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ABSTRACT: 
 
Considering worldwide increasing and devastating flood events, the issue of flood defence and prediction becomes more and more 
important. Conventional methods for the observation of water levels, for instance gauging stations, provide reliable information. 
However, they are rather cost-expensive in purchase, installation and maintenance and hence mostly limited for monitoring large 
streams only. Thus, small rivers with noticeable increasing flood hazard risks are often neglected.  
State-of-the-art smartphones with powerful camera systems may act as affordable, mobile measuring instruments. Reliable and 
effective image processing methods may allow the use of smartphone-taken images for mobile shoreline detection and thus for water 
level monitoring. The paper focuses on automatic methods for the determination of waterlines by spatio-temporal texture measures. 
Besides the considerable challenge of dealing with a wide range of smartphone cameras providing different hardware components, 
resolution, image quality and programming interfaces, there are several limits in mobile device processing power. For test purposes, 
an urban river in Dresden, Saxony was observed. The results show the potential of deriving the waterline with subpixel accuracy by a 
column-by-column four-parameter logistic regression and polynomial spline modelling. After a transformation into object space via 
suitable landmarks (which is not addressed in this paper), this corresponds to an accuracy in the order of a few centimetres when 
processing mobile device images taken from small rivers at typical distances. 
 
 

1. INTRODUCTION 

Since the last prominent flood event in Dresden, Germany, in 
year 2013, the issue of precise and wide-spread water level 
monitoring became strongly increasing importance. In this 
context, a privately organised flood event map, hosted on Google 
Maps, gained worldwide attention. The map shows several 
information about flood-affected regions, e.g. in terms of focal 
points for provision and donation as well as blocked public roads. 
Everyone could update the map with rational information, 
whereby cartographic top actualities up to a few minutes could 
be achieved. The crowdsourcing concept became acquainted as 
it was effective in supporting the organisation of volunteer hands. 
Further developing this issue, gauging systems that offer accurate 
but spatially sparse information about water levels of significant 
water bodies should be densified by crowdsourced water level 
information in case of flood events.  
Because of its history in flood events, an urban riverside, situated 
in Dresden, was chosen for study purposes (see section 2.1). On 
the hardware side, smartphones with inbuilt high-resolution 
cameras, orientation components based on GNSS and Micro-
Electro-Mechanical Systems (MEMS) as well as powerful 
processing units may act as photogrammetric measurement 
instruments. Section 2.2 provides a detailed view of the 
employed device. 
Section 3 presents the methodical workflow and its single issues 
for flowing waterline detection using smartphone-taken images 
in terms of on-device-processing. Besides, it takes account of 
pre-processing steps for data preparation as well as post-
processing for visualisation purposes. Finally, section 4 and 5 
discuss the quality of the derived waterline, assess computational 
costs, describe approaches for appropriate enhancements and 
give an outlook for prospective works towards water level 
determination by image-to-model intersection.  
 

2. DATA ACQUISITION 

The chapter of data acquisition comprises the presentation of an 
urban study area as well as the measuring device which is a 
standard smartphone with inbuilt camera and orientation units. 
Section 2.3 describes the way of input data acquisition by image 
sequences. 
 
 
2.1 Study region 

The study region is the urban river Weißeritz in Dresden. The 
viewpoint for image capturing was located next to an important 
junction, business park and residential area (Figure 1), where the 
riverbanks are siliceous and thus the shorelines do not follow 
distinct edges. Unfortunately, despite its essential location and its 
flooding potential, the river is so far ungauged. 
The observed river is favourable for study purposes because of 
its characteristics which are generally valid for many urban 
rivers, like low water depths and thus complicating apparent 
gravel as well as the already mentioned ambiguous shoreline. At 
the observation site, the river width is quite narrow and amounts 
to 5-10 m with a mean flow velocity of approximately 0.5 m/s. 
During past floodings, the velocity increased up to 2.4 m/s 
(Landestalsperrenverwaltung Sachsen, personal communication, 
March 01, 2016). Close distances provide highly detailed images 
of the waterline which affect the accuracy of the extracted 
waterlines in a positive way. For the delimitation of flowing 
water and its nearshore environment, their dynamic or rather 
static characteristics support the further described spatio-
temporal image analysis that goes for the waterline 
approximation. 
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2.2 Measuring device 

For the purpose of crowdsourcing-based data acquisition for 
densifying water level monitoring and hence to deal with the 
central issue of waterline detection, consideration should be 
given to use a widely spread measurement instrument which can 
acquire, process and share data. Smartphones with their inbuilt 
cameras, orientation units and intense processing power solve 
these issues. Todays global smartphone subscription amounts to 
3.4 million with rising trends (Ericsson, 2015) and thus, 
smartphones seem to be the best solution serving the purpose of 
well-suited ubiquitous measurement devices. 
For the experimental research, the Android smartphone 
HTC One M7, bought out in 2013, equipped with a camera and a 
Snapdragon 600, 1.7 GHz quad-core processor, acted as 
measuring device (see Table 1 for closer camera specifications). 
 
 

Sensor type 1/3’ BackSide Illumination (BSI) sensor, 
crop factor: 7.21 

Resolution Photo: 4.0 MPx, Video: 2.1 MPx 
Pixel size 2.0 µm 
Lens 3.8 mm (effective focal length: 28 mm) 

Table 1: HTC One M7, Camera specifications 
 
 
2.3 Image sequences 

Considering the general behaviour of flowing water and thus the 
behaviour of its shoreline, it becomes obvious that one unique 
waterline cannot exist due to motion events within the nearshore 
environment, e.g. unregular waves that will never touch the 
riverbank similarly. Consequently, the use of single image 
analysis for the shoreline determination considering flowing 
water seems to be not very useful (Figure 2). Furthermore, image 
sequences offer a considerable base for image segmentation 
using temporal textures due to the variability of the flowing water 
surface appearance caused by water wave reflections.  

Previous works of Koschitzki (2015), Koschitzki et al. (2014) 
and Mulsow et al. (2014) used single cameras, mounted on 
tripods for monitoring water levels by image sequences and in 
succession applied image sequence analyses for the observation 
of lentic water areas. An approach for waterline detection in case 
of flowing waters based on spatial texture analyses has been 
presented in Kröhnert et al. (2015). 
 
 

 
Figure 2: Variability of flowing river shorelines in detail:  
Image frames 01, 13 & 25 of short-time image sequence  

(from left to right) 
 
Due to the concept of waterline detection by expanding the image 
analysis to the timeline and thus determining spatio- 
temporal textures, the acquisition of short image sequences  
(typically a few seconds) is a prerequisite (Garg et al., 2004 & 
Szummer et al., 1996). However, the use of sophisticated camera 
setups conflicts with the idea of on the fly level detection with 
the aid of the public and because of that, it has to be thought about 
mobile multi-image recording strategies. Thereby, an important 
difference between the application of stationary cameras and 
hand-held smartphone cameras referring to the computational 
and internal store capacities limits has to be considered. While 
the task of photo cameras focusses on the acquisition of images 
only, smartphones have to manage various background tasks and 
thus they have to share their processing and storing power with 
several applications that reveals limitations referring to the 
continuous shooting of high-resolution images. In case of 

Figure 1: Study region of river Weißeritz and nearshore environment situated in Dresden (left);  
Scheme of data acquisition and detail view for exemplary selection of column-by-column image profiles (right) 
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smartphones with minor computational power, the human 
operator has to wait up to a second between two consequent 
images, which is quite unsuitable for image sequences exceeding 
five images. On this account, the use of short-time image 
sequences may restrict the spatial resolution due to image 
compression but otherwise, it leads to a high improvement in 
matters of the temporal resolution. 
 
Considering the present approach, the mandatory need of 
information about the temporal behaviour is obvious. Due to 
short recording distances, image compressions allowing for the 
waterline mapping using image data derived from image 
sequences with high temporal resolution becomes acceptable. 
For the detection of shorelines from urban flowing waters, the 
most helpful, empirically determined rate for short image 
sequence recording amounts to 5 frames per second (fps) over 
5 seconds. These attributes are highly correlated with the 
significance of pixels temporal variability which also holds good 
for slow flowing waters as well as the duration of data acquisition 
and processing. In addition, the algorithm makes use of the 
highest available device-dependent video resolution (e.g. 1080 p/ 
2.1 MPx, see Table 1). 
 
 

3. DATA PROCESSING METHODS 

The workflow for waterline derivation (Figure 3) consists of two 
main steps: First, the recorded image sequence has to be 
separated into single frames in preparation for their co-
registration (section 3.1.1). Because of limited memory and 
processing power, it makes no sense to analyse the full frames for 
the waterline. After an initial user-supported rough waterline 
selection, a Region Of Interest (ROI) will be specified 
(section 3.1.2). Further investigations comprise in core the 
calculation of spatio-temporal texture data (section 3.2.1) 
followed by a bilateral filter approach for spatio-temporal noise 
reduction (section 3.2.2). Afterwards, a column-by-column curve 
fitting method based on the four-parameter logistic regression 
that comprises the present grey values will be executed. In sum, 
the estimated inflection points represent the waterline with 
subpixel potential (section 3.2.3). For shoreline refinement, a 
polynomial spline fit through all determined edge points leads to 
a continuous waterline representation. 
 
 
3.1 Pre-Processing 

Regarding the record of short image sequences, the present 
approach has to deal with the problem of a slightly moving hand-
held camera. Unfortunately, this juddering is highly correlated 
with the subsequent spatio-temporal texture analysis. Neglecting 
would lead to an erroneous detection because of distorted pixel 
pairs within the image sequence. 
 
 
3.1.1 Frame decomposition and Co-Registration 
 
To address this concern, the image sequence has to be 
decomposed to its single frames, followed by their co-
registration. The first image usually acts as master scene to which 
all following frames will be co-registered. The described method 
acts in a sequential way until all images are registered in relation 
to the master image.  
The Android implementation utilises libraries of the well-
established OpenCV4Android SDK library, version 3.0.0  
(based on Bradski, 2000). 

 
Firstly, keypoints and their consequent descriptors are computed 
respectively for master and slave images using the Oriented 
Features from Accelerated Segment Test (FAST) and the Rotated 
Binary Robust Independent Elementary Features (BRIEF) 
algorithm (ORB, Rublee et al., 2011) which includes FAST´s 
keypoint detector and BRIEF´s descriptor extractor. The 
implementation of ORB instead of the prevalent Scale-Invariant 
Feature Transform (SIFT) or Speeded Up Robust Features 
(SURF) algorithms is motivated by its licence policy. Whereas 
SIFT and SURF are patented, ORB is a fast alternative that is 
minimally restricted by Berkeley´s Software Distribution (BSD). 
Afterwards, a brute force descriptor matching assigns the closest 
descriptor of the slave data to each descriptor of the master 
dataset. These matches will be introduced as query (or learning) 
data due to the master and training point data referring to the 
slave, to estimate the prevailing valid homography. In order to 
obtain reasonable results, the appropriate reprojection error must 
be minimised. Regarding the model computation, the occurrence 
of non-fitting points due to the train and query point dataset 
cannot be neglected. Thus, an iterative RANdomSAmple 
Consensus (RANSAC) is applied for model stabilisation 
whereby the maximum permissible reprojection error for point 
pair approval is set to 10 Px in order to avoid a too early rejection 
of separated frames due to some mismatching points, for instance 

Frame decomposition 
25 Image Frames 

Short image sequence recording 
Invoke video application (5sec) 

 

Co-registration 
First frame ≙ master 

Start 

Pre-processing  

Average Image 
  

Vector of co-registered  
image frames 

  

Waterline pre-selection by 
ROI definition 

Waterline determination 

Calculation of spatio-temporal texture  
Detection of grey level changes 

Noise reduction & Edge enhancement 
Application of bilateral filtering 

Polynomial Spline Fitting 
Spline though inflection points of curve-fit models 

Subpixel waterline determination 
Logistic regression for column wise curve fitting 

Figure 3: Workflow description 
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caused by lens distortion. Remaining errors will be reduced 
during a final Levenberg-Marquardt refinement that improves the 
reprojection error significantly and converges even if the input is 
wide of the result. Using the computed homography, the regarded 
slave image will be warped perspectively. Subsequent to the 
image sequence co-registration, an average image, comprising all 
registered frames, will be computed for visualisation purposes 
(Figure 4).  
 
 

 
3.1.2 ROI definition 
 
For simplification of the waterline detection, an initial waterline 
defining a bounding box around the touched line has to be drawn 
by the user. Such a minimal interaction will usually be acceptable 
in a crowdsourcing approach. For this purpose, the previously 
calculated average image is displayed to the user who has to point 
along the visible waterline (Figure 1). All in this way selected 
points define the mentioned bounding box to crop the co-
registered images. Due to small display sizes and jittering hands, 
the bounding box height will be expanded by 20 Px to define the 
final ROI (see calculated red box in Figure 1). 
 
 
3.2 Shoreline determination 

After cropping all co-registered images, the core element of the 
waterline detection will be invoked. As already mentioned, the 
approach is based on spatio-temporal texture analysis followed 
by a temporal signal noise reduction. Building on this, an 
approximation of the waterline with subpixel accuracy is 
calculated for each column with the aid of logistic regression 
curve modelling and horizontal polynomial spline fitting. 
 
 
3.2.1 Spatio-temporal texture analysis 
 
In the same way like the sequential image co-registration, the 
spatio-temporal texture analysis refers to consecutive image pairs 
(eq. 1). The image matrices 𝑛𝑛 are checked pairwise in succession 
for absolute grey level differences among corresponding pixels 
by �𝐼𝐼𝑛𝑛𝑖𝑖,𝑗𝑗 − 𝐼𝐼(𝑛𝑛+1)𝑖𝑖,𝑗𝑗� which obviously should represent the same 
image content due to their co-registration and their short 
acquisition interval. Changes inside the grey levels point to 
dynamic image content such as flowing water. They are 
registered in terms of their magnitude. Moreover, in case of 
prevailing grey level differences inside the next comparison, the 
previously determined magnitudes 𝐼𝐼𝑀𝑀(𝑖𝑖, 𝑗𝑗) will be added  
pixel-by-pixel to the current results. 
 

𝐼𝐼𝑀𝑀(𝑖𝑖, 𝑗𝑗) =  ���𝐼𝐼𝑛𝑛𝑖𝑖,𝑗𝑗 − 𝐼𝐼(𝑛𝑛+1)𝑖𝑖,𝑗𝑗�
𝑖𝑖,𝑗𝑗

𝑛𝑛

𝑘𝑘=1

 

(1) 
 
 

Consequently, the result represents an image matrix summing up 
the total magnitude of imaged dynamic behaviour (Figure 5-1). 
Afterwards, an empirically determined threshold separating static 
from dynamic image content (Figure 5-2) will subdivide the 
dataset. It should be noted that occasional changes can also result 
from illumination variations through moving clouds or remaining 
reprojection uncertainties concerning the co-registration 
procedure and both could lead to spatio-temporal image noise 
(section 3.2.2). 

 
3.2.2 Noise reduction and edge enhancement 
 
As already mentioned, the occurrence of temporal noise inside 
the texture image is not improbable. Common image filtering 
approaches (e.g. Laplacian of Gaussian) remove image noise 
reliable but, unfortunately, lead to blurred edges. The problem 
can be avoided by the application of an edge-preserving 
smoothing approach such as the bilateral filter which "combines 
grey levels […] based on both their geometric closeness and their 
photometric similarity, and prefers near values to distant values 
in both domain and range” (Tomasi & Manduchi, 1998).  
 
Due to escalation of processing power in relation to filter size, a 
small neighbourhood around each pixel is advisable for 
processing on smartphones. In addition to this, two Gaussian 
filter kernels will be defined by their standard deviation for 
weighting the pixels depending on their intensity values  
(range Gaussian σr set to 120 grey levels) and spatial distance 
(spatial Gaussian, σs, defined by a 5 x 5 Px neighbourhood) 
which is further explained in Paris et al. (2009). High values of 
sigma lead to wide areas of similar pixels by preserving large 
edges like waterlines. Figure 6 shows the textural image before 
and after the application of bilateral filtering.  
 
Whereas the waterline seems to be almost unaffected, the speckle 
nearshore and flowing water environment is strongly smoothed 
even in shadowed and wavy regions. 
 

Figure 4: First frame of image sequence (left),  
Average image after sequential image co-registration (right) 

Figure 5-1: Magnitude of grey level differences before (top); 
5-2: After pre-segmentation of spatio-temporal change 

(bottom) 
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3.2.3 Subpixel waterline detection 
 
For image separation and thus for the final shoreline estimation, 
an edge estimation with subpixel potential will be performed. For 
this purpose, a four-parameter logistic regression, proposed in 
Rodbard & McClean (1977), will be applied for each column 
within the ROI of the filtered spatio-temporal texture image. 
Thereby, the curve´s inflection point, where the curve changes its 
direction from concave to convex or vice versa, describes the 
point for separation of flowing water and shore area. Rodbard´s 
four-parameter regression is defined by  
 
 

𝐹𝐹(𝑥𝑥) = 𝐷𝐷 +
𝐴𝐴 − 𝐷𝐷

1 + �𝑥𝑥
𝐶𝐶
�
𝐵𝐵 

(2) 
 

where C describes the mentioned inflection point that matches by 
horizontal pixel intersection after convergence and thus, 
represents the limiting point with subpixel precision in its row for 
each column. Figure 7 visualises the curve modelling for three 
image columns and marks their estimated inflection points (for 
better assessment, see Figure 1). It becomes obvious that 
remained speckle inside the flowing water and nearshore 
environment cropped out as outliers; however, they will be 
rejected thanks to the iterative model fit. 
 
 
3.3 Polynomial Spline Fitting 

For data densification and visualisation purposes, it is advisable 
to apply a polynomial spline estimation using the calculated 
shoreline points and their corresponding columns as observables. 
The spline consists of n cubic polynomials in subintervals which 
are defined by (n+1) knots regarding the amount of rows. Thus, 
if the ROI consists of e.g. 300 rows or knots, this would lead to 
299 cubic polynoms which define the final polynomial spline and 
so the continuous waterline approximation (Figure 8). The 
implementation refers to Apache Commons Math Developers 
(2016) based on Burden & Faires (1989).  

 

 
 

4. RESULTS 

In summary it can be said that the proposed method describes an 
effective method for the determination of flowing water 
shorelines by analysing spatio-temporal grey value variability 
and thus shows a useful approach for the distinction of water- and 

Figure 6: Detail view of wavy and shadowed areas:  
Single frame, spatio-temporal texture before and  

after bilateral filtering (left to right) 
 

Col 1240 

Col 875 

Col 530 

Discrete  
grey values 

Resulting curve Inflection point 

Figure 7: Exemplary column-by-column four-parameter 
logistic regression curve fit for col 530, 875 and 1240  

(referring to dashed lines of Figure 1) 

Figure 8: Densified detected waterline (red); Background image: average of co-registered image frames 
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shoreland in mobile device imagery. Due to the application of a 
spatio-temporal texture analysis, shadows and reflexions that 
appear different within an observation period because of dynamic 
objects, have only marginal effects to the waterline detection. 
Additionally, textural outliers (e.g. noise as a consequence of 
residual reprojection errors due to the co-registration process or 
radiometric changes within the image sequence which may occur 
from slight illumination variations caused by moving clouds, 
could be reduced. For this purpose, the combined application of 
an edge-preservative bilateral filtering and a column-by-column 
four-parameter logistic regression that determines the points 
along the waterline in subpixel range is useful. 
However, referring to the proposed texture analysis it should be 
noted that the technique is currently limited to waterlines 
appearing almost horizontal within the image data. The current 
method meets problems in case of an acquisition direction 
parallel to river´s shoreline and thus its vertical image 
representation.  
Obviously, the computational efforts should always be kept in 
mind even if the application should work for legacy hardware as 
well, which is quite important by considering the prospective 
crowdsourcing concept. Both, Figure 9 and Table 2, show the 
computation times in relation to the ROI size for the individual 
processing steps, with a fixed height set to 230 pixels. While the 
core steps of spatio-temporal texture analysis fulfil realistic 
crowdsourcing time budget requirements, further work has to be 
invested to accelerate the steps of image sequence co-registration 
and logistic regression. 

 
Figure 9: Relationship of the single processing steps and their 

corresponding computation times in [s] in matters of image size. 
 

Width [Px] (size) 
 

Proc. Step 
400 (S) 1000 (M) 1600 (L) 

1) Image sequence 
decomposition 22.35 22.47 21.81 

2) Frame  
co-registration 63.66 61.02 60.52 

3) Spatio-temporal 
texture analysis 0.51 1.18 2.03 

4) Noise reduction 
(bilateral filtering) 0.31 0.58 0.92 

5) 4PL regression 38.73 108.43 198.59 

6) Poly. spline fit 0.07 0.17 0.31 

�  125.63 193.85 284.18 

Table 2: Processing times relating to image size in [s] 

Actually, the first steps of frame decomposition and co-
registration that go for the whole image should provide equal 
processing times, but there are numerous reasons for slight 
derivations, e.g. active background tasks that belong to Android 
system software, still working activities of other applications due 
to Android´s life circle (Google, 2016) or even battery status. The 
current implementation of image co-registration may be to 
abundant due to the prevalent method of data acquisition. During 
3 seconds, the user´s position and orientation might be kept 
sufficiently constant and thus image adjustment routines (e.g. 
affine transformations) which consider image translation and 
rotation only, may be sufficient. Moreover, the geometric 
transformation between two frames by the enhanced correlation 
coefficient as a performance criterion for image alignment 
(published in Evangelidis & Psarakis, 2008), should be taken in 
consideration for improved performance.  
Obviously, shortcomings in view of processing power occur in 
terms of the image-to-image registration and curve fitting 
procedures. Appling multi-threading approaches in general and a 
limitation of the single point arrays to regions closer to the 
straight shore area in terms of the curve fitting will considerably 
reduce the computational effort. Furthermore, state-of-the-art 
smartphones usually offer the possibility to include the graphical 
processing unit (GPU) that relieves the internal memory as well.  
 
 

5. FUTURE WORK 

As a prospect for the future, the approach should be enhanced for 
direction-independent waterline derivations. Additionally, the 
estimated threshold for the definition of dynamic behaviour 
needs further investigations. An image quantisation of the 
floating point texture data by clustering due to its contribution 
could supersede the empirical assessment. Further improvements 
might be achieved for noise reduction whose results are of quasi-
binary nature. Thanks to this, an image labelling (as proposed in 
Kröhnert et al., 2015) which would be done in preparation for the 
curve fit could be used to revise the distribution of observed static 
and dynamic objects in the spatio-temporal domain that could be 
used further to select a well-fitting regression model. In this way, 
not only the orientation-dependent applicability issue is solved, 
but also indentations of the flowing water body could be better 
detected.  
In view of the future and despite source code optimisations it 
should be noticed, that the intended water level determination by 
image-to-model intersection needs only a few points (minimum 
even one) along the waterline and thus the derivation of large 
waterlines (like image size L in Table 2) and its computational 
efforts will not be an issue anymore. By translating the waterline 
points from image into object space, a level determination with 
accuracies up to a few centimetres seems to be quite possible and 
marks the next key development. 
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