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ABSTRACT: 

 

Since the land surface has been changing naturally or manually, DEMs have to be updated continually to satisfy applications using 

the latest DEM at present. However, the cost of wide-area DEM production is too high. DEMs, which cover the same area but have 

different quality, grid sizes, generation time or production methods, are called as multi-source DEMs. It provides a solution to fuse 

multi-source DEMs for low cost DEM updating. The coverage of DEM has to be classified according to slope and visibility in 

advance, because the precisions of DEM grid points in different areas with different slopes and visibilities are not the same. Next, 

difference DEM (dDEM) is computed by subtracting two DEMs. It is assumed that dDEM, which only contains random error, obeys 

normal distribution. Therefore, student test is implemented for blunder detection and three kinds of rejected grid points are generated. 

First kind of rejected grid points is blunder points and has to be eliminated. Another one is the ones in change areas, where the latest 

data are regarded as their fusion result. Moreover, the DEM grid points of type I error are correct data and have to be reserved for 

fusion. The experiment result shows that using DEMs with terrain classification can obtain better blunder detection result. A proper 

setting of significant levels (α) can detect real blunders without creating too many type I errors. Weighting averaging is chosen as 

DEM fusion algorithm. The priori precisions estimated by our national DEM production guideline are applied to define weights. 

Fisher’s test is implemented to prove that the priori precisions correspond to the RMSEs of blunder detection result.  

  

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

1.1 Background 

Nowadays, DEMs (Digital Elevation Models) are useful data 

which are applied in many fields, such as urban planning, 

disaster prevention and engineering. Therefore, the quality of 

the DEM decides its applicability. However, the earth surface 

has been changing by endogenetic process, exogenetic process 

and manual development. If the DEM is not updated 

continually, the elevation data will be inconsistent with the real 

situation. So far, aero-photogrammetry, airborne LiDAR (Light 

Detection And Ranging) and satellite based sensors are main 

methods for wide-area DEM generation, but their costs are too 

high for DEM updating. 

 

The purpose of data fusion is to combine the advantages of 

different data sources and thus provide a better one. Take image 

fusion for example, a panchromatic image and a multispectral 

image are fused to derive a pan-sharpening one with higher 

spatial and spectral resolutions. For the same reason, if multiple 

DEMs which cover the same region are fused together, the 

result will disregard the bad data and obtain the better ones. 

Since the quality, grid sizes, generation time and production 

methods of these DEMs are often different, they are also known 

as multi-source DEMs, and it provides a solution to fuse multi-

source DEMs for lower cost DEM updating. 

 

1.2 Literature Review about DEM Fusion 

Weighting averaging is a common method for DEM fusion. 

Papasaika et al. (2008) and Papasaika and Baltsavias (2009) 

derived the residual map by subtracting two DEMs. Then, the 

residual map and geomorphological indexes (slope, aspect and 

roughness) were used to determine weight in each grid. DEMs 

produced by stereo pairs, LiDAR and InSAR (Interferometry 

Synthetic Aperture Radar) are often averaged together (Roth et 

al., 2002；Podobnikar, 2005；Reinartz et al., 2005；Hoja et 

al., 2006 ；Hoja and d’Angelo, 2009； Choussiafis et al., 

2012；Jain et al., 2014). 

 

Another fusion approach is to generate an initial approximate 

terrain surface. Then, DEMs are added incrementally to reform 

the approximate surface. Approximate surface can be created by 

DEM with the biggest grid size (Chen et al., 2012), linear 

prediction (Kraus and Pfeifer, 2001) or the lowest point 

(Axelsson, 2000 ； Sohn and Dowman, 2002). Sparse 

representation (Papasaika et al., 2011；Schindler et al., 2011) 

constructs an ideal terrain surface from high accurate DEMs. 

Since the residuals between original DEMs and ideal terrain 

should be the smallest, least squares adjustment is implemented 

to derive the most probable values of each DEM.  

 

Schultz et al. (1999；2002) and Stolle et al. (2005) adopted 

self-consistency for processing DEMs generated from different 

stereo pairs in the same project to eliminate blunders. Next, all 

DEMs without blunders are fused to obtain a better result. 

Fusing DEM in frequency domain is a concept which was firstly 

introduced by Honikel in 1998 and was tested by other 

researches (Crosetto and Aragues, 2000；Karkee et al., 2008). 

Combining data from stereo pairs, LiDAR and InSAR to 

interpolate a better DEM is another DEM fusion method, which 
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integrates the advantages of different data sources (Crosetto and 

Crippa, 1998； Hosford et al., 2003).  

 

1.3 Purpose 

The purpose of the research is to fuse multi-source DEMs to 

derive a fusion result with better quality. The word “better 

quality” in this paper is defined that the number of blunders and 

the influence of random errors in original DEMs are decreased 

after DEM fusion.  To avoid complicated discussion, only two 

DEMs are used for blunder detection, and weighting averaging 

is conducted to reduce the random errors. 

  

2. METHODOLOGY 

2.1 DEM Registration 

Data pre-processing has to be done before fusion because the 

coordinate datum and formats of DEMs are usually inconsistent 

with one another’s. First up, the horizontal and vertical datums 

of all DEMs are transformed into the same horizontal and 

vertical ones, respectively. Then, if the grid sizes are different, 

DEMs with higher resolution will be resampled into the same 

resolution of DEM with the largest grid size.  

 

2.2 Terrain Classification 

According to DEM production guidelines from MOI (Ministry 

of the Interior), Taiwan (2003), the precision of DEM is highly 

related to the slope and visibility (=100% - percentage of tree 

coverage) of the terrain surface. As long as the slope increases 

or the visibility decreases, the quality of corresponding DEM 

data will become worse. Therefore, it is necessary to classify the 

terrain by the slope and visibility. The calculation of slope is 

shown below (Burrough and McDonnell, 1998): 

 

a b c 

d e f 

g h i 

Figure 1. The example to explain the slope calculation 

 

     

                             (1) 

 
 

where  s = grid size 

 θ = slope 

 

Orthoimages, which have the same coverage and generation 

periods as DEMs, are used for visibility classification. However, 

since the relief displacements in orthoimages are not totally 

removed, the invisible regions are often classified inaccurately. 

Therefore, stereo pairs of aerial images are introduced for 

visibility classification in manual manner on stereo models. 

 

2.3 Blunder detection 

Blunder detection is the most important part of fusion in this 

paper. Although the magnitudes of gross errors will be reduced 

after fusion, the blunders may still exist in the result (Schultz et 

al., 2002). In other word, the fusion result is still wrong unless 

the blunders are removed. Strictly speaking, systematic errors 

have to be detected and totally corrected before fusion. In fact, 

however, there are different kinds of systematic errors in DEM 

and their combination is too complicated to correct. Hence, this 

paper does not discuss the correction of systematic errors.  

 

First step of blunder detection is that one subtracts a DEM from 

another one to obtain a difference DEM (dDEM). Then, a 

statistic test is used to find the gross errors. If the DEM contains 

only random errors, the elevations will obey normal distribution, 

and the elevation difference will also obey normal distribution, 

according to the law of error propagation (Schultz et al., 1999；

Schultz et al., 2002；Stolle et al., 2005). Therefore, a null 

hypothesis assumes that all values in dDEM obey normal 

distribution: 

 

                          H0 : dh ~ N(0, dh)    dh                        (2) 

 

where  dh = elevation difference 

  dh = the STD of elevation difference 

 

Then, student test is utilized with a proper significant level α. 

The statistic test will be done iteratively until there is no 

rejected grid point any more. The rejected grids include 

blunders, change area or type I error. Blunders have to be 

eliminated while the correct observations are remained. In 

change areas, the elevations are changed naturally or manually 

during the period. Hence, the latest data are regarded as the 

fusion result. Type I errors mean the data are correct, but they 

are misunderstood as blunders. Therefore, these grids have to be 

reserved for fusion. In this paper, stereo measuring is applied to 

distinguish whether the rejected grids are blunders, change 

areas or type I errors.  

 

2.4 Weighting Averaging 

In this paper, weighting averaging is used for DEM fusion, so 

deciding weights becomes an important issue. Using the 

precisions of DEM data to define their weights is an intelligent 

approach (Fuss, 2013). Therefore, a lot of studies aim to 

estimate DEM precision. Using geomorphological index is a 

popular method (Podobnikar, 2005；Papasaika, et al, 2008；

Papasaika and Baltsavias, 2009). Another method is to generate 

residual map of DEMs (Kraus & Pfeifer, 2001；Roth et al, 

2002；Papasaika, et al, 2008；Papasaika and Baltsavias, 2009). 

However, the afore-mentioned methods determine the precision 

at each grid point, so the cost of fusion becomes very high. 

Since the priori precisions of DEMs measured in different 

terrain surface are estimated according to the national 

guidelines published by MOI (2003), grids in the same class of 

terrain surface are fused by the same weight. The relation 

between precision and weighting value is expressed below:  

 

                                                                   (3) 

 

where  WDEM = the weight of DEM 

 σ2
DEM = the variance of DEM 
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3. STUDY AREA AND DATA INFORMATION 

Mountain area around Kaohsiung and Pingtung, Taiwan is 

chosen as the study area. Figure 2 shows the ortho images in the 

study area in different periods. Since a serious typhoon hit 

Taiwan in 2009, the land surface had been changed a lot and 

become fragile while raining. However, there is no obvious land 

surface changing from 2009 to 2013. Two DEMs are selected 

for this experiment and are displayed in figure 3 and figure 4. 

Their specification is expressed in table 1. 

 

   
 (a)  (b)  (c) 

Figure 2. The orthoimages in the study area 

(a) Before typhoon (b) In 2009 (c) In 2013 

 

 
Figure 3. DEM1 

 

 
Figure 4. DEM2 

 

 DEM1 DEM2 

Time 2009 2013 

Method Aero-photogrammetry Airborne LiDAR 

Grid size (m) 40  20 

Area (km2) 28689.600 29120.000 

Datum The same 

Table 1. The specification of two test DEMs 

 

4. EXPERIMENT RESULT AND ANALYSIS 

4.1 DEM Registration Result 

Datum transformation is not needed because two DEMs have 

the same horizontal and vertical coordinate systems, but have 

different grid sizes.  In this paper, the small grid DEM is 

adjusted to be consistent with the big one rather than using big 

grid DEM to interpolate into small one. The reason is that there 

is no algorithm which interpolates terrain data without 

additional errors except for random one (Fisher and Tate, 2006; 

Wechsler, 2007). Hence, DEM2 only reserves the grids whose 

horizontal coordinates are the same as coordinates of DEM1, 

and this approach generates no additional error due to 

resampling. The process of resampling is illustrated in figure 5. 

Besides, the coverage areas of two DEMs are different, so the 

boundaries of two DEMs must be aligned. 
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Figure 5. The process of resampling  

 

4.2 Terrain Classification Result 

The slope is classified into three groups: low (< 15ᵒ), middle 

(15ᵒ ≤ θ < 45ᵒ), and high (≥ 45ᵒ) (MOI, 2003). Figure 6 shows 

the slope map of the study area. Most grids belong to middle 

slope. The study area is classified into low visibility (< 50%) 

and high visibility (≥ 50%). Since there is no obvious land 

surface changing, the change area is not taken into account in 

this step. Therefore, six classification labels are derived by 

combining three kinds of slope and two types of visibility. 

Table 2 display the classification labels. The classification map 

is displayed in figure 7. The number of grids of each label is 

shown in table 3. 

 

 

 
Figure 6. The slope map 

 

 high visibility  

(≥ 50%) 

low visibility  

(< 50%) 

low slope (< 15ᵒ) Label 1 Label 4 

middle slope 

 (15ᵒ ≤ θ < 45ᵒ) 

Label 2 Label 5 

high slope (≥ 45ᵒ) Label 3 Label 6 

Table 2. Six labels and classification criteria 

 

Label Number % Label Number % 

1 776 4.33 4 212 1.18 

2 5812 32.41 5 9344 52.11 

3 1189 6.63 6 598 3.34 

Number of total grids 17931 

Table 3.  The percentage of each label 

 

 
Figure 7. The classification map 

 

4.3 Blunder Detection Result 

Two discussions are introduced below. One is to choose proper 

significant levels (α) for blunder detection. Grids in different 

label have to be conducted blunder detection individually 

because the precision of each labels is different from one 

another. The other one is to prove that the result of blunder 

detection with classified data is better than DEM without 

classification.  

 

4.3.1 Determine α 

Since α influences the number of type I errors and type II errors, 

it is necessary to determine proper α values before blunder 

detection. Three cases with different α setting are introduced. In 

case 1, α is set as 0.1% while α in case 2 is 0.5%. Case 3 

combines the advantages of former cases and is the best of the 

three. Although RMSE is a common index to evaluate the 

precision of DEM, it will become unreliable as long as data do 

not obey normal distribution (Fisher and Tate, 2006). The 

rejection ratio is used for analysis and, if needed, the related 

DEM points are checked on stereo models. The RMSEs of three 

cases after detection are expressed in table 4, and the ratio of 

rejected grids in each case is illustrated in table 5.  

 

The RMSEs of label 1 are very small in all cases, but the 

rejected ratios of grids are up to 52.84% and 93.69%. After 

stereo measuring, the elevations in 2013 are actually lower than 

those in 2009. Therefore, grids in label 1 are regarded as change 

areas and only data in DEM 2 are reserved. Since case 2 is able 

to detect more change areas than case 1, α in label 1 is set as 

0.5%.  
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In label 2 and label 6, though the rejection ratios increase when 

the α becomes bigger, the RMSEs do not decrease obviously. 

Therefore, the DEM points which are rejected in case 2 but pass 

the statistic test in case 1, belong to the ones of type I errors, so 

the values of α in label 2 and label 6 are set as 0.1%. 

 

In other labels, as the α increase, the RMSEs become smaller, 

but the rejection ratios become too high. Stereo measurement is 

applied to find the reason. Most DEM points belong to the ones 

of type I errors, so the values of α in label 3, label 4 and label 5 

are set to 0.1%. Some rejected DEM points, which belong to the 

ones of type I errors, are located at the boundary of different 

labels, so these type I errors result from inaccurate classification. 

As long as the classification is improved, this kind of type I 

error will be reduced.  

 

To sum up, α is 0.5% in label 1 can detect most of the change 

areas, while α is 0.1% in other labels is able to reject real 

blunders without creating too many type I errors. Case 3 follows 

this setting and the result of case 3 is used for fusion. Figure 8 

shows the result of case 3. 

 

 Case 1 Case 2 Case 3 

Label α (%) RMSE 

(m) 

α (%) RMSE 

(m) 

α (%) RMSE 

(m) 

1 0.1 0.9 0.5 0.1 0.5 0.1 

2 0.1 12.6 0.5 11.3 0.1 12.6 

3 0.1 15.4 0.5 10.6 0.1 15.4 

4 0.1 6.4 0.5 2.1 0.1 6.4 

5 0.1 11.4 0.5 1.0 0.1 11.4 

6 0.1 18.2 0.5 17.0 0.1 18.2 

Table 4. The RMSEs of three cases 

 

 

 Case 1 Case 2 Case 3 

Label α 

(%) 

Rejection 

ratio (%) 

α 

(%)  

Rejection 

ratio (%) 

α 

(%) 

Rejection 

ratio (%) 

1 0.1 52.84  0.5 93.69  0.5 93.69  

2 0.1 5.80  0.5 15.62  0.5 5.80  

3 0.1 9.42  0.5 37.43  0.1 9.42  

4 0.1 16.04 0.5 70.28  0.1 16.04 

5 0.1 10.07  0.5 92.77  0.1 10.07  

6 0.1 3.68  0.5 9.87  0.1 3.68  

Table 5. The ratio of rejected DEM points in each case 

 

 
Figure 8. The distribution of rejected DEM points in case 3 

 

4.3.2 Blunder Detection with and without Classification 

In this section, DEM blunders are detected by using dDEMs 

with and without classification, respectively. Table 6 displays 

the RMSEs and table 7 shows the rejection ratios. Since over 

99% of the DEM grid points are rejected when the DEMs are 

not classified, it is necessary to do terrain classification before 

blunder detection.  

 

Label α (%) 

With classification Without 

classification 

RMSE (m) RMSE (m) 

1 0.5 0.1 

0.1 

2 0.1 12.6 

3 0.1 15.4 

4 0.1 6.4 

5 0.1 11.4 

6 0.1 18.2 

Table 6. The RMSEs with and without classification 

 

 

 

Label α (%) 
With classification 

Without 

classification 

Rejection ratio (%) Rejection ratio (%) 

1 0.5 93.69 

99.07 

2 0.1 5.80 

3 0.1 9.42 

4 0.1 16.04 

5 0.1 10.07 

6 0.1 3.68 

Table 7. The rejection ratio with and without classification 
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4.4 DEM Fusion 

The priori precision in each label is estimated by Eq. (3) 

according to our national production guidelines (MOI, 2003) 

and the results are shown in table 8: 

 

                                                               (3) 

 

where  σ = The estimated priori precision of DEM 

 a = The precision of measurement 

 b = The term caused by slope 

 c = a constant for t 

 t = The average tree height 

 

DEM 1 

Label Precision (m) Label  Precision (m) 

1 0.8 4 4.8 

2 1.5 5 5.5 

3 6.5 6 10.5 

DEM 2 

Label Precision (m) Label  Precision (m) 

1 0.5 4 10.5 

2 0.8 5 10.8 

3 1.3 6 11.3 

Table 8. The estimated priori precision in each label 

 

According to the law of error propagation, the variance of 

dDEM equals to the sum of variances of DEM 1 and DEM 2:  

 

                                                (4) 

 

Therefore, the RMSEs of dDEM are used to test whether the 

priori precisions are proper or not. The null hypothesis is 

assumed as follows and fisher’s test is applied: 

 

                                                 (5) 

 

The fisher’s test is not done for those DEM grid points of label 

1 because label 1 area is regarded as change area and DEM2 

data is the fusion results in label 1 area. Since all of the other 

grid points pass the fisher’s test, the prior precisions are applied 

then for weighting averaging. The final fusion result is 

illustrated in figure 9.  

 

 
Figure 9. Final fusion result 

 

5. CONCLUSIONS 

In this paper, a procedure of multi-source DEM fusion is 

introduced. The fusion result is better than original DEMs 

because the blunders are detected and eliminated by statistic 

tests. The terrain surface has to be classified by slope and 

visibility. Otherwise, over 99% of DEM grid points will be 

rejected after blunder detection. Three kinds of grid points are 

rejected in blunder detection. Real blunders have to be 

eliminated. Change areas are also rejected by statistic test. Only 

data measured after changing can be fused. In the experiment, 

all grid points in label 1 had been changed, so their DEM2 data 

are regarded as the fusion result. The other one is type I error. 

Those grid points with normal measurements have to join DEM 

fusion. The value of α is 0.1% in all labels except label 1. The 

maximal RMSE of dDEM after blunder detection is 18.2 m in 

the regions with high slope and low visibility. Since all the 

RMSEs of dDEM correspond to the priori precisions, the 

weights are determined and the fusion result is derived by 

weighting averaging. 
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