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ABSTRACT: 

 

GNSS/IMU navigation systems offer low-cost and robust solution to navigate UAVs. Since redundant measurements greatly 

improve the reliability of navigation systems, extensive researches have been made to enhance the efficiency and robustness of 

GNSS/IMU by additional sensors. This paper presents a method for integrating reference data, images taken from UAVs, barometric 

height data and GNSS/IMU data to estimate accurate and reliable pose parameters of UAVs. We provide improved pose estimations 

by integrating multi-sensor observations in an EKF algorithm with IMU motion model. The implemented methodology has 

demonstrated to be very efficient and reliable for automatic pose estimation. The calculated position and attitude of the UAV 

especially when we removed the GNSS from the working cycle clearly indicate the ability of the purposed methodology. 
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1. INTRODUCTION 

One of the major research topics of Unmanned Aerial Vehicles 

(UAVs) development is improving the accuracy, coverage and 

reliability of navigation systems within the imposed weight and 

cost restriction (Prazenica et al. 2005; Lemaire et al. 2007; 

Karlsson et al. 2008; Conte & Doherty 2009; Saeedi et al. 

2009). In the last decades, different combinations of navigation 

sensors are proposed to enhance the efficiency and robustness 

of automatic navigation systems. An Inertial Navigation System 

(INS) makes use of an Inertial Measurement Unit (IMU) to 

provide effective attitude, angular rate, and acceleration 

measurement, as well as position and velocity at high-

bandwidth output. However, the accuracy of an inertial 

navigation solution degrades with time due to the high drift 

rates (El-Sheimy 2002; Kim & Sukkarieh 2004; Kim 2004; 

Groves 2008). Global Navigation Satellite Systems (GNSS) 

provide a three-dimensional positioning solution by passive 

ranging using radio signals transmitted from orbiting satellites 

with high long-term position accuracy. To combine the 

advantages of both technologies, GNSS-aided IMUs have been 

developed that provide a continuous, high-bandwidth and 

complete navigation solution with high long- and short-term 

accuracy (Lewantowicz 1992; Snyder et al. 1992; Greenspan 

1994; Phillips & Schmidt 1996; Sukkarieh et al. 1999; Kim & 

Sukkarieh 2002; Kumar 2004; Groves 2008; Nemra & Aouf 

2010). Visual navigation techniques enhance the reliability and 

robustness of GNSS/IMU. They improve the pose parameters 

by measuring features in the environment and comparing them 

with a database (Kumar et al. 1998; Cannata et al. 2000; Wildes 

et al. 2001; Sim et al. 2002; Samadzadegan et al. 2007; Conte & 

Doherty 2009; Saeedi et al. 2009; Kamel et al. 2010; Sheta 

2012; Hwangbo 2012; Sanfourche et al. 2012; Lee et al. 2013). 

However, the visual navigation techniques require an 

initialization with an approximate position solution in order to 

minimize the computational load and the number of 

ambiguities. Thus, visual navigation techniques are usually not 

a stand-alone navigation technique; instead they are integrated 

in multi-sensor navigation systems (Groves 2008). 

Visual navigation is rapidly developing as a cost effective, 

accurate tool to improve localization and pose estimation of 

UAVs. In this context, the research community has developed 

suitable vision-based systems to deal with short- and long-term 

GNSS outage (Sim et al. 2002; Gracias et al. 2003). The visual 

navigation techniques can be categorized into the Simultaneous 

Localization and Mapping (SLAM) and position estimation of 

the camera only classes (Saeedi et al. 2009). In the literatures, 

many ways are proposed to fuse navigation sensors, depending 

on the environment, dynamics, budget, accuracy requirements 

and the degree of robustness or integrity required. The most 

important challenge is the design of an integration architecture 

that is a trade-off between maximizing the accuracy and 

robustness of the navigation solution, minimizing the 

complexity and optimizing the processing efficiency. Moreover, 

the designed architecture can be severely imposed by the need 

to combine equipment from different manufacturers. Therefore, 

different architectures may be used for different sensors in the 

same integrated navigation system. 

In this paper, a vision-aided multi-sensor fusion method is 

presented to determine reliable pose parameters. In the 

proposed methodology, an integrated architecture is designed to 

optimize the pose accuracy and the robustness of the navigation 

solution, and improve the processing efficiency by integrating 

multi-sensor observations in an Extended Kalman Filter (EKF) 

algorithm with IMU motion model. 

In the next chapter, the concept of the proposed method is 

described. Then, experiments and results obtained by the 

integration proposed method will be presented. 
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2. SENSOR FUSION METHOD 

We propose a sensor fusion method for UAV pose estimation 

by integrating reference data, captured images, barometric 

height data, and GNSS/IMU data. In the proposed 

methodology, an integrated architecture is designed to optimize 

the pose accuracy and the robustness of the navigation solution, 

and improve the processing efficiency. The purposed method 

divided into geospatial database, process model, observation 

model, and pose estimation (Figure 1). In the following, the 

main components of the each step will be described with more 

details. 

 

 

Figure 1. The proposed workflow for sensor fusion 

 

  

2.1 Geospatial Database 

The geospatial database contains geo-referenced significant 

points which are extracted from ortho-rectified satellite 

imagery. The goal is to automatically match points from the 

database with points extracted from UAV images. For this, 

significant features and descriptors vector are extracted using 

Speeded-Up Robust Features (SURF) (Bay et al. 2009). 

Significant points (salient point, region corners, line 

intersections and etc.) are understood as features here that are 

distinct, spread all over the image and efficiently detectable in 

both spaces (Tuytelaars & Mikolajczyk 2008). Finally, the 

derived coordinates and descriptor vectors of significant 

features are congested in the geo-referenced database. This 

workflow consumes neither high memory to store ortho-

rectified images on the platform nor time to extract significant 

features on the mission-phase. 

 

2.2 Nonlinear Process Model 

Kalman filter, one of the most widely used fusion filters in the 

aerial navigation applications, is an efficient approximation of 

Bayesian recursive filter that estimates the state of a dynamic 

system from a series of noisy measurements (Bishop & Welch 

2001; Grewal & Andrews 2001; Kleinbauer 2004; Groves 

2008). In order to use Kalman filter, the process model can be 

written as a first-order vector difference equation in discrete 

time as: 

 

        kwkukxfkx ,,1  (1) 

 

where f is the state transition function at time k that forms the 

current vehicle state, x(k), from the previous state, x(k-1), the 

current control input, u(k) and the process noise, w(k), which is 

usually assumed to be independent, white and with normal 

probability distribution. 

A strapdown INS can determine navigation parameters using 

inertial sensors. In this respect, gyroscope signals are used to 

determine attitude parameters (Savage 1998a). Then, 

accelerometer signals are transformed to the reference 

navigation frame using calculated attitude parameters. Finally, 

position and velocity can be determined by integrating the 

transformed accelerations (Savage 1998b). Therefore, the INS 

equation can be used as the process model to transform the 

previous state to the current state. In the earth-fixed local-

tangent frame formulation with Euler angles as its attitude 

parameters, the vehicle model becomes (Sukkarieh 1999; Kim 

2004): 
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where Pn(k), Vn(k)and ψn(k) are the position, velocity and 

attitude in the navigation frame. fb(k) and ωb(k) are acceleration 

and rotation rates measured in the body frame. Cn(k) is the 

Direction Cosine Matrix and En(k) is the matrix which 

transforms the rotation rates in the body frame to Euler angle 

rates. 

 

2.3 Observation Model 

An observation model, represents the relationship between the 

state and the measurements. In this paper, it depends to the state 

parameters with aided navigation observations made at time k 

as: 

 

      kvkxhkz ii   (3) 

 

where h is the observation model at time k, and ν(k) is the 

observation noise, which is usually modelled as a zero mean 

Gaussian noise. In the following, aided navigation system 

observations are addressed with more details. 

 

2.3.1 Visual Observation 

Vision aided navigation systems based on aerial images can 

improve the pose estimation of UAV. We propose an automatic 

matching workflow of aerial images to a geo-referenced 

database (Figure 2). The matching workflow encounters 

geometric and radiometric deformation, due to the diversity of 

image acquisition (different viewpoints, different times, and 

different sensors) and various types of degradations (light 

condition, occlusion, shadow, and relief). 

 

 

 

Figure 2. The proposed vision-aided navigation system 
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Firstly, a modified SURF operator is used to detect and describe 

local features in the sensed imagery, which saves invariantly 

with respect to the translation, rotation and scale while can be 

more fast and reliable in the visual navigation system. In this 

respect, the modified SURF extracts the SURF keypoints that 

are stronger (the highest Hessian’s determinant) in a pre-defined 

circular threshold. Next, given a set of keypoints detected in 

aerial image and the geo-referenced satellite imagery, a simple 

matching scheme based on the nearest neighbours in SURF 

descriptor’s feature space is utilized. This simple matching 

scheme considers the SURF features and may produce outliers. 

Therefore, we employed the RANdom SAmple Consensus 

(RANSAC) (Fischler & Bolles 1981) to efficiently reject 

outliers using homography equations (Hartley & Zisserman 

2004). Finally, we use collinearity equations to transform 

between 2D image points and 3D object space points from the 

geospatial database. Successively, the unknown Exterior 

Orientation Parameters (EOPs) are estimated using iterative 

least-square. Since for each conjugate pair of points two 

equations can be written, at least three well-distributed 

conjugate points are required to estimate the six unknown 

EOPs. 

In the image matching process, while we are looking for the 

point correspondence, simultaneously the initial estimation of 

the camera position (provided by the process model) is used to 

narrow the matching search region. 

Moreover, for performing a robust image matching in cases 

without having enough information content from the geospatial 

database, a mosaic of several images will be employed to 

provide more information. Then, object space coordinates of tie 

points are estimated using linear form of collinearity equations. 

Then, single image resection algorithm is used to estimate the 

EOPs of the scene which doesn’t have enough information. 

Finally, we have used bundle adjustment to simultaneously 

optimize EOPs and the tie ground coordinates. It can also 

possible to augment the tie ground coordinates to update the 

geo-referenced database (Kim 2004). Therefore, not only the 

proposed vision-aided navigation system can estimate the EOPs 

using the geo-referenced database, but also it can update the 

database simultaneously. 

The EOPs which have been determined by the visual aided 

navigation process have a different definition than the angles 

and rotations from the INS which are defined according to the 

aviation standard norm "ARINC 705" (Bäumker 1995; 

Bäumker & Heimes 2001; Samadzadegan & Saeedi 2007). 

Moreover, the calibration parameters between the camera and 

body frames estimated on the pre-mission phase must be 

employed to transform the pose parameters from the camera 

into the body frame. 

 

2.3.2 GNSS Observation 

A GNSS position solution is determined by passive ranging in 

three dimensions (Kaplan et al. 2006). The GNSS measured 

position of the UAV is transformed into the body frame based 

on pre-calibrated lever arms. 

 

2.3.3 Barometer Observation 

Height measurement sensors are the most important aided 

navigation system that be used in UAV navigation (Gray 1999). 

A barometric altimeter, one of the most widely used height 

sensors, uses a barometer to measure the ambient air pressure. 

The height is then calculated from a standard atmospheric 

model (Kubrak et al. 2005; Groves 2008). 

 

2.4 Pose Estimation 

The final UAV pose is estimated by the proposed multi-sensor 

fusion method, which combines the aided navigation 

measurements with the standard IMU processor. Because the 

IMU mechanization equation is nonlinear, the EKF algorithm is 

employed to estimate the pose parameters of the UAV. The 

EKF algorithm is recursive and is broken into prediction and 

update steps. In prediction step, the vehicle pose parameters are 

predicted forward in time with data supplied by the inertial 

sensors. The state covariance is propagated forward via: 
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In update step, the observation model runs at discrete time steps 

to correct the process model’s estimates by using aided 

navigation systems. Therefore, by comparing predicted values 

of the measurement vector with actual measurements from aided 

navigation systems, the EKF algorithm maintains the estimates 

of the IMU pose parameters via: 
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where the gain matrix W(k) and innovation υ(k) are calculated 

as: 
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Thus, the proposed method not only has used aided navigation 

system measurements in the EKF algorithm for precisely 

determining the pose parameters of the vehicle using IMU 

motion model, but also has investigated hybrid integration to 

combine equipment from different manufacturers. 

 

3. EXPERIMENTS AND RESULTS 

The potential of the proposed multi-sensor navigation method 

was evaluated through experimental testes conducted in an area 

with urban, industrial, agricultural and the mountainous regions. 

A Quickbird satellite imagery with 60cm ground resolution is 

used as an interface level to simulate aerial imageries using 

collinearity equation and down sample four times to produce 

reference imagery (Figure 3). Figure 4 illustrates the reference 

image of the area, the planned mission trajectory and the 

extracted SURF keypoints in the geospatial database. The 

resolution of the geo-panchromatic satellite imagery was about 

2.5m and 18718 keypoints were extracted on the Region of 

Interest (ROI) of the image. In Figure 4a, the red and blue 

rectangles show the ROI and the ground coverage of the 

planned mission. The camera centres of the images are showed 

by green dots and the footprint by blue lines. In Figure 4b, the 

yellow cross points show the geo-database that was generated 

by the SURF operator. The properties of the navigation sensors 

which are the GNSS, the IMU, the camera, and the barometric 

height measurement unit are described in Table 1. 
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Figure 3. The simulation procedure 

 

 
(a) 

 
(b) 

Figure 4. The geo-database that is used in the vision-aided 

navigation system a) the reference image and planned mission 

and b) the SURF keypoints 

 

Figure 5 and Table 2 indicate the visual navigation results in 

comparison with the ground truth in order to prove the 

feasibility and efficiency of the vision-aided navigation system.  

In Figure 5, the vision-aided navigation system position and 

attitude results are compared with the ground truth. In this 

figure, the continuous horizontal lines indicate the maximum 

uncertainties while the continuous vertical lines illustrate the 

scene numbers which use the mosaic-aided navigation system to 

estimate the pose parameters. One error source is not well 

distributed keypoints in the geospatial database in particular the 

peaks of the pose errors are created due to not well-distributed 

correspondence points. The accuracy of the proposed visual 

navigation system is also reported in Table 2. 
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Figure 5. The visual navigation system accuracy 
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As illustrated in Table 2, the vision-aided navigation system can 

be used as an alternative approach when the other navigation 

systems are not available to constrain the IMU drifts over time. 

 

Navigation Sensors Properties 

IMU 
Gyroscopes 0.1 deg/s 

Accelerometers 0.1 m/s 

GNSS Position Accuracy 5 m 

Camera 

Focal Length 20 mm 

CCD Chip 640x480 pixels 

Pixel Size 27 μm 

Barometer Height Accuracy 10 m 

Table 1. The navigation sensor properties 

 

Navigation Sensors MAE RMSE 

Vision-Aided 

Navigation 

System 

Roll 5E-4 deg 0.21 deg 

Pitch -0.03 deg 0.27 deg 

Heading 5E-4 deg 0.04 deg 

East -4.737 m 6.534 m 

North  4.079 m 4.905 m 

Down -0.055 m 1.217 m 

Table 2. The vision-aided navigation system accuracy 

 

Navigation Sensors MAE RMSE 

VI 

Roll 0.83 deg 0.18 deg 

Pitch 1.05 deg 0.17 deg 

Heading 0.22 deg 0.12 deg 

East 21.047 m 5.945 m 

North 23.451 m 4.828 m 

Down 05.044 m 2.358 m 

Table 3. The VI navigation system accuracy 

 

Navigation Sensors MAE RMSE 

VIM 

Roll 0.82 deg 0.15 deg 

Pitch 1.03 deg 0.15 deg 

Heading 0.21 deg 0.09 deg 

East 20.482 m 5.394 m 

North 23.126 m 4.593 m 

Down 04.861 m 1.627 m 

Table 4. The VIM navigation system accuracy 

 

Navigation Sensors MAE RMSE 

VBIM 

Roll 0.82 deg 0.15 deg 

Pitch 1.03 deg 0.15 deg 

Heading 0.21 deg 0.09 deg 

East 20.482 m 5.394 m 

North 23.126 m 4.593 m 

Down 04.826 m 1.612 m 

Table 5. The VBIM navigation system accuracy 

 

Navigation Sensors MAE RMSE 

VGBIM 

Roll 0.82 deg 0.15 deg 

Pitch 1.03 deg 0.15 deg 

Heading 0.21 deg 0.09 deg 

East 1.131 m 2.257 m 

North 4.399 m 1.460 m 

Down 1.931 m 0.953 m 

Table 6. The VGBIM navigation system accuracy 

Table 3-4 indicate the vision-aided inertial navigation 

accuracies without and with the mosaic-aided information (VI 

and VIM) results in comparison with the ground truth data. The 

visual navigation system can be used as an alternative approach 

when the GNSS signals are not available to constrain the IMU 

drifts over time. The accuracy of the proposed VI navigation 

system is also reported in Table 3. The proposed VIM 

navigation system results in comparison with the ground truth 

are shown in Table 4. According to the results, the mosaic-aided 

information can improve the VI system pose parameters about 

2.6 percent in accuracy and 16.4 percent in precision. 

In Table 5, the effect of the barometric height measurements on 

the accuracies together with the VIM navigation system 

(VBIM) is illustrated. According to the results, the barometric 

height measurements can improve the VI Down parameter 

about 0.7 percent in accuracy and 0.9 percent in precision. 

The effect of GNSS measurements that can be augmented with 

the VBIM navigation system in comparison with the ground 

truth are showed in Table 6. According to the results, the GNSS 

measurements can improve the VBIM position parameters 

about 78.5 percent in accuracy and 55.7 percent in precision. 
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Figure 6. Multi-sensor navigation system accuracies a) MAE 

and b) RMSE. 
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From the GNSS and barometer-aided inertial navigation (GBI) 

results, the visual navigation system can improve the GBI East 

and Down parameters about 46.8 percent in accuracy and 10.6 

percent in precision while it diminish the GBI North parameter 

about 92 percent in accuracy and 24.8 percent in precision. 

A schematic illustration of the proposed multi-sensor navigation 

system results are given in Figure 6. In this figure, the first 

section indicates the pose accuracy of different multi-sensor 

navigation systems while the second section shows the pose 

precision of them. Based on the results, it is obvious that the 

more sensors are included, the better are the accuracies. The 

VGBIM navigation system is the most accurate and reliable 

positioning system between the proposed multi-sensor 

navigation systems as the accuracies of the position and attitude 

parameters are about 2.5 meter and 0.7 degree. The pose 

accuracy of the UAV in cases without GNSS position (VBIM) 

clearly indicate the potential of the proposed multi-sensor 

system. 

 

4. CONCLUSIONS 

This paper proposed a vision-aided multi-sensor fusion method 

to determine reliable pose parameters of UAVs. In the proposed 

methodology, an integrated architecture is designed to optimize 

the pose accuracy and the robustness of the navigation solution 

and to improve the processing efficiency. The described 

navigation solution is that of an INS reference system, corrected 

using the pose errors made by an EKF fusion filter integration 

algorithm. In this context, a visual navigation system is 

proposed to robustly align an aerial image to a geo-referenced 

ortho satellite imagery to tackle with GNSS outage. Different 

combinations of sensor systems also are evaluated to assess the 

influence of each sensor on the accuracies separately. From the 

experiments and results, it is obvious the redundant 

measurements greatly enhance the reliability of navigation 

systems. It can be reported that the reached accuracy of the pose 

parameters in cases with GNSS outage clearly indicates the 

potential of the purposed methodology. 
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