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ABSTRACT: 

 

Nowadays, various medical X-ray imaging methods such as digital radiography, computed tomography and fluoroscopy are used as 

important tools in diagnostic and operative processes especially in the computer and robotic assisted surgeries. The procedures of 

extracting information from these images require appropriate deblurring and denoising processes on the pre- and intra-operative 

images in order to obtain more accurate information. This issue becomes more considerable when the X-ray images are planned to be 

employed in the photogrammetric processes for 3D reconstruction from multi-view X-ray images since, accurate data should be 

extracted from images for 3D modelling and the quality of X-ray images affects directly on the results of the algorithms. For 

restoration of X-ray images, it is essential to consider the nature and characteristics of these kinds of images. X-ray images exhibit 

severe quantum noise due to limited X-ray photons involved. The assumptions of Gaussian modelling are not appropriate for 

photon-limited images such as X-ray images, because of the nature of signal-dependant quantum noise. These images are generally 

modelled by Poisson distribution which is the most common model for low-intensity imaging. In this paper, existing methods are 

evaluated. For this purpose, after demonstrating the properties of medical X-ray images, the more efficient and recommended 

methods for restoration of X-ray images would be described and assessed. After explaining these approaches, they are implemented 

on samples from different kinds of X-ray images. By considering the results, it is concluded that using PURE-LET, provides more 

effective and efficient denoising than other examined methods in this research. 

 

 

*  Corresponding author 

1.  INTRODUCTION 

There are different types of medical X-ray images such as 

digital radiography, computed radiography, computed 

tomography and fluoroscopy which are widely applied for 

operating planning, diagnosis and treatment processes. For 

achieving more reliable results in medical applications, the 

captured images should be denoised by considering the nature 

of noises. This issue is very important for photogrammetry 

usage and 3D reconstruction applications from X-ray images 

because of the limited number of X-ray photons. Therefore, for 

achieving more accurate results, in this research, algorithms for 

reducing the noise will be assessed.  

It is often suggested to approximate the combined effect of the 

various noise sources by a Gaussian distribution. The variance 

of a Gaussian noise is constant.  In image processing, a common 

assumption is that the noise is not only Gaussian, but additive 

white Gaussian noise (AWGN) (Mäkitalo, 2013). AWGN is 

signal-independent and normally distributed. Since this method 

completely ignores the signal-dependent noise, it is not 

sufficient and accurate for X-ray medical images. 

In order to denoise and restore degraded medical X-ray images 

adequately, the nature and characteristics of images should be 

considered.  Noise in X-ray imaging comes from various 

sources such as quantum noise, electronic noise, sampling 

noise, and anatomical noise. X-ray imaging operates in the 

photon limited realm due to the low photon counts available 

over a reasonable exposure time. X-ray images exhibit severe 

quantum noise due to limited X-ray photons involved. The most 

important noise in X-ray images, quantum noise, is a signal-

dependant noise. Quantum noise is produced by the random 

manner of production and interaction of the photons in a 

detector. Gaussian modelling assumptions are accurate when the 

sources of error are signal-independent. Therefore, they are not 

suitable for photon-limited images such as X-ray images, 

because of the nature of signal-dependant quantum noise. X-ray 

images are generally modelled by Poisson distribution which 

successfully models the photon counting statistics of imaging 

detectors and it is the most common model for low-intensity 

imaging. Since the noise variance depends on the intensity 

value, Poisson noise is signal dependent.  

Despite of similar nature and properties of noise in X-ray 

images, various types of X-ray images such as fluoroscopy, 

digital radiography, film-screen radiography, and computed 

tomography have different characteristics and levels of noise. 

Therefore, the restoration methods should be applied by 

considering their noise behaviour. In fluoroscopy, there is a 

continuous beam of radiation. The relatively low exposure in 

fluoroscopy produces images with high quantum noise, due to 

the more restricted number of X-ray photons. In normal 

fluoroscopy, an average of several frames, not one frame, is 

seen at a time. Digital radiography such as direct radiography 

and computed radiography has lower quantum noise than 

fluoroscopy. In Digital radiography there is not a fixed 

sensitivity for receptors, in contrast to film-screen receptors. 

Digital receptors have a wide exposure dynamic range. For 
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computed radiography, it was shown that a coherent data 

distribution where the noise variance increases linearly with the 

image intensity which is the behavior of images with Poisson 

noise. In film-screen radiography, the film must first be scanned 

before noise can be studied on it and the scanning process 

introduces photon, read-out and quantization noise in addition 

to grain noise already present in the film (Gravel et al, 2004). 

(Gravel et al, 2004)expressed that the scanner quantization 

noise dominates over all other types of noise in the film-based 

radiography and the photon noise which is present during the 

X-ray exposure and recorded in the grain distribution is 

negligible when compared to the scanning noise. In Computed 

tomography (CT), Gaussian rather than Poisson distributions of 

local pixel intensities on real and synthetic CT scans series are 

observed. The image reconstruction algorithms involve 

weighted linear combinations of intensities that transform the 

noise PDF from Poisson to Gaussian according to the central 

limit theorem. The noise PDF on such an image has an 

asymptotic Gaussian distribution. Therefore, they are 

considered Gaussian despite of their signal-dependent variance. 

By considering these issues, it seems essential to evaluate 

denoising algorithms and their effects on each type of X-ray 

images. Although many researches have been done on methods 

of denoising images with Gaussian noise and different 

algorithms have been introduced for this purpose, there are 

relatively a few methods offered for restoring images properly 

with Poisson noise, such as radiographs. Denoising of X-ray 

images should be considered as an important pre-processing 

step in 3D reconstruction, more specifically to facilitate and 

increase the accuracy of the segmentation process which has 

high importance for registration step. Hence, the existing 

denoising methods should be evaluated in order to find 

appropriate methods that improve the results of image 

processing procedures. In this paper, after demonstrating the 

properties of medical X-ray images, existing methods for 

restoration of X-ray images will be described and assessed. 

First, various approaches such as methods based on Variance 

Stabilising transformation, Total Variation and Tikhonov 

regularization with different data fit functions, methods, PDE 

and complex diffusion processes, Block-matching and 3D 

filtering methods, and PURE-LET are explained. Next, these 

methods will be applied and implemented on image samples 

from three kinds of X-ray images which are radiography, CT, 

and fluoroscopic images with different levels of noise. Finally, 

the results of the explained methods are compared. For this 

purpose, different metrics such as PSNR (peak signal to noise 

ratio) are explored and applied for the assessment. 

 

 

 

2. METHODS 

As mentioned, X-ray images contains high quantum noise 

because of their nature. Quantum noise is a signal dependent 

noise, in contrast to Gaussian noise which is signal 

independent. In images with signal-dependent noise, the noise 

variance is typically not constant and varies with the 

expectation of the pixel value. Therefore, they are generally 

modelled by Poisson distribution. Denoising of these images 

can be done by considering the noise behaviour and statistics 

directly such as PURE-LET method or indirectly such as 

variance-stabilizing transform based methods. In the following, 

various important methods for this issue are explored. 

We will review several outperforming denoising algorithms 

(VST-based, BM3D, PURE-LET and Regularization and 

gradient-based methods). It should be mentioned that BM3D is 

a strong denoising algorithm for images with Gaussian noise but 

it is widely used in combination of other methods for denoising 

images with signal-dependent noise. 

 

2.1 Variance Stabilizing Transformations 

Many of the denoising algorithms are designed to reduce noise 

in transform domain. Poisson statistics are more difficult to 

handle in transformed domain. Hence, a solution for denoising 

images with Poisson noises is variance-stabilizing and 

rendering the noise variance constant throughout the image, 

which is called Gaussianizing, in order to remove the signal-

dependency. Gaussianizing the Poisson measurements is done 

by nonlinear mapping. This method was first presented by 

(Anscombe, 1948) and it was named as Anscombe variance-

stabilizing transform (VST). (Donoho, 1993) applied this 

method in denoising problems for the first time. Today, 

Anscombe transformation is widely used in denoising 

applications. In variance-stabilizing transform (VST) denoising 

procedure, first a nonlinear variance stabilizing transformation 

is applied on the noisy data. The achieved transformed data can 

be considered to have an approximately Gaussian noise 

distribution with a constant variance. After the stabilization 

step, any denoising algorithm designed for the removal of 

Gaussian noise can be used. Finally, the estimate of the 

unknown noise-free image is obtained by applying an inverse 

VST to the denoised data. There are other variance-stabilizing 

transformations such as Anscombe taransformation (Anscombe, 

1948), GAT (Murtagh et al, 1995), MS-VST (Zhang et al, 

2008), OPT-VST (Foi, 2008), and the exact unbiased inverse 

(Mäkitalo et al, 2011) of the Anscombe Taransformation. 

The classical Anscombe transformation has been the most 

common VST applied for the Poisson noise because of its 

simplicity and low expense. However, some images are 

degraded by photon and readout noises. In this case, the reading 

noise from a CCD detector generated by the thermal 

fluctuations. Therefore, these images contain some amount of 

Gaussian noise, too. For denoising images corrupted by mixed 

Poisson-Gaussian noise, the generalized Anscombe 

transformation (GAT) was proposed by (Murtagh et al, 1995) in 

order to stabilize the variance of Poisson-Gaussian noise. MS-

VST is another denoising algorithm which is proposed by  

(Zhang et al, 2008) as an extension of the Anscombe transform 

applied on a filtered discrete Poisson process, yielding a near 

Gaussian process with asymptotic constant variance (Zhang et 

al, 2008). This method uses of a well-designed VST allowing to 

Gaussianize and stabilize a filtered Poisson process. Then, it is 

combined with wavelets, ridgelets and curvelets yielding MS-

VSTs. It has been shown that the MS-VST approach is effective 

in recovering important structures of various shapes within low-

count images. For the inverse of MS-VST which is needed to be 

applied on the denoised coefficients, the inversion is formulated 

as a convex sparsity-driven minimization problem, solved by 

iterative steepest descent. This method is efficient in even very 

low-count situations. 

Since exact stabilization and even achieving some approximate 

stabilization for many of the distributions such as Poisson is 

challenging, Foi (2008) approached the variance stabilization 

problem as an explicit optimization problem. In the proposed 

method, the discrepancy between the standard deviation of the 

transformed variables and a fixed desired constant is measured 

by a nonlinear stabilization functional, which is then iteratively 

minimized.  

For applying variance stabilization, a properly constructed 

forward VST and also a suitable inverse transformation are 

needed. However, all practical transformations are 
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approximately or asymptotically stabilizing and normalizing 

(Mäkitalo, 2013). Therefore,  (Mäkitalo et al, 2011) proposed 

an exact unbiased inverse of the Anscombe transformation that 

is equally applicable regardless of the values. The same work 

was done for the GAT. (Mäkitalo, 2013) showed the importance 

of a properly designed inverse transformation, and constructed 

exact unbiased inverses for these two VSTs. They proposed an 

exact unbiased inverse for the Anscombe transformation and 

similarly for the GAT.  

 

2.2 PURE-LET 

PURE-LET method was designed by (Luisier et. al., 2010) as a 

non-bayesian framework to estimate Poisson intensities in the 

unnormalizied Haar wavelet domain, particularly for Poisson 

noise. PURE-LET’s concept is built on the idea of estimating 

the “risk” (MSE) between the noise-free and the denoised 

images. This algorithm is based on: (1) the minimization of an 

unbiased estimate of the MSE for Poisson noise, (2) a linear 

parametrization of the denoising process and, (3) the 

preservation of Poisson statistics across scales within the Haar 

DWT (Luisier et al, 2010). This method is similar to SURE-

LET approach for Gaussian denoising. For a Gaussian 

distribution, this MSE can be estimated with Stein’s unbiased 

risk estimate (SURE). However, for the Poisson noise, Luisier 

et al derive an interscale Poisson unbiased risk estimate 

(PURE), which minimizes the MSE in the Haar wavelet 

domain. Then, they minimize the estimated MSE over several 

denoising processes, in order to find the one providing the best 

SNR. In particular, these denoising processes are wavelet 

estimators expressed as a linear expansion of thresholds (LET); 

thresholds in this context mean arbitrary elementary estimators 

with unknown weights (Mäkitalo, 2013). Thus, the PURE 

estimate can be minimized by solving a low-dimensional system 

of linear equations. The Poisson-Gaussian noise model is 

considered in (Luisier et al, 2011) and PURE-LET was 

extended as a Poisson denoising method. Specifically, they 

generalize their method from the Haar wavelet domain to a 

general redundant transform domain, and update the PURE 

estimate to take into account both the Poisson and Gaussian 

noise components (Mäkitalo, 2013). Finally, they show that 

PURE allows for the global optimization of a LET spanning 

several different transform domains, such as undecimated 

wavelet transform (UWT) and block DCT. This method has low 

computational complexity and memory. In this method, all of 

the parameters of the algorithm are adjusted completely 

automatically. Besides, this method has low computational 

complexity and memory.  

 

2.3 Block-Matching and 3D Filtering 

Block-Matching and 3D Filtering (BM3D) is a strong denoising 

method proposed for the problem of attenuating AWGN. 

However, due to its high quality performance and fast execution 

speed, it is applied widely for reducing even signal-dependent 

noise in combination with VST. Therefore, it is considered in 

this paper. BM3D procedure is based on an enhanced sparse 

representation in transform-domain. The enhancement of the 

sparsity is achieved by grouping similar 2D image patches into 

3D groups (Dabov, et al, 2007). Collaborative filtering is a 

special procedure developed to deal with these 3D groups. 

BM3D was proposed as an extension of Non Local Means and 

wavelet domain transform filtering. This method exploits the 

intra- and inter- patch correlation resulting from smoothness 

and self-similarity of the images jointly. This is an edge-

preserving denoising method. As shown in Figure 1, BM3D 

algorithm has two major filtering steps. In both stages 

collaborative filtering is utilized (Elahi et al, 2014). 

Collaborative filtering itself has four stages: 1) finding the 

image patches similar to a given image patch and grouping them 

in a 3D block, 2) 3D wavelet transformation of each stack of 

patches, 3) denoising the wavelet coefficients (thresholding or 

Wiener filtering) and, 4) inverse 3D transformation. In the first 

step, denoising would be done by hard thresholding, but, in the 

second step, BM3D denoises the patches by Wiener filter. The 

result is a 3D estimate that consists of the jointly filtered 

grouped image patches. By attenuating the noise, the 

collaborative filtering reveals even the finest details shared by 

the grouped patches at the same time, it preserves the essential 

unique features of each individual patch. The filtered patches 

are then returned to their original positions. Since these patches 

overlap, for each pixel we obtain many estimates which need to 

be combined. Aggregation is a particular averaging procedure 

used to take advantage of this redundancy. The first 

collaborative filtering step is much improved by a second step 

using Wiener filtering. This second step mimics the first step, 

with two differences. The first difference is that it compares the 

filtered patches instead of the original patches. The second 

difference is that the new 3D group (built with the unprocessed 

image samples, but using the patch distances of the filtered 

image) is processed by Wiener filtering instead of a mere 

threshold. The final aggregation step is identical to those of the 

first step (Lebrun, 2012). 

 

Figure 1. Scheme of the BM3D algorithm. (Lebrun M.,2012) 

 

 

2.4 Regularization and gradient-based methods  

Denoising algorithms based on gradient dependent regularizers 

such as PDE-based processes, Tikhonov and total variation 

regularization methods are widely applied for denoising 

purposes. Therefore, in this paper some of the well known 

proposed methods in this group are explored and evaluated.  

Partial differential equations (PDEs) have been commonly used 

for denoising of images with Gaussian noise. PDE-based 

nonlinear diffusion processes originate from variational calculus 

(Aubert et al, 2002). The diffusion-like PDE is derived by a 

functional minimization process. The primary PDE-based 

methods had the disadvantage of smoothing edges. (Perona et 

al, 1990) introduced a PDE-based non-linear adaptive diffusion 

method, called anisotropic diffusion, in which an anisotropic 

diffusion coefficient decreases the smoothing effect near the 

edges.  . (Gilboa et al, 2004) proposed an adaptive PDE filter 

which combines the Perona–Malik anisotropic diffusion and a 

complex shock filter, using a sharpness factor in the direction of 

the image gradient. To regularize the shock filter, a complex 

diffusion term was added and the imaginary value was used to 

control the direction of the flow instead of the second 

derivative. They improved the Perona and Malik method by 

applying the diffusion equations in the complex domain. They 

generalized the linear scale spaces in the complex domain, by 

combining the diffusion equation with the free Schrödinger 
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equation (Gilboa et al, 2004).  In this method, the imaginary 

value can serve as an edge detector (smoothed second derivative 

scaled by time) when the complex diffusion coefficient 

approaches the real axis (Gilboa et al, 2004). This method is 

often used for Gaussian noise, but it is applied by several 

authors such as (S. Kadoury et al, 2010) for denoising images 

with Poisson noise. Therefore, in this paper, the performance of 

this method is evaluated for Denoising images corrupted with 

Poisson noise. 

Regularization approaches are obtained by formulating the 

image restoration problem as a non-negatively constrained 

minimization problem: 

 Min    J (x)  =  J0 (x) + η JR (x)       (1) 

 s.t   x≥0 

η is the regularization parameter. The choice of a suitable fit 

function J0 (x) mainly depends on the statistics of the noise 

affecting the recorded data, while the choice of the 

regularization function JR (x) is related to the features of the 

image to be restored as it is shown in (Landi et al,2013). When 

the data are affected by Gaussian noise, the Least-Squares (LS) 

function can be the best statistical estimator. But, the 

generalized Kullback–Leibler divergence can be the optimal 

data fit term when the data are affected by Poisson noise.  

Tikhonov regularization function can be used when the image 

to be restored is made by diffused objects, such as certain 

images from microscopy. (Landi et al, 2012, 2013) proposed a 

deblurring and denoising method for images with Poisson noise 

by minimizing the objective function which is the sum of the 

Kullback-Leibler divergence, used to express fidelity to the data 

in the presence of Poisson noise, and a Tikhonov and TV 

regularization term. Although the TV regularization is well 

known for recovering sharp edges of an image, it has been 

shown that the TV norm transforms a smooth signal into 

piecewise constants. In general, Tikhonov regularization has 

smoothing effect on the images, which is not appropriate for 

images which have edges. In contrast, the total variation (TV) 

based regularization technique preserves the edges in the 

restored image. Total variation (TV) regularization is commonly 

used in the denoising of medical images, such as X-ray images.  

 

 

3. EXPERIMENTS 

In this paper the performance of the denoising algorithms is 

evaluated by considering their results on test images from 

various types of X-ray medical images such as Digital 

Radiography, Computed Tomography (CT), and Fluoroscopy. 

For the first step, the Poisson noise is simulated and original 

images are corrupted with Poisson noise. Then, different 

denoising algorithms are implemented on them. The algorithms 

which are applied in this research are as followed: (1) PURE-

LET method, (2) MS-VST, (3) Exact unbiased inverse of the 

VST applying BM3D which is designed by (Mäkitalo et al, 

2012), (4) Total variation, and (5) a PDE-based method 

proposed by (Gilboa et al,2004). The results of implementing 

these denoising algorithms are shown in figures 2, 3,and 4 for 

various kinds of X-ray images. It should be mentioned that the 

noise in the CT scan image has a different behaviour from other 

mentioned images, and this issue is considered in the tests. 

 

 

 Figure2: (a) Original CR sample image, (b) Noisy image, 

Denoised images by: (c) PURE-LET, (d) MS-VST, (e) Exact 

unbiased inverse of the VST, (f) Total variation, (g) PDE-based 

method. 

 

 
Figure3: (a) Original fluoroscopy image, (b) Noisy image, 

Denoised images by: (c) PURE-LET, (d) MS-VST, (e) Exact 

unbiased inverse of the VST, (f) Total variation, (g) PDE-based 

method. 

 

 
Figure4: (a) Original CT sample image, (b) Noisy image, 

Denoised images by: (c) PURE-LET, (d) MS-VST, (e) Exact 

unbiased inverse of the VST, (f) Total variation, (g) PDE-based 

method. 

  

The comparison between achieved results of these five methods 

is done by applying PSNR, and MSE metrics. This assessment 

shows that PURE-LET method works more efficiently in 

relatively all X-ray images with simulated Poisson noise. In 

addition, this algorithm adjust all the parameters automatically, 

without any need for user input. That is very important and 

efficient for real data. Also, this method takes less time to reach 

the acceptable results than VST-based methods.  
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4. DISCUSSION AND CONCLUSIONS 

In this research, after exploring the properties of noise in 

radiographs and explaining characteristics of these images, 

more suggested denoising algorithms for images with Poisson 

noise have been described. In medical photogrammetry and 3D 

reconstruction applications from images, the edges acts 

important role, particularly for segmentation. Therefore, the 

edge preserving methods are considered to enhance and denoise 

images in a pre-processing step in these applications. In 

denoising methods designed for AWGN the signal-dependent 

noise is ignored. So they are not suitable and accurate for 

denoising X-ray images, because of their quantum noise. For 

choosing an appropriate denoising method in medical 

photogrammetric applications, the performance of the denoising 

algorithms designed for Poisson noise beside some strong 

denoising methods not specifically proposed for this kind of 

noise, has been evaluated. The algorithms which have been 

utilized for denoising in this research are PURE-LET, MS-VST, 

Exact unbiased inverse transformation applying BM3D, Total 

variation, and a PDE-based method. The results of these 

methods on sample images from various types of X-ray medical 

images such as Digital Radiography, CT, and Fluoroscopy 

which corrupted with simulated Poisson noise, indicate that 

PURE-LET, which specifically designed for Poisson noise, 

produces more efficient and reliable results, in most of the X-

ray images with simulated Poisson noise even with high 

Poisson noise and low-count photon images. In addition, in this 

algorithm, it is not necessary to adjust the parameters by users, 

since they are configured automatically. This causes 

reproducibility and makes the method more applicable for real 

data. Also, this method needs computationally less time to reach 

the acceptable results comparing to VST-based methods. It has 

low computational complexity and memory, so it can be used 

for even large data sets. Therefore, it is suggested to be applied 

for denoising X-ray images and any other images with Poisson 

noise.  
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