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ABSTRACT: 

 

Short-term precipitation commonly occurs in south part of China, which brings intensive precipitation in local region for very short 

time. Massive water would cause the intensive flood inside of city when precipitation amount beyond the capacity of city drainage 

system. Thousands people’s life could be influenced by those short-term disasters and the higher city managements are required to 

facing these challenges. How to predict the occurrence of heavy precipitation accurately is one of the worthwhile scientific questions 

in meteorology. According to recent studies, the accuracy of short-term precipitation prediction based on numerical simulation model 

still remains low reliability, in some area where lack of local observations, the accuracy may be as low as 10%. The methodology for 

short term precipitation occurrence prediction still remains a challenge. In this paper, a machine learning method based on SVM was 

presented to predict short-term precipitation occurrence by using FY2-G satellite imagery and ground in situ observation data. The 

results were validated by traditional TS score which commonly used in evaluation of weather prediction. The results indicate that the 

proposed algorithm can present overall accuracy up to 90% for one-hour to six-hour forecast. The result implies the prediction 

accuracy could be improved by using machine learning method combining with satellite image. This prediction model can be further 

used to evaluated to predicted other characteristics of weather in Shenzhen in future. 

 

 

                                                                 
* Corresponding author 

1. INTRODUCTION 

Short-term precipitation nowcasting usually refers to 0-6 hours 

(mainly focus on 0-2 hours) rainfall event occurrence with high 

spatial and temporal resolution (Yu, 2012). Nowadays, radar 

echo extrapolation and fine numerical forecast model are the 

main technology commonly used to predict short-term 

precipitation (Zou, 2014). However, the poor accuracy of 

extrapolation in radar echo inversion significantly affects the 

accuracy of forecasting. Only using radar extrapolation will 

result in larger prediction error and limited forecast period, and 

also the forecast accuracy will be decline rapidly with the 

extrapolation time increasing (Feng, 2013; Atencia, 2010). Due 

to the poor spatial resolution of radar data, poor accuracy 

remains in precipitation forecasting in local scale (Casati, 2004). 

Commonly the smaller spatial scale is, the higher the error 

remains (Hu, 2015). During the 2008 Beijing Olympic Games, 

Meteorological Agency diagnosed strong convective weather 

through expert systems (B08FDP) which has a certain indicative 

forecasting (James, 2010). Its 30 minutes and 60 minutes of 

QPF (quantitative precipitation forecast) and TS scores were 

close to 0.3 and 0.2 respectively. However, the random forecast 

hit rate still remains low (Chen, 2010). Shenzhen 

Meteorological Agency has started to forecast long-term heavy 

storm for city area since 2012. But until now, there are still 

some limitation in quantitatively short-term rainfall forecast or 

other small probability events. The forecast TS score within 1 

hour and 2 hours are below 10% and 3% respectively (Zhang, 

2015).  

 

In this study, we use multi-spectral satellite data of 1-hour time 

interval covers the cloud reflectance in visible, near-infrared 

and infrared wavelength in electromagnetic spectrum. The 

prediction model also combines with hourly data in situ 

automatic meteorological station in Shenzhen area. The 

dynamic SVM regression was used to predict precipitation 

occurrence based on nearby observations in time series. The 

main objective of this study is to prove that the prediction 

accuracy of precipitation occurrence can be improved by using 

machine learning technology with high time frequency satellite 

imagery. 

 

2. STUDY AREA AND DATA OVERVIEW 

Shenzhen is the forth economic city located in the South China 

coast with abundant precipitation from April to October., 

Extreme weather occurs frequently and trend to appear localized 

heavy rainfall and other weather anomalies as the global climate 

changing. Localized heavy storm was observed from in situ 

observations. Different weather could appear within the 

Shenzhen city, for example, a heavy rainfall occurs in Luohu 

district while the clear sky appears in Nanshan District. 

Furthermore, the localization was also observed in time scales 

of the heavy storm. The rapid changing in both spatial and time 

domain shows a big challenge for traditional numerical model 

of nowcasting.  

 

The selected automatic meteorological stations distributed in 

every district area in Shenzhen are shown in Figure 1. The 

average distance between two stations is 3.8km. The 

observation covers precipitation, wind speed, wind direction, 

2m local temperature, and air pressure with 1h interval.  

 

Satellite image from FY-2G was used to capture the spatial 

variation of cloud characteristics with 1-hour time interval. FY-

2G is the 8th operational satellites of Fengyun II geostationary 
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meteorological satellite series developed by China. The satellite 

mainly covers the cloud reflectance in visible, near-infrared and 

infrared wavelength in electromagnetic spectrum. Its scanning 

radiometer have five channels which has two long-wave 

infrared band, one medium-wave infrared band, one visible 

band and one band in water vapour absorption region. FY-2G 

IR stray light suppression effect increased more than 50%, the 

frequency and capabilities of satellite calibration also increased. 

These technical improvements effectively improved the 

inversion accuracy of FY-2G quantitative products and the 

quantitative application level. It can obtain one-third of the 

earth's surface image in a non-flood season every hour and in a 

flood season every half hour. In this study, Many cloud 

parameters include Top Brightness Temperature(TB), Cloud 

Top Temperature, Gradient of the pixel TB, Difference of TB, 

Cloud Total Amount, Cloud Type, Middle and Upper 

Tropospheric Water Vapour Content were used as model input 

to maximally capture the characteristic of precipitation cloud. 

 

 

Figure 1.Spatial locations of some automatic meteorological 

stations in Shenzhen 

3. STUDY METHODS 

3.1 Data Pre-processing 

Firstly, FY-2G satellite level 1 images need to be pre-processed, 

including radiometric correction and geometric correction. 

Geometric correction is mainly to unify FY satellite imagery 

data to the same geographic coordinate system based on ground 

control points and satellite orbit data. After geometric correction, 

all the images can be overlaid with other auxiliary data to 

analysis the tracking of cloud development. Radiometric 

correction is to remove the influence by different atmospheric 

environment on the image through using auxiliary radiation data 

of satellite, thereby enhancing the ability to obtain quantitative 

information from images. The proposed model consists of three 

steps: the first step is the cloud parameters estimation in FY 

satellite data by cloud recognition. The cloud classification and 

parameters estimation were implemented according to the 

texture, shape, smoothness and brightness temperature, and the 

parameters including cloud type, cloud-top temperature, top 

brightness temperature(TB), Gradient of the pixel TB, 

Difference of TB,  are obtained. The following Table 1 shows 

the specific selected parameters used in this study. 

 

Unlike satellite data pre-processing, ground data was mainly 

checked in the quality of automatic station data, include obvious 

data missing and errors. Data selection based on choosing 

samples with good quality to ensure the accuracy of model 

output in this study. Since the FY2G images spatial resolution is 

5 km x 5 km, however, the automatic station is fixed, so we use 

nearest neighbour matching principle to select image pixel 

which corresponding to the specific automatic station location. 

 

 

Table 1. FY-2G satellite inversion parameters list 

Parameters Computing methods Parameter descriptions 
Spatial 

resolution 

Time 

resolution 

Top brightness 

temperature (TB) 

Calculated based on the FY-2G IR1-4 band 

and radiometric calibration lookup table. 

This parameter reflects the 

brightness temperature of 

underlying surface satellite 

observed 

5km 0.5h 

Cloud Top 

Temperature (CTT) 

Calculated by the FY-2G thermal infrared 

band (10.3-11.3μm) and radiometric 

calibration lookup table. 

This parameter reflects the 

cloud top k's temperature of 

satellites observed 

5km 0.5h 

Gradient of the 

pixel TB (GT) 

𝐺𝑇(𝑥,𝑦) =   𝑇𝐵 𝑥+1,𝑦 − 𝑇𝐵 𝑥−1,𝑦  
2

− (𝑇𝐵(𝑥,𝑦+1)

− 𝑇𝐵(𝑥,𝑦−1)
2 
1/2

 

This parameter reflects the 

gradient changes of FY-2G 

IR1-4 band brightness 

temperature 

5km 0.5h 

Difference of TB 

(DT) 
𝐷𝑇𝑎𝑏(𝑥,𝑦) = 𝑇𝐵𝑎(𝑥,𝑦) − 𝑇𝐵𝑏(𝑥,𝑦) 

𝑇𝐵𝑎(𝑥,𝑦), 𝑇𝐵𝑏(𝑥,𝑦) represent the 

brightness temperature of the 

same object in different bands 

respectively 

5km 0.5h 

Cloud Total 

Amount (CTA) 
𝐴𝑐 = (𝐼 − 𝐼𝑐𝑙𝑟 )/(𝐼 − 𝐼𝑐𝑙𝑑 ) 

Ac = Cloud Total Amount 

Iclr = Clear sky pixel radiation 

Icld = Clouds pixel radiation 

30km 1h 

Cloud Type (CT) 

Get through cluster analysis by emissivity 

differences of different types clouds in the 

infrared and water vapour channels 

Pixel types include earth's 

surface, low clouds, altostratus, 

cirrostratus, dense cirrus, 

cumulonimbus, etc. 

5km 1h 

Middle and Upper 

Tropospheric Water 

Vapour Content 

(WVC) 

Inversion from the water vapour channel 

observation data and the relative humidity 

in the radiative transfer model 

Thisvalue represents the 

relative humidity of effective 

area, and the data is susceptible 

to digital simulation accuracy 

5km 3h 
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3.2 Multi-Source Data Modelling 

According to the characteristic and advantage of SVM dealing 

with small sample size, in this study, a multi-time scale multi-

source data SVM model was built to capture the data variation 

in small time window. The input of model includes parameters 

from FY-2G images, i.e., Top Brightness Temperature (TB), 

Cloud Top Temperature (CTT), Gradient of the pixel TB (GT), 

Difference of TB (DT), Cloud Total Amount (CTA), Cloud 

Type (CT), Middle and Upper Tropospheric Water Vapour 

Content (WVC), and from ground automatic station, i.e., Wind 

Speed, Humidity, Temperature, Air Pressure. The output of the 

model is precipitation occurrence in which “0” represents no 

rain and “1” represents rain occurs. The basic assumption is: in 

time series for each location, the rainfall occurrence is highly 

related to the nearby historical meteorological conditions in this 

time series. The influence of historical meteorological 

conditions which farther away from the current prediction 

window can be regard as model variance that can be neglect in 

real-time prediction. Based on this idea, the precipitation 

occurrence can be predicted by analysis the nearby last-minute 

meteorological conditions. The main idea of precipitation 

occurrence prediction was shown in Figure 2.  

 

 

Figure 2. Basic idea of precipitation occurrence prediction for 

future d hours based on nearby weather conditions  

 

SVM algorithm with radial basis function (RBF) was chosen in 

this study. The RBF function is as following: 

 

𝐾 𝑥, 𝑥𝑖 = exp⁡{−
 𝑥−𝑥𝑖 

2

𝜎2
}    (1)  

 

Multi-time scales SVM rainfall prediction based on following 

equations: 

 

𝑌𝑡 = 𝑅∗ 𝑋𝑡       (2) 

𝑋𝑡 =  𝑥𝑡−ℎ−𝑑+1, 𝑥𝑡−ℎ−𝑑+1, … , 𝑥𝑡−𝑑  𝑇    (3) 

𝑌𝑡 =  𝑦𝑡−ℎ+1 , 𝑦𝑡−ℎ+2 , … , 𝑦𝑡 
𝑇     (4) 

𝑦𝑡+1 = 𝑅∗ 𝑥𝑡−𝑑+1      (5) 

 

where  d∈[0,6] 

 h=2,4,8,12,24,48,72 

 Xt-1, Yt-1= training set 

 R*=SVM model created by training set 

 t = current time 

 h = training sample size (or time scales) 

 d = prediction time interval 

 yt+1= rainfall value to be predicted 

 xt-d+1 =model input of rainfall value to be predicted 

 

Here the time windows of training data were set as: 2h, 4h, 8h, 

12h, 24h, 48h, 72h, which means for each prediction, 2h, 4h, 8h, 

12h, 24h, 48h, 72h historical data were used to predict future 

rainfall occurrence. Meanwhile, The prediction intervals were 

also set as: 0h, 1h, 2h, 3h, 4h, 5h, 6h, which means the different 

prediction windows used for occurrence estimation. 

 

3.3 Validation 

The traditional way to evaluate the forecast accuracy in the 

short-term weather forecasting is TS score which can be 

calculated as following equation. 

 

𝑇𝑆𝑘 =
𝑁𝐴𝑘

𝑁𝐴𝑘+𝑁𝐵𝑘+𝑁𝐶𝑘
× 100%     (6) 

 

where  NAk = the number of correct prediction 

 NBk = the number of more prediction 

 NCk = the number of less prediction 

The validation table is shown in Table 2, which can also be used 

to validate the output of prediction. 

Prediction 

True 
Rain NoRain 

Rain NAk NCk 

NoRain NBk —— 

Table 2. Classification of rainfall forecast test 

 

4. RESULTS AND DISCUSSION 

4.1 FY-2G Data Product 

According to the statistical analysis and precipitation 

mechanism analysis, the cloud parameters variation could have 

correlation with rainfall event. Figure 3 shows an example about 

the cloud top temperature, the total amount of cloud, the type of 

cloud, upper tropospheric water vapour content of FY-2G 

parameters at 23:00 on June 28, 2015. Figure 4 shows an 

example about the brightness temperature, the channel 1 and 

Channel 4 brightness temperature difference, brightness 

temperature gradient, channel 3 and Channel 4 brightness 

temperature difference of FY-2G parameters at the same time 

with Figure 3. 

 

 

Figure 3. FY-2G parameters, including (a) cloud top 

temperature, (b) the total amount of cloud, (c) the type of cloud, 

(d) upper tropospheric water vapor content,  

xt-h+1 xt-h+2 xt-1 xt yt+1 yt+2 yt+d-1 yt+d

Training Window: h Predicting Interval: d

FY-2G Automatic Station

(a) Cloud top temperature(K)

(c) Cloud type

(b) Cloud total amount（%）

(d) Middle and upper tropospheric 

water vapor content(%)

Sea (clear sky)

Land (clear sky)

Mixed pixel

Altostratus

Cirrostratus

Dense cirrus

Cumulonimbus

Stratocumulus
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at 23:00 on June 28, 2015 

 

Figure 4. FY-2G parameters, including (a) brightness 

temperature, (b) channel 1 and Channel 4 brightness 

temperature difference, (c) brightness temperature gradient, (d) 

channel 3 and Channel 4 brightness temperature difference, at 

23:00 on June 28, 2015 

 

4.2 Precipitation Occurrence Prediction 

Table 3 shows the TS scores predicted by 2 hours training 

window. As table 3 shows, the prediction performance better 

and the TS score is relatively high in the most of station 

compare to the studies present by Zhang Lei, 2015. Prediction 

accuracy varies in different stations. One reason is that the 

precipitation in the specific station could be affected by 

different factors with different influence degree. It's clear in 

table 3 that the TS scores reduced  as the prediction window 

size increase. This follows the common sense of rainfall 

prediction. 

 

Station 

Interval 
Xili Dakang Nanshan …… Nanwan 

1 hour 42.63% 44.18% 41.77% …… 41.81% 

2 hours 33.33% 34.63% 33.60% …… 32.74% 

3 hours 26.74% 28.20% 27.22% …… 26.82% 

4 hours 23.06% 25.36% 25.38% …… 23.85% 

5 hours 20.09% 22.33% 21.66% …… 21.67% 

6 hours 19.15% 20.25% 19.69% …… 19.42% 

Table 3.TS scores of 2hours time scale SVM for future different 

hours rainfall prediction 

 

Figure 5 shows the overall accuracy of occurrence prediction 

with 2 hours training window. All in situ weather stations are 

employed to evaluate the accuracy. The overall accuracy 

represents the ratio between accurate prediction times of rainfall 

and no rainfall and the total number of times. The result shows 

that the overall prediction accuracy of each station are relatively 

high enough to be practical applied. Different colour represents 

the prediction within 1 hour to 6 hours prediction in the future. 

The overall prediction accuracy of most stations are more than 

87.5%. The overall accuracy of different prediction intervals 

shows a little difference. Among them, the accuracy of 

Henggang station is above 94%, the accuracy of Judiaosha 

station is relatively poor and with only 91%. These results prove 

the effectiveness of the proposed method. 

 

Figure 5.The overall accuracy of 2 hours time scale SVM for 

future different hours rainfall prediction 

 

Figure 6 and 7 show the TS scores of different sizes of training 

window (i.e., time scale) with SVM for precipitation occurrence 

prediction. Obviously, 2 hours time scale gets the highest TS 

score and also obtains the highest prediction accuracy. This can 

be seen as the evidence of our basic assumption that the current 

rainfall has more likely correlated to the nearby weather 

conditions in time series. Secondly, TS scores of 4 hours, 8 

hours, 12 hours, 24 hours, 48 hours, 72 hours time scale 

presents the trends that the prediction results decrease as the 

increase of prediction window size. This shows that with the 

training samples increases, many meteorological factors 

unrelated to future rainfall were introduced in the model which 

brings the increasing uncertainties to the model. 

 

 

Figure 6.TS scores of 2 hours time scale SVM for future 

different hours rainfall prediction 

 

 

Figure 7.TS scores of different time scale SVM for future 2 

hours precipitation prediction 

 

The stability of the model will affect the sustainability and 

applicability of prediction. Therefore, establishing a robust 

model is very important. The standard deviation of TS scores 

was calculated within different time scale for different 

prediction window. The smaller the standard deviation is, The 

more stability the model remains. On the other side, the 

standard deviation of TS score also reflects the discrete trends 

as the prediction window increase. A smaller standard deviation 

represents the majority of stations TS scores are close to the 

overall mean. Figure 8 shows the standard deviation of TS 

scores. 

(a) Brightness temperature(K), In IR1 channel case

(c) Brightness temperature gradient GT, 

In IR1 channel case

(b) Brightness temperature difference (DT1_4)

(d) Brightness temperature difference (DT3_4)
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It can be seen from Figure 8 that the model established in this 

paper have good stability. The results are not affected by the 

location and environmental conditions of stations. They have 

shown a good and stable prediction. 

 

 

Figure 8.The standard deviation of TS scores about different 

hours time scale SVM for all station 

 

5. CONCLUSIONS 

In this study, we combined FY-2G satellite data and in situ 

automatic meteorological station hourly observations to 

establish a precipitation occurrence prediction model. Based on 

multi-source data assimilation analysis, the results prove the 

effectiveness of the proposed SVM-based method in short-term 

rainfall forecasting. The mainly conclusion of this study are as 

follows: 

 

The study proposed a finer and higher density precipitation 

forecast method on geospatial through combination of the FY-

2G satellite and the shenzhen automatic meteorological station 

data. This method is a attempt to try to solve the limitations of 

current short-term rainfall forecast of shenzhen. It’s also useful 

for frequent small areas rainfall anomalies and local short-term 

rainfall in shenzhen. 

 

The prediction model also has certain practical value for the 

next six hours of rainfall forecast. In Multi-time scales SVM 

rainfall prediction modelling, the greater the time scale is, the 

worse the results will be predicted by the model, and vice versa. 

That means current rainfall was more relevant to the recently 

history meteorological conditions. And the smaller time scale is, 

the lower calculations will be. 

 

The next study will focus on continuing optimizing the 

proposed forecast method, and employing more meteorological 

parameters. All of these work are expected to further improve 

the accuracy of rainfall forecast. 
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