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ABSTRACT: 

  

High-speed dual fluoroscopy (DF) imaging provides a novel, in-vivo solution to quantify the six-degree-of-freedom skeletal 

kinematics of humans and animals with sub-millimetre accuracy and high temporal resolution. A rigorous geometric calibration of 

DF system parameters is essential to ensure precise bony rotation and translation measurements. One way to achieve the system 

calibration is by performing a bundle adjustment with self-calibration. A first-time bundle adjustment-based system calibration was 

recently achieved. The system calibration through the bundle adjustment has been shown to be robust, precise, and straightforward. 

Nevertheless, due to the inherent absence of colour/semantic information in DF images, a significant amount of user input is needed 

to prepare the image observations for the bundle adjustment. This paper introduces a semi-automated methodology to minimise the 

amount of user input required to process calibration images and henceforth to facilitate the calibration task. The methodology is 

optimized for processing images acquired over a custom-made calibration frame with radio-opaque spherical targets. Canny edge 

detection is used to find distinct structural components of the calibration images. Edge-linking is applied to cluster the edge pixels 

into unique groups. Principal components analysis is utilized to automatically detect the calibration targets from the groups and to 

filter out possible outliers. Ellipse fitting is utilized to achieve the spatial measurements as well as to perform quality analysis over 

the detected targets. Single photo resection is used together with a template matching procedure to establish the image-to-object 

point correspondence and to simplify target identification. The proposed methodology provided 56,254 identified-targets from 411 

images that were used to run a second-time bundle adjustment-based DF system calibration. Compared to a previous fully manual 

procedure, the proposed methodology has significantly reduced the amount of user input needed for processing the calibration 

images. In addition, the bundle adjustment calibration has reported a 50% improvement in terms of image observation residuals.  

 

1. INTRODUCTION 

Biplanar videoradiography (BPVR) or clinically referred to as 

dual fluoroscopy (DF) imaging systems are increasingly being 

used to study the in-vivo skeletal biomechanics of human and 

animal locomotion (Dawson et al., 2011; Kapron et al., 2014; 

Torry et al., 2011). Using low-dose X-ray radiation,  DF 

systems provide very accurate bone rotation and translation 

measurements (e.g., ~ 0.2˚ and 0.2 mm for static imaging and ~ 

0.9˚ and 0.3 mm for dynamic imaging) (Anderst et al., 2009). In 

this research domain, a DF system comprises two X-ray 

sources, two image intensifiers and two high-speed video 

cameras. The combination of these elements allows for the 

stereoscopic imaging of the bones of a joint at high temporal 

resolution (e.g., 120-250 Hz), from which bone kinematics may 

be estimated using radiostereometric analysis (e.g., Börlin et al., 

2002) or model-based registration approaches (e.g., Bey et al., 

2008). DF measurement of skeletal kinematics is based on a few 

methodological assumptions and needs minimal interaction with 

the study subject. Following a geometric calibration of the 

system parameters, DF only requires imaging of a subject’s 

motion within the field-of-view of the X-ray sources while 

observing the dose limit guidelines. Other motion-capture 

approaches (i.e., optical and inertial) require substantial 

interaction with the study subject and sometimes those are 

inapplicable. Optical motion-capture approaches for example 

require substantial subject preparation to accurately place skin-

mounted reflective markers to ensure that rigid body 

assumptions are met and relevant segment coordinate systems 

can be established. Further, optical motion-capture approaches 

suffer from soft-tissue movement artefact, an inherent concern 

with optical systems due to the relative movement of skin 

mounted reflective markers with respect to the underlying bone 

(Akbarshahi et al., 2010; Sharma et al., 2015).  Inertial motion-

capture approaches on the other hand require a complex 

integration of three accelerometers, gyroscopes and 

magnetometers (Roetenberg et al., 2009). These sensors and 

their power supplies may be contained in a special suit or 

affixed to the segment under examination. The use of such 

comparatively bulky measurement units may be problematic in 

certain populations (e.g., paediatric, injured or pathological) and 

the lack of a common anatomical coordinate system limits the 

clinical interpretation of resultant segmental kinematics.   

 

In case of DF imaging, the system calibration can be considered 

as one of the most challenging tasks, as it needs considerable 

specialist effort and scientific analysis. The aim of the 

calibration process is to estimate the system parameters, 

namely; the cameras’ interior orientation and relative 

orientation parameters (IOPs and ROPs, respectively). The 

quality of the IOPs and ROPs directly impacts the accuracy of 

bony measurements. The DF system calibration is conducted 

prior to any subject testing. It can be achieved by 

photogrammetric means after capturing multiple images over a 

grid of radio-opaque beads (i.e., calibration targets) or a 

perforated metallic sheet (i.e., calibration frame) (Kaptein et al., 

2011). Traditional DF calibration approaches are based on two 

independent steps and do not exploit the benefits of redundant 

image observations. Typically, these approaches use local 

models (Ferrigno et al., 2002) or global polynomials (Gutiérrez 

et al., 2008) to model the distortion parameters (i.e., IOPs) in 

individual images. This is achieved by measuring the 2D 

coordinates of the imaged calibration targets and finding their 

deviations from an idealized location or shape. For the 

derivation of ROPs, the direct linear transformation (DLT) or its 

variants are usually used to estimate the position vector and 

orientation angles of each image (i.e., image exterior orientation 

parameters, EOPs, which are then used to derive the ROPs). As 

each image is processed separately, the calibration parameters 

suffer from high correlations between each other. In addition, 
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the derived IOPs vary from one image to another, which is 

incorrect for a stationary DF system.  

 

Lichti et al. (2015) proposed a rigorous procedure for the 

calibration of DF systems. Their approach is based on 

performing bundle adjustment with self-calibration. By 

simultaneously using redundant measurements of calibration 

targets in convergent images, it was shown that the solution for 

the IOPs and ROPs through the bundle adjustment is precise, 

unique, and straightforward. Nevertheless, to allow for such a 

bundle adjustment solution, the imaged targets must be 

manually digitized, spatially measured and then related to their 

3D object space homologues. Due to the absence of 

colour/semantic information in the DF images, a substantial 

amount of manual work was needed to prepare the input data 

for bundle adjustment.  

 

The transmissive nature of an X-ray-based imaging approach 

leads to ambiguous image scenes that are not common in optical 

photogrammetry. For instance, the calibration targets at 

different depths may overlap one another. In addition, the 

targets have no semantic/coded information, which complicates 

the task of automating the calibration process. This research 

introduces a framework to facilitate the calibration of DF 

imaging systems. The paper begins with a review of relevant 

literature regarding the applications of DF imaging systems and 

their common calibration approaches. Section 2 provides a brief 

background on the DF imaging process and summarizes the 

theoretical bases of the calibration approach proposed by Lichti 

et al. (2015). Section 3 explains the proposed methodology for 

the extraction, localization and identification of the calibration 

targets. The proposed methodology is then evaluated in the 

results section through a calibration experiment (Section 4). 

Finally, the paper presents relevant conclusions and 

recommendations for future work (Section 5). 

 

2. BACKGROUND 

2.1 Dual Fluoroscopy Imaging 

In this research, the DF system consists of two time-

synchronized X-ray sources (G-1086, Varian, USA), an 

instrumented treadmill (Bertec, USA), two 406 mm diameter 

quad-mode image intensifiers (E5876SD-P2A, Toshiba, Japan), 

and two high-speed video cameras (DIMAX, PCO, Germany) 

(Figure 1). The DF imaging process begins with the 

transmission of an X-ray pulse from the X-ray source, which 

impinges on the object within the imaging volume. Any radio-

opaque material in the field-of-view attenuates the incident X-

ray pulse, while the un-attenuated X-rays continue toward the 

image intensifier. The intensifier input screen receives the X-

rays, where they are converted to optical photons and amplified 

through the intensifier lens mechanism. This conversion results 

in a green image at the intensifier output screen that is, in turn, 

recorded as a grey-scale image by the high-speed video camera.  

In the system under consideration, each camera has a 4 

megapixel sensor (i.e., 11 μm × 11 μm pixel size) and the image 

intensifiers have four different resolution modes. For this 

testing, an image intensifier resolution of 1.8 line-pairs/mm was 

used. The corresponding DF image pixel resolution was 0.275 

mm. 

 

The combination of two X-ray sources, two image intensifiers 

and two high-speed video cameras provides a means to conduct 

stereoscopic imaging of objects under clinical and research 

examination. Briefly, the DF imaging and six-degree-of-

freedom reconstruction procedure may be summarised in the 

following steps: 

 Photogrammetric DF system calibration, using a 

calibration object to determine the cameras interior and 

exterior orientation parameters (IOPs and ROPs); 

 DF image sequence acquisition of bone motions; 

 Distortion correction of acquired bone images;  

 Acquisition, segmentation and construction of a 

reference 3D bone model from Computed Tomography 

(CT) or Magnetic Resonance Imaging (MRI); 

 Reconstruction of six-degree-of-freedom bone 

kinematics using either radiostereometric analysis or 

model-based registration approaches.  

 

 
Figure 1. DF imaging system components, (a) high-speed 

cameras, (b) image intensifiers, (c) treadmill, and 

(d) X-ray sources 

 

2.2 Calibration Requirements  

Lichti et al. (2015) proposed a photogrammetric methodology 

that established the first reference dataset for DF system 

calibration using bundle adjustment. For detailed description 

about the mathematical models used and the photogrammetric 

background on this subject please consult Lichti et al. (2015).    

Briefly, this methodology used a large number of calibration 

images and targets and revolved around two main principles, 

namely: (1) the sensor model definition; and (2) the calibration 

network configuration. Regarding the sensor model, a single 

camera, a single image intensifier and a single X-ray source 

were treated as an ideal pinhole X-ray source model comprising 

a perspective center (PC) and a flat image plane (Figure 2.a and 

Figure 2.b).  

 

 
(a)  

 
(b)  

Figure 2. DF sensor model, (a) actual system configuration and 

(b) lumped system configuration 

 

 

a  

d  b c 
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The lumped sensor configuration facilitated the DF system 

calibration through the bundle adjustment model. Accordingly, 

the functional task of the bundle adjustment was to estimate the 

cameras IOPs and ROPs. The IOPs comprised the principal 

distance (𝑐), the principal point offset (𝑥𝑝, 𝑦𝑝) and a set of 

additional distortion parameters (i.e., X-ray imaging distortions 

and the camera distortions). The ROPs described the relative 

geometric relation between the two cameras and comprised a 

position vector and three rotation angles.  

  

Regarding the calibration-network configuration, the 

methodology involved acquiring successive images of a 3D 

calibration frame through a strong network geometry (Figure 

3.a shows an optical image and Figure 3.b shows an X-ray-

based image of the calibration frame, respectively). To satisfy 

the geometry requirements (Remondino and Fraser, 2006), the  

methodology was designed to acquire calibration images from 

different locations and orientations. It is impractical to relocate 

the system components in order to acquire convergent images 

primarily because of the system large mass and the relative 

orientation parameters between the cameras would be disturbed 

if moved. Alternatively, the calibration frame was designed to 

be rotated when collecting the images. A right-handed 

coordinate system was established at the centroid of the 

calibration frame (Figure 3.a). By sequentially rotating the 

calibration frame through 360˚ around its X, Y, and Z axes, a 

full coverage of the object space was achieved. Please note that 

the procedure of having a fixed camera and a portable 

calibration frame is well-known in photogrammetry and is 

equivalent to having a fixed calibration frame and a portable 

camera (Fraser, 2012). For precise estimation of the IOPs, a 

total of 503 calibration targets (spherical steel beads with a 

diameter of 3.5 mm) were distributed in unique patterns over 

four faces of the calibration frame.  

 

  
(a) (b) 

Figure 3. Calibration frame images, (a) optical image and (b)  

X-ray-based image  

 

The previous methodology of processing the calibration images 

involved a manual digitization of all the targets in 300 images 

(Lichti et al., 2015). The Hough transform (Hough, 1962) was 

used to determine an initial target location measurement that 

was refined by an iterative ellipse fitting or circle fitting. This 

procedure required an average of 15 minutes to process each 

calibration image. Since the calibration methodology requires 

the use of a large number of images, a significant user input was 

needed. This has raised the necessity for a more automated 

procedure for preparing the calibration data (i.e., the bundle 

adjustment inputs). The following section illustrates the 

proposed methodology for processing the calibration images.  

 

3. TARGETS EXTRACTION, LOCALIZATION, AND 

IDENTIFICATION 

Spherical targets have been widely used in high-accuracy 

photogrammetric applications for the calibration purpose (e.g., 

Sun et al., 2016). Usually, the calibration targets will have 

unique semantic and geometric properties (i.e., signalized 

targets) to allow for their automatic extraction/identification as 

well as to facilitate tasks of spatial measurement in 2D (e.g., 

Habib et al., 2013; Lari et al., 2014; Tommaselli et al., 2014). In 

the case of DF images, the calibration targets appear as black 

circular-like (i.e., an ellipse with low eccentricity) footprints 

with no semantic information, which complicates the task of 

automating the bundle adjustment calibration. The methodology 

of processing the calibration images has three main 

components, namely; target extraction, target localization, and 

target identification. The target extraction aims at detecting the 

targets and to filter out possible outliers. The target localization 

focuses on achieving the spatial measurements in 2D (i.e., target 

centroid) and performing quality analysis over the detected 

targets. The target identification aims at relating the 2D 

measurements to their 3D object space homologues (i.e., 

assigning proper ID for each target).  

 

For the target extraction, Canny edge detection (Canny,1986) is 

used to find distinct structural components within the images. 

Edge linking is used to combine the detected edge-pixels in 

individual groups. And principal components analysis (PCA; 

Pauly et al., 2002) is applied to detect the targets and to filter 

out possible outliers. For the target localization, ellipse fitting 

(Halır and Flusser, 1998) is used to estimate the target centroid 

and to perform the quality analysis over the detected targets. For 

the target identification, a quaternion-based single photo 

resection (SPR; Mazaheri and Habib, 2015) is used together 

with a template-matching procedure to establish the image-to-

object point correspondence. 

 

3.1 Target Extraction  

Due to the low structural complexity within the calibration 

images (Figure 3.b), rapid transitions in grey values mainly 

exist at the targets boundaries. Such variation exhibits a local 

maximum gradient magnitude that will allow location of the 

edge pixels through the Canny algorithm. A gradient magnitude 

profile through four sample calibration targets (Figure 4) 

demonstrates that among all the pixels within the profile line, 

the targets edge pixels have a significantly high gradient 

magnitude. Accordingly, a relaxed gradient threshold is 

sufficient to detect all the targets within a calibration image 

through the Canny operator (e.g., edge-pixels with a gradient 

magnitude value greater than 20), as demonstrated in the edge 

detection result of a sample calibration image (Figure 5).  

 

 
Figure 4. Gradient magnitude profile of four calibration targets 

(absolute values of gradient magnitude are 

displayed) 

X 

Y 

Z 

Profile line  
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(a) (b) 

Figure 5. Canny edge detection sample, (a) the original 

calibration image and (b) the corresponding 

extracted edges with a gradient magnitude value 

greater than 20 

 

Following the edge detection, an edge linking step is applied to 

separate the edge pixels into individual groups. The edge 

linking works by tracking a sequence of connected edge pixels. 

Eventually, the edge pixels that belong to an un-occluded target 

will result in a circular-like shape (Figure 6.a). Since the 3D 

calibration frame has four sides containing targets, some targets 

from different sides might overlap one another. The detected 

edge pixels from overlapping targets are oval-like shapes 

(Figure 6.b). Also, areas such as the target field edges feature 

high image gradients and lead to linear-like shapes (Figure 6.c). 

Therefore, PCA (Equation 1) is used to automatically determine 

the geometric shapes of the grouped edge pixels. Through the 

PCA, the circular-like shapes are kept and are hypothesised to 

be potential targets, while the other shapes (i.e., linear-like, or 

oval-like) are filtered out since those don’t serve the calibration 

process. The application of PCA over the covariance matrix of a 

group of edge pixels results in two eigenvalues (i.e., 𝜆1, and 

 𝜆2). For circular-like shapes (Figure 6.a), the two eigenvalues 

will be almost equivalent (e.g., 𝜆1/𝜆2 ≥ 0.70). For linear-like or 

oval-like shapes (Figure 6. b and c), one of the eigenvalues will 

be much larger than the other (e.g., 𝜆1/𝜆2 < 0.70). Please note 

that in some incidences the targets might be partially visible and 

would pass the PCA step. These are later filtered out by 

evaluating the quality of ellipse fitting as will be explained in 

the following section. 

 

   

   
(a) (b) (c) 

Figure 6.  PCA of edge pixels, (a) circular-like shape, (b) oval-

like shape and (c) linear-like shape  

 

 

 

 

 

    𝐶2×2 = [𝑒1 𝑒2] [
𝜆1 0
0 𝜆2

] [
𝑒1

𝑇

𝑒2
𝑇] 

1 where: 𝐶2×2 =
1

𝑛
∑ ([

𝑃𝑥𝑖

𝑃𝑦𝑖

] − [
�̅�𝑥

�̅�𝑦
]) ([

𝑃𝑥𝑖

𝑃𝑦𝑖

] − [
�̅�𝑥

�̅�𝑦
])

𝑇

𝑛
𝑖=1  

and, �̅� =
1

𝑛
∑ [

𝑃𝑥𝑖

𝑃𝑦𝑖

]𝑛
𝑖=1  

where 𝐶 is the covariance matrix, (𝑒1, 𝑒2) and (𝜆1, 𝜆2) are the 

eigenvectors and the eigenvalues, respectively, (𝑃𝑥𝑖
, 𝑃𝑦𝑖

)  is the 

𝑖𝑡ℎ pixel coordinate, and (�̅�𝑥, �̅�𝑦) is the centroid of the grouped 

edge pixels. 

 

3.2 Target Localization   

The DF system calibration requires precise and accurate 2D 

measurements of the centres of imaged targets. These 

measurements serve as the observations needed for the bundle 

adjustment. Theoretically, the perspective projection of a 

spherical target leads to an elliptical shape in the image space 

(Luhmann, 2014). The application of ellipse fitting over the 

target edge-pixels provides a reliable 2D measurement of its 

centre. The ellipse fitting method proposed by Halır and Flusser 

(1998) is used here as it has been shown to be accurate and 

numerically stable. This method considers a general-conic 

model (Equation 2) and performs a non-iterative least squares 

adjustment. Following the estimation of the ellipse parameters, 

the ellipse centre is derived according to Equation 3. Figure 7 

shows an example of ellipse fitting result from a set of target 

edge pixels. As can be seen, the estimated ellipse precisely 

matches the target edge pixels.  

In general, a high quality of fit results when dealing with a fully 

visible target (e.g., 0.25 ± 0.10 pixel RMS error of fit). In 

contrast, a low quality of fit results for partially visible or 

blurred targets (e.g., roughly 0.60 ± 0.10 pixel RMS error of fit) 

(Figure 8). Such targets lead to low quality image measurements 

that negatively affect the bundle adjustment solution. Therefore, 

the detected targets are evaluated according to their quality of 

fit. The targets associated with significantly high RMS error 

value are filtered out (e.g., targets with RMS error of fit greater 

than 0.5 pixel).  

 

𝑓(𝑥, 𝑦) = 𝐴𝑥2 + 𝐵𝑥𝑦 + 𝐶𝑦2 + 𝐷𝑥 + 𝐸𝑦 + 𝐹 = 0 (2) 
  

𝑥𝑐 =
2𝐶𝐷 − 𝐵𝐸

𝐵2 − 4𝐴𝐶
 

𝑦𝑐 =
2𝐴𝐸 − 𝐵𝐷

𝐵2 − 4𝐴𝐶
 

(3) 

where 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, and 𝐹 are the ellipse parameters, and 

(𝑥𝑐, 𝑦𝑐) are the coordinates of the target centre.  

 

   
(a) (b) (c) 

Figure 7. Ellipse fitting sample over fully visible target, (a) 

source image, (b) target edge pixels and (c) the 

fitted ellipse 

 

𝛌𝟏 

𝛌𝟐 𝛌𝟐 

𝛌𝟏 

𝛌𝟐 

𝛌𝟏 
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(a) (b) (c) 

Figure 8. Ellipse fitting sample over partially visible target, (a) 

source image, (b) target edge pixels and (c) the fitted 

ellipse 

 

The ellipse fitting provides reliable 2D measurements that are 

necessary to run the bundle adjustment. Nevertheless, one 

should bear in mind the eccentricity error that is inherent to the 

measurements of spherical targets (Luhmann, 2014). In the case 

of optical imaging, the perspective projection of a spherical 

target leads to an ellipse with low eccentricity (circular-like 

shape). Based on its diameter and the angle of projection, the 

target will possess varying eccentricity values. As a result, the 

target centre estimate in 2D might not accurately represent its 

3D shape, which degrades the bundle adjustment output. In the 

case of DF imaging, it was observed that the targets near to the 

image bounds will possess high eccentricity (e.g., Figure 8.a). 

The DF imaging mechanism involves two projection incidences 

(Figure 2.a); first, the targets are projected onto the 

hemispherical intensifier input screen. Second, the intensifier 

output screen display is projected onto image space through the 

camera perspective centre.  The projection of the calibration 

targets onto the hemispherical input screen maximises the 

targets eccentricity.  A geometric simulation for the DF system 

to evaluate the impact of eccentricity on the target 

measurements is currently in progress. A preliminary 

experiment has yielded a maximum error of 1 pixel in the target 

measurements due to the eccentricity. At present, we assume 

that the measurements from ellipse fitting are adequate to 

establish a sufficient base for the DF system calibration. We 

agree with Luhman (2014) that the eccentricity error will be 

partially compensated by the radial lens distortion parameters. 

Future work will focus on establishing a realistic 

estimation/compensation for the eccentricity related error. The 

following section introduces the proposed procedure for target 

identification. 

   

3.3 Target Identification  

One of the fundamental tasks that must be done prior to the 

bundle adjustment is to relate the 2D measurements to their 3D 

homologues. Typically, the targets will have unique IDs/name-

tags and all the 2D measurements that belong to a particular 

target will be given the same ID. This is essential to establish 

the attributes needed for the bundle adjustment (Fraser and 

Edmundson, 2000). In this work, the targets are distributed in 

unique patterns over the four sides of the calibration frame to 

simplify their visual identification. However, due to the large 

number of targets/images that are used for the calibration 

process, a significant amount of time is required to manually 

identify each individual target in all images. Also, the absence 

of semantic/colour information as well as the crowded images 

(with targets) might lead to incorrect-identification incidences. 

Given that the images of the calibration frame are sequentially 

acquired (Figure 9), a high degree of overlap between the 

successive images results. Here, we introduce a two-step 

methodology to simplify target identification and to reduce the 

amount of required manual work. First, an SPR-based procedure 

is used to identify the targets in a particular image (e.g., the first 

image in a sequence). Second, a template-matching procedure is 

used to inherit the IDs between the conjugate targets in 

successive images. The SPR-based procedure is performed by 

manually identifying a minimum of three well-distributed 

targets within an image (Figure 10). The 2D coordinates of the 

targets, their 3D homologues and nominal values of IOPs are 

used to estimate the image EOPs through the SPR. After the 

estimation of the EOPs, the 3D coordinates of all the targets are 

projected into image space using the collinearity equation 

(Granshaw, 1980). The projected targets will fall near to their 

image homologues (Figure 11). Since the 3D coordinates of all 

the targets are associated with unique IDs, the ID of each 

projected target can be assigned to its nearest image 

measurement. Once all targets in a given image have been 

identified, they are used as a template to identify their 

conjugates in the following image in the sequence. The template 

targets are shifted in order to achieve a good alignment with 

their conjugates in the second image (Figure 12). Once the 

alignment is achieved, the IDs are transferred from the template 

targets to their conjugates. The process of loading a template 

from an image to the following image is repeated for the entire 

images sequence. Please note that in a successive pair of images 

the targets from different sides of the calibration frame move in 

opposite directions relative to the applied rotation (e.g., the 

arrows directions in images 2 and 3 - Figure 9). Therefore, 

multiple templates are usually generated to simplify the 

alignment process. Each template contains the targets of an 

individual side of the calibration frame. This provides more 

freedom to the user to move templates of different sides in 

opposite directions simultaneously. The template-matching 

procedure requires little manual effort and provides accurate 

target identification even for images crowded with many 

targets. Due to the high overlap between the successive images, 

the conjugate targets will have only small variations in their 2D 

locations. A few targets might appear/disappear between two 

successive images. The new appearing targets will not have 

template conjugates, so those have to be manually identified. 

The user can simply drag their IDs from a previously projected-

targets.  

 

The selected targets for SPR should be well-separated for a 

reliable estimation of the EOPs (e.g., the distribution of the 

targets 1, 2 and 3 in Figure 10). In addition, the selected targets 

must be non-collinear since the collinear ones are insufficient to 

estimate all the rotations of the EOPs. The quality of the EOPs 

estimated by the SPR plays an essential role in determining the 

closeness/alignment between the projected targets and their 

image homologues. The existence of high distortion will also 

affect the alignment. The quality of the EOPs is highly 

dependent on the used IOPs as well as the distribution/number 

of the selected targets. IOPs from a previous system calibration 

(i.e., 𝑥𝑝, 𝑦𝑝 and 𝑐) are used for the SPR. Since the IOPs are 

dependent on the DF system setup, they may vary significantly 

between calibrations. Accordingly, the user might need to select 

more than three targets (e.g., five) to achieve higher quality 

EOP estimates. The user should cumulatively select targets for 

SPR and then evaluate the estimated EOPs relative to the 

alignment between the projected targets and their image 

homologues. The unique target pattern distributions of the four 

sides of the calibration frame help the user to visually confirm 

an appropriate alignment. Once the alignment is achieved (e.g., 

Figure 11), the user can transfer the IDs from the projected 

targets to their image homologues. Due to occlusions, usually 

there will be more projected targets than image targets. 

Therefore, the ID transfer is done based on a distance threshold 

from the image targets to the projected target (e.g., the image 

target will get the ID of the closest projected target within a set 

distance, in this case 50 pixels).  
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Figure 11. Projection of the targets 3D coordinates onto a 

calibration image (projected targets in green and 

the image measurements in red) 

 

 
Figure 12. Template targets (in magenta) aligned over their 

conjugates 

 

 

Some images are crowded with targets (e.g., the image in Figure 

3.b), which might lead to a scenario where a projected target 

lies within a similar distance to two image targets. To deal with 

this situation, a simple routine is used to pinpoint the possible 

ambiguities in identification. Then the user has the manual 

freedom to drag and drop the IDs from the projected targets to 

their image homologues based on the visual evaluation. 

 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION  

 

4.1 Calibration Data Collection   

A DF system calibration session was performed in June, 2015 at 

the Clinical Movement Assessment Laboratory, University of 

Calgary, Alberta, Canada. The system was setup in a typical 

configuration for kinematic analysis of bone movements. The 

calibration frame was placed in a central location between the 

X-ray sources and the image intensifiers. It was mounted on 

height adjustable turntable base to allow its rotation when the 

system was activated. Preliminary exposures were obtained to 

ensure that the calibration frame was visible to both intensifiers. 

The system was set to acquire images at 6 Hz using both 

cameras. Three orientation configurations were applied to fully 

cover the calibration frame from all sides. For the first 

orientation, the calibration frame was placed such that its X-axis 

pointed in the vertical upwards direction. Then, the calibration 

frame was manually rotated about the X-axis through 360˚ 

while the system was activated. The calibration frame was 

relocated, and a similar procedure was followed for the other 

two rotation configurations having the Y and Z axes each 

pointing in the vertical upwards direction, respectively. 

 

4.2 System Calibration through Bundle Adjustment  

The proposed methodology provided 56,268 identified-targets 

from 411 images that were used to conduct a second-time 

bundle adjustment-based system calibration. The objective of 

the calibration experiment was to evaluate the quality of derived 

image measurements and to perform analysis over a calibration 

model. The target extraction/localization was completely 

automatic and required an average processing time of 1 second 

per image.  The target identification task required an average 

manual interaction of ~3 minutes per image. Compared to the 

previous experiment of processing  calibration images (Lichti et 

al., 2015), the proposed procedure has led to 80% reduction in 

terms of manual processing time. The template matching was 

very useful to inherit the IDs over the conjugate targets in the 

overlapping images.   

 

  
Imaging  mechanism                 image 1         image 2      image 3 

Figure 9. Imaging mechanism and sample of successive images   

Figure 10. Distribution of selected three targets for SPR 

𝟏 

𝟑 

𝟐 
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The calibration experiment was performed using the bundle 

adjustment calibration model proposed in Lichti et al. (2015). A 

total of 34 parameters were used for the modelling of the IOPs 

of each lumped imaging system. Specifically,  𝑥𝑝, 𝑦𝑝 and 𝑐 in 

addition to 31 X-ray-imaging and optical-imaging distortion 

parameters. The values of 𝑥𝑝, 𝑦𝑝 and 𝑐 from the previous 

calibration were used as initial approximations for the iterative 

bundle adjustment solution and other distortion parameters were 

initialized to zeros. The initial approximations of each image’s 

EOPs were obtained from the SPR. The bundle adjustment with 

self-calibration was performed with the free-network datum 

definition. Table 1 lists the number of images and targets used, 

the degrees of freedom as well the output root mean square 

(RMS) of image observation residuals.  

 

Table 1. Bundle adjustment parameters 
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411 56,254 112,508 108,472 0.25 0.27 

 

The proposed methodology was a reliable tool to provide the 

image measurements needed for the DF system calibration. 

Reasonable values of RMS image observation residuals (Table 

1) were achieved (i.e., a precision of almost a 1/4 pixel). As a 

second-time bundle adjustment-based system calibration, the 

1/4 of a pixel value counts as a promising result and a solid 

basis to continue toward a fully automated system calibration. 

For the calibration of digital-cameras in optical close-range 

photogrammetry, a value of 1/20 of a pixel or better is 

achievable currently (Fraser, 2012). This precision can be 

achieved for the calibration of well-defined camera models 

while using signalized targets, which is not the case for the DF 

system. Several factors are speculated to be temporarily 

preventing achievement of better RMS. For instance, the 

aforementioned eccentricity-related error might be a factor. 

Also, the DF imaging involves empirical models to describe the 

many physical sources of systematic error behaviour. Compared 

to the previous system calibration, a 50% improvement was 

achieved in terms of RMS image observation residuals. The 

previous experiment (Lichti et al., 2015) has a similar 

configuration to the one reported here and resulted in ~ 1/2 of a 

pixel RMS image observation residuals. The previous 

experiment was based on manual digitization of all the 

calibration targets. The Hough transform was used in the 

previous experiment to determine an initial target centre 

followed by an iterative ellipse fitting or circle fitting to refine 

the initial centre.  

 

Table 2 lists the estimated IOPs of each lumped imaging system 

for the current setup. For space management, only the 𝑥𝑝, 𝑦𝑝, 

and c estimates  are shown. The values of (𝑥𝑝, 𝑦𝑝) are far from 

an idealized (1008, 1008) principal point. This is due to an 

imperfect alignment between the system imaging components.       

 

Table 2.  Imaging system IOPs 

 𝑥𝑝 (pixels) 𝑦𝑝 (pixels) 𝑐 (pixels) 

Cam1 1078.19 1104.67 5495.25 

Cam2 860.50 1306.67 5605.75 

 

Figure 13 shows the estimated image positions and the 3D 

coordinates of the calibration frame. The network provides a 

strong geometric configuration of calibration images. For 

completeness, please note that a few images – other than the 

411 images reported here – were successfully processed using 

the proposed methodology but were not included in the bundle 

adjustment calibration. The used bundle adjustment software 

employs the traditional three Euler angle rotation 

parametrization (i.e., 𝜔,𝜑,𝜅). The excluded images from the 

calibration process had a secondary rotation (𝜑) angle close to 

90˚ or 270˚. These angle values are known to cause the Gimbal-

lock condition and therefore are excluded from the calibration. 

A quaternion-rotation-based bundle adjustment would have 

been useful to include these images for the calibration process 

and will be implemented in future work.    

 
Figure 13. A 3D display of the image positions (in red) and 

the calibration-targets (in green) 

  

5. CONCLUSIONS AND FUTURE WORK 

This paper presented a framework to facilitate the calibration of 

DF imaging systems. An automated procedure was introduced 

for the detection and localization of calibration targets. A two-

step procedure was introduced to simplify the target 

identification task and to reduce the amount of manual work 

required in this regard.  The proposed methodology was able to 

successfully provide reliable inputs for a DF system calibration 

experiment. The proposed methodology led to a substantial 

reduction in terms of the time needed for processing the 

calibration images. The bundle adjustment calibration using the 

derived image measurements resulted in ~1/4 of a pixel RMS 

image observation residuals, which forms a 50% improvement 

compared to a recently achieved value. This is considered as a 

promising result for the calibration of an X-ray-based imaging 

system and a solid basis to continue toward a fully automated 

DF system calibration. The RANdom Sample consensus 

(RANSAC) method will be tested to automate the SPR step. We 

will investigate the possibility of using optical flow 

computations to achieve the template matching procedure.  

Other calibration-frame shapes or target distributions will be 

considered as well.  Future work will focus on improving the 

target measurement accuracy by considering the eccentricity 

related errors. Other calibration concerns such as a better 

modelling of the system parameters is also under consideration.  

             

𝝋 =270˚ 

𝝋 =90˚ 
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