façades. Olsen et al (2010)  propose damage assessment based 
on laser scanning to perform damage detection and volumetric 
change analysis. Truong-Hong et al. (2013) propose a method to 
automatically process point clouds and derive an CAD models 
suitable for subsequent structural computations. For the 
particular case of masonry structures methods have been 
proposed for the individual modelling of stones (Riveiro et al, 
2015; McInerney et al, 2012). As mentioned above, in the case 
of masonry arch bridges it is very important the geometric 
anomalies that permits perform inverse analysis and, thus, to 
speculate how the different elements of the bridge have been 
deformed along time. 
 
In this paper, a new method for fully automated point cloud 
segmentation of masonry arch bridges is proposed. The 
segmentation procedure comprises a heuristic approach for the 
separation of different vertical walls, and later image processing 
tools adapted to voxel structures allows the efficient 
segmentation of the main structural elements of the bridge, 
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which provide the essential data required for structural health 
monitoring based on geometric anomalies. Moreover, this paper 
aims to show a method to easily handle large point clouds and 
provide civil engineers with processed data for further structural 
operations without neither requiring training in laser scanning 
technology nor high performance computers for such data 
processing. Our detailed methodology is explained in Section 2, 
and the results obtained for a set of masonry arch bridges in 
Spain are presented in Section 3. Finally, conclusion and 
suggestions for future research are given in Section 4. 

 

2. METHODOLOGY 

The proposed method focused on using the geometric data of 
3D point clouds collected by laser scanning systems having into 
account the topological constrains of masonry arch bridges. 
Since the proposed method aims to be a tool for construction 
and structural engineers it starts with a registered point cloud of 
the bridges because it is the most primitive product delivered by 
the surveyors. The partition of the global point cloud in its 
composing elements is made combining an heuristic method for 
the vertical walls segmentation together with image processing 
tools adapted to the 3D space for the non vertical walls of the 
bridge. Later, topological constrains contributed to define the 
order and name of elements in order to store the independent 
point clouds coherently with the databases for masonry arch 
bridges. Figure 1 shows the general workflow of the 
methodology developed whose steps are described further in the 
next subsections. 

  
2.1 Point cloud reduction and computation of normals 

The point cloud of a large construction such as a masonry arch 
bridge may be composed of several millions of points that, in 
case of not filtered after point clouds alignment, might contain 
redundant or noisy data. Also, the level of detail offered by laser 
scanners in such a large structure sometimes exceeds the 
requirements for the geometrical inventory and/or inspection of 
the composing elements. 
 
On the other hand, the approach developed in this work is based 
on finding a pattern for segmentation of point cloud, without 
demanding large computing resources. For that aim, the method 
start with a 3D filtering of the original point cloud based on 
image processing approaches in the 3D space, taking advantage 
of the information provided by the laser scanning data. Working 
with a downsampled point cloud permits to perform all the 
segmentation operations in a fast manner without high 
computing resources. However, in case the full resolution of the 
original point cloud is needed for the further application of data, 
the method uses the results of segmentation obtained as a 
pattern to partition the original point cloud. 
 
After having the downsampled point cloud the normal of points 
are computed using Principal Components Analysis, whose 
method does not only permitted to compute the normal direction 
of each point, but also provided information about the 
dimensionality of data based on the eigenvalues of the 
covariance matrix (as presented by Gressin et al., 2013). With 

!
 

 
Figure 1. UML diagram of the proposed method for the segmentation of masonry arch bridges point clouds. 
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the aim of minimize noisy effects during the subsequent 
segmentation operations, after evaluating dimensionality of 
points, only those classified as 2D features, were selected for 
subsequent segmentation. 
 
For our segmentation, the elevation angle and the azimuth of 
each point is a valuable information for the classification of 
points, so the normal vector obtained by using PCA is converted 
to a spherical coordinate system.  
 
The immediate strategy consists of classifying points based on 
their elevation angle. For the case of masonry arch bridges, 
spandrel walls are vertical walls that provide valuable topologic 
information of the bridge, and consequently, this must be one of 
the first classes to characterize in the point cloud under 
processing. The classification based on elevation is performed 
in order to distinguish main groups of elements: vertical walls 
(comprising spandrel walls, pillars, cutwaters, abutments, etc.) 
and non-vertical walls (arches, pathway, cutwater hats, etc.). 
To compute the optimal threshold that separate vertical from 
non-vertical points, the histogram of elevation angles clearly 
shows how vertical points have an elevation close to zero. 
 
2.2 Segmentation of vertical walls 

Once points have been separated into vertical and non-vertical 
classes, customized methods can applied to these different 
classes in order to segment them into the different features they 
may comprise. Since spandrel walls contain relevant 
information of the bridge, such as being the most populated 
class of vertical walls, it contains information of the azimuth of 
the bridge. At the same time it represent the “bounding box” of 
the key structural elements of the bridge, these are, vaults and 
pillars.  
 
2.2.1 Heuristic method to compute vertical classes: 
Similarly to the segmentation based on elevation, the azimuth 
can be used as relevant variable to differentiate the different 
vertical planes composing the bridge. The histogram of azimuth 
for the vertical points may present several peaks, and not logical 
reference can be set for the azimuth of the bridge (unless this 
information is provided a priori). 

 
 

Figure 2. UML diagram of the heuristic process for the 
segmentation of points that belong to vertical walls. 

In the histogram several peaks are denoting the presence of 
vertical walls with different orientation. The most populated 
class is expected to represent spandrel walls, however, it is 
important not only detect peaks but also the whole interval of 
azimuths for each class. For that purpose the strategy consisted 
of performing a coarse peak detection on the histogram plot. 
Ideally, this peak detection would notice the peaks 
corresponding to the main vertical classes, but also some other 
noisy peaks can be computed. For the peak detection logical 
constrains were imposed such as a minimum distance between 
peaks. This condition ensures that the spandrel walls would be 
clearly separated from the other classes such as pillars or 
cutwaters, which generally have a difference in azimuth angle 
larger than 30º (almost perpendicular in the case of pillar walls). 
The process for segmentation is presented in figure 2, and it is 
based on the plots presented in figure 3. 

 
 

Figure 3. Process for the segmentation of vertical walls: 
3a)Histogram of azimuth angle, and coarse peak detection; 3b) 
Peaks detected superimposed to the plot of points points sorted 
by azimuth; 3c) detection of real peaks and partition of classes 

as a function of λ2. 
 
As it can be seen in the in the plots of figure 3, there exists a 
relationship between the peaks in the histogram (figure 3a) and 
the flat areas of the points sorted by azimuth (figure 3b). In the 
example, there are two peaks that correspond to a sloped area 
denoting the false peaks. 
 
A PCA analysis was applied for the two variables used for the 
plot of figure 3b using the covariance method to evaluate the 
second eigenvector (λ2), which provides a measure of the 
homogeneity of the azimuth for a given neighbourhood of every 
single point. As can be seen in figure 3c, those flat areas in 
which we could expect real peaks, show a value close to zero. 
However, those other sloped parts of the plot shown in figure 
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3b, confirm that false peaks show a clearly higher value of λ2, 
and they are removed applying a threshold based on this 
parameter. To avoid the user intervention, this threshold was 
computed as the λ2 of the percentile 90 of the entire set of points 
(since very few points are in the sloped regions of plot 3b). By 
applying this threshold to both, the peaks and the points of 
vertical walls under evaluation, it was possible to set the classes 
for azimuth defined both by the azimuth of each peach (mark of 
class) and the corresponding interval of azimuths (computed 
from the previous partition of the plot). 
 
From the previous classification, spandrel walls are segmented 
as the most populated class, and the other classes are saved as a 
general class that contain points of pillars and cutwaters, that 
would be segmented further in the next phases of the 
methodology. Before the previously segmented “spandrel class” 
can be divided into upstream and downstream spandrel, it must 
be checked if there is a continuous surface for each wall or, in 
case they appear partitioned (e.g. when a cutwater separate the 
points in two portions). In that last case, the resulting 
partitioned point clouds of the “spandrelwall class” have to be 
evaluated for coplanarity (section 2.2.3). 
 
2.2.2 Voxelization: The strategy to compute whether the sets 
of points define continuous surfaces or not consisted of 
converting the 3D point cloud to a voxel-based space. The 
voxelization basically consisted of dividing the 3D space in a 
regular 3D grid, where the size of each voxel can be defined as 
the volume defined by the voxel size in each direction of the 3D 
space: vx, vy and vz. The boundary of the voxelized point cloud 
is calculated from the maximum and minimum coordinates of 
the point cloud in the three dimensions. For the works related in 
this paper, a voxel size of 10cm was defined by the user. As a 
consequence, a raster grid of m rows, n columns and p 
elevations is created. In continuation, the next step is defining 
the intensity attribute for each element in the raster structure 
that can be computed of any of the data available for each point. 
The intensity attribute of a volume V of the point cloud can be 
modelled as the random field {I(v): v ∈V ⊂ R3}. The set of 
points of the point cloud covering the element volume can be 
considered as the collection of independent observations at 
locations v = {v1, v2, … , vn} on the random field, and is denoted 
by the data vector I(v) = {I(v1), I(v2), …, I(vn)}. Consequently, 
the voxelized representation of the point cloud consists of 
latticing the continuous domain V and computing a value of 
intensity I for each voxel. For a given voxel defined by the 
region P and the corresponding volume |P|, it is possible to 
estimate the intensity of the voxel averaging the random field in 
P (equation 1): 

 

 
(1) 

 

 
 

Figure 4. Voxel structure where the intensity of each element is 
computed from the colour of points contained in each element. 

 

The value of the I(P) is computed by using the observed data 
(point cloud sample) contained in the region of the voxel. 
Consequently, the spatial resolution of the results of the 
classification proposed here will be constrained by the window 
size for I prediction: the voxel size. Figure 4 illustrates the 
process of voxelization of a point cloud, where the Intensity 
value of each voxel is computed from the colour of the point 
cloud contained in the voxel volume. 
 
2.2.3 Clustering: The clustering strategy consisted of using 
a connected components algorithm (Samet and Tamminen, 
1988; Dillencourt et al., 1992). For the application of this 
algorithm, a binary 3D image was created marking those voxels 
that contain, at least, one point. The connected components 
algorithm was applied to this image using a connectivity of 26 
voxels, and then, only those classes containing a significant 
number of connected elements were considered for the further 
segmentation steps. This threshold also contributed to the 
removal of noise (isolated points). Those points contained in the 
previous selected voxels were labelled according their 
connectivity, so the point cloud was again segmented in a larger 
number of classes. These classes may belong to one of the 
spandrel walls, or may belong to cutwaters, or even noisy 
classes. Finally, in order to group those classes that may belong 
to the same spandrel wall, the algorithm checks if the clusters of 
points are coplanar or not. A coarse azimuth was computed 
using all the points classified as potential spandrel walls using a 
PCA. From this step, points were labelled as upstream wall, 
downstream wall, and other classes were merged together with 
the class of the pillars and cutwaters. Azimuth is now 
recomputed from the two classes finally labelled as spandrel 
walls. 
 
2.3 Segmentation of non-vertical walls 

The point cloud classified as “non-vertical points” in section 
2.1. was used to perform the segmentation of vaults and 
pathway.  To achieve the segmentation, the strategy consisted of 
performing a voxelization of the point cloud an thus, creating 
different 3D images from which the different structural 
elements could be extracted by applying logical operations. 
 
2.3.1 Voxelization and image operations: Similarly as 
explained in section 2.2.2. voxelization was performed to the 
point cloud of non-vertical walls. As it can be seen in Figure 5, 
the voxel image show how those voxels corresponding to vaults 
are clearly connected and separated of voxels of pathway or 
parapets. Also, those voxels containing noisy points appear in 
the image in small groups of connected voxels. 

 
 

Figure 5. Voxel image of non vertical walls. 
 

In order to separate vaults from the other points, two binary 
images were created from a voxelized image computed from the 
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“z coordinates” of points: the first one corresponds to the image 
that represents the voxel of “minimum z coordinate” for each 
row and column (A); the second one corresponds to the image 
that represents the voxel of “maximum z coordinate” for each 
row and column (B).  
 
2.3.2 Clustering and sorting of vaults: The clustering of 
elements was performed operating with the previous images. 
This is, the arches (C) can be obtained as: C=B-(A∩B).  
 
For image C, a threshold based on connected components is 
applied to remove noisy points and to cluster each vault 
individually. For each vault point cloud, some geometrical 
parameter are calculated for the subsequent labelling of 
elements, and further segmentation of pillars. Those parameters 
are: centre of mass of each point cloud , and the spatial 
limits for each vault xi max, xi min, yi max, yi min, zi max, zi min, being i 
the number of vaults. 
 
Having information of the longitudinal direction of the bridge 
(from the Azimuth calculated in section 2.2.3., the point clouds 
corresponding to arches are labelled numerically from left to 
right looking at the bridge from upstream. 
 
2.3.3 Clustering pathway: Before saving the points of the 
pathway segmented in the previous steps, an analysis of 
dimensionality was applied (as explained in section 2.1) to 
separate points of path (2D features) from points of parapets 
(1D features). In this case, the neighbourhood for the PCA 
analysis was set as 0.8m based on logical constraints). 
Subsequently, a voxelization followed of thresholding baed on 
connected components was performed for each class to remove 
the noisy points before they are saved as pathway and parapets 
classes, respectively. 
 
2.3.4 Clustering Piers: Finally, for the case of slender arch 
bridges where pillars are visible, these elements have to be also 
segmented. This segmentation is accomplished using the point 
cloud remaining from the vertical walls not classified as 
spandrel walls. Using logical reasoning, one realizes that piers 
are always vertical elements in the interface between two 
consecutive arches. According to this, by using the coordinates 
extracted from the previous segmentation of vaults, it was 
possible to define the bounding box of each pier. In Figure 6, 
vaults are defined by the red boxes, whilst the pillars are 
enclosed in the blue boxes. To avoid loosing points the initial 
windows of segmentation for pillars were defined using the 
green bounding box which were calculated from the centre of 
consecutive vaults and the upstream and downstream spandrel 
walls.  

 
 

Figure 6. Bounding boxes of structural elements to find pier 
points. 

 
This allowed partitioning the point cloud in shorter point clouds 
corresponding to piers. Finally, to remove noisy points and 
maintain only those significant points of the pillar walls, 
voxelization followed of thresholding using connected 

components was applied in a similar manner than for the other 
structural elements. Finally, the point cloud of each pillar was 
labelled numerically from left to right looking at the bridge 
from upstream. 
 

3. RESULTS 

3.1 Case studies 

The procedure presented in this paper was evaluated for the 
point clouds of five masonry arch bridges in Spain, selected as 
representative of common bridge typologies. They account for 
the following variations: different numbers of arches, presence 
or not of cutwaters, presence or not of piers, and some cases 
where the point cloud was deficient (occlusions and low density 
of points). 
 
3.2 Validation of algorithms 

All the point clouds were collected using a pulse-based TLS 
laser scanner manufactured by Riegl, model LMS Z-390i. The 
methodology for data acquisition was explained in Solla et al. 
(2013). The alignment of scans in a common coordinate system 
for each bridge was performed in the software Riscan Pro® 
produced by Riegl. For each case study, the points of the bridge 
were coarsely segmented from the surrounding points 
(embankments, access road, vegetation, etc. in the software 
Riscan Pro. In continuation, an octree filtering with a minimum 
element size of 2.5cm was applied to the point cloud before it 
was exported to the Ascii format containing the 3D spatial 
coordinates of each point (X, Y, Z). Table 1 summarizes the 
characteristics of the survey data for each masonry bridge used 
for the evaluation of the proposed procedure. 
 
Bridge Length 

(m) 
Number 
of arches 

Scan position 
for the 
surveying 

Size of 
final point 
cloud 

Allariz 65 2 6 462079 
Carracedo 56 3 8 467383 
Traba 30 4 7 273907 
Cernadela 72 5 10 671890 
Segura 80 5 7 1259148 

Table 1. Summary of the laser scanning survey of the bridges 
used to validate the algorithm. 

 
For all of the bridges the segmentation of spandrel walls, arches, 
pathway and cutwaters was performed. For Segura Bridge, piers 
were also segmented. Figure 7 presents the results of 
segmentation where different colours refer to different point 
clouds. Cutwaters were removed from the point clouds shown 
in Figure 7 to ease the visualization of the structural elements of 
the bridge. 
 
The principal cause of errors during the classification was the 
low quality of some point clouds. Low quality refers both to 
occlusions and to low point densities, both of which can 
negatively affect the performance of the algorithms. Low point 
densities cause the following main issues: 
 
- Low density point clouds may cause some elements to be 
missed from the segmentation. As expected, low density points 
can be classified as noisy due to large separation distances.  
- The low density of points can significantly affect the operation 
of clustering using connected components. First, low point 
densities cause empty voxels, which may cause an insufficient 
number of connected components. To overcome this problem, 
the user can change two parameters: the voxel size can be 
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increased or the connectivity constraints can be reduced (i.e. 
reduce the number of connected elements); and second, the 
threshold applied to the connected element clusters, which is a 
function of the largest cluster of connected components. If one 
vault has a much larger number of elements than another, the 
smaller vault might be lost. 
  
A common problem related to occlusions in masonry arch 
bridges occurs in river bridges where access to the underside of 
vaults is difficult. For these cases, occlusions often occur at the 
apex of the arches, and sometimes also in the spandrel walls 
because of the cutwater shadows.  

 
 

Figure 7. Results of segmentation of Spanish masonry arch 
bridges, from top to bottom: Allariz, Carracedo, Traba, 

Cernadela and Segura. 
 

4. CONCLUSIONS 

A novel method for the automatic segmentation of historic 
masonry arch bridges was developed and tested. Based on the 
topological properties of points, automatic geometric 
segmentation of bridges was achieved. The process involves 
initial segmentation of vertical walls and non-vertical walls, 
following by different approaches for each of these initial 
megaclasses. For the estimation of the number of vertical walls 
(classified by azimuth angle) a heuristic model is proposed 
based on logical constraints. Voxelization and connected 
components algorithms are then used for both vertical and non-
vertical walls to partition the point clouds into sub-classes 
corresponding to the different structural elements. 
 
The algorithm was evaluated using data from a set of five 
representative historic masonry arch bridges located in Spain. 
The results of segmentation were coherent for all of the bridges. 
Some minor problems related to the quality of the point cloud 
were reported: occlusions and areas of low point density can 
cause elements to be missed or classified as noisy. The good 
results found during validation indicate that the method could 
provide a new step towards the management of large datasets 
composed of millions of 3D Points. More specifically, it could 
enable computationally efficient extraction of data from 
important features of a particular bridge, allowing direct 

inspection or assessment, or further processing of a much 
smaller subset of data for a specific purpose. This is an 
important step towards more widespread exploitation of laser 
scanning technology in the civil engineering domain.  
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