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ABSTRACT:

In the application of remote sensing it is common to investigate processes that generate patches of material. This is
especially true when using categorical land cover or land use maps. Here we view some existing tools, landscape pattern
indices (LPI), as non-parametric estimators of random closed sets (RACS). This RACS framework enables LPIs to be
studied rigorously. A RACS is any random process that generates a closed set, which encompasses any processes that
result in binary (two-class) land cover maps. RACS theory, and methods in the underlying field of stochastic geometry,
are particularly well suited to high-resolution remote sensing where objects extend across tens of pixels, and the shapes
and orientations of patches are symptomatic of underlying processes. For some LPI this field already contains variance
information and border correction techniques. After introducing RACS theory we discuss the core area LPI in detail. It
is closely related to the spherical contact distribution leading to conditional variants, a new version of contagion, variance
information and multiple border-corrected estimators. We demonstrate some of these findings on high resolution tree
canopy data.

1. INTRODUCTION

Statistical analysis of images can be grouped into two main
branches (Molchanov, 1997): (a) describing/classifying an
observed scene or (b) considering the scene to be gener-
ated by a random process and inferring properties of this
process. We are concerned mostly with the latter, and es-
pecially those processes observed in remotely sensed maps
of categorical variables. Such analysis occurs when com-
paring different regions, comparing the same region at dif-
ferent times, gaining understanding of random processes
(e.g. spatial dependence), or model fitting.

A random closed set (RACS) is a generic framework for
modelling randomness in processes that generate spatial
patterns of patches. It encompasses common models in re-
mote sensing, such as those derived from Markov random
fields and Gaussian random fields, and a wide range of
other models (e.g. germ-grain models, birth-growth mod-
els, fibre processes, and tessellations). Markov random
fields excel at contextual investigations, but have diffi-
culty describing geometrical properties (Descombes, 2012).
Gaussian random fields, completely determined by their
mean and covariance (Chiu et al., 2013), can only capture
first and second order characteristics of a process. Other
RACS models can describe complex geometrical shapes
and infinite-order characteristics (Descombes, 2012). These
models reveal new methods for describing the geometry
of random scenes such as contact distributions (Baddeley
and Gill, 1994) and tangent point analysis (Barbour and
Schmidt, 2001).

These tools have been combined with remote sensing to
model uncertain object boundaries (Zhao et al., 2009), me-
teorological features (Cressie et al., 2012), fine-scale grass
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patterns (Sadler, 2006) and urban tree locations (Rossi et
al., 2015). The RACS framework has also been used to test
the spatial dependence of beetle infestation (Kautz et al.,
2011) and the relationship between tree deaths and bore
locations (Chang et al., 2013). Numerous other examples
exist (Descombes, 2012).

We examine parallels between non-parametric RACS sum-
mary functions and landscape pattern indices (LPI). To
the author’s knowledge this is the first published discus-
sion on this topic. A RACS framework leads to more rig-
orous treatment of landscape pattern data and improved
understanding of LPI behaviour, including border correc-
tions, resolution robustness and conditional probabilities.
In the next section we introduce RACS theory in more
detail, with a focus on concepts relevant to remote sens-
ing applications. Subsequently Section 3 discusses RACS
and LPI. Finally Section 4 describes an application of non-
parametric RACS estimators to maps of tree canopy.

2. RANDOM CLOSED SETS AND REMOTE
SENSING

For brevity we omit many technical details and the full
generality of RACS. These details can be found in a num-
ber of texts (Molchanov, 2005; Chiu et al., 2013). A RACS
is any random process that generates a closed set. A closed
set in Euclidean space is any set for which all points on the
edge of the set are also in the set. A RACS, X, is then
any process that maps from some state space Ω to closed
subsets of Euclidean space

P (X(ω)is closed) = 1. (1)

This is similar to the familiar definition of a random vari-
able, except each realisation is a closed subset of space. Fig-
ure 1 contains two example realisations of RACS. A RACS
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produces categorical maps if its realisations are closed 2D
regions. This definition allows only two classes, inside X
or not inside X, but can be generalised to multiclass real-
isations (Molchanov, 1984; Ayala and Simó, 1995; Kautz
et al., 2011).

Figure 1: Example realisations of RACS. Left: A Boolean
model (Stoyan and Mecke, 2005) observed in a rectangular
region; hatched regions denote locations inside the random
set. Right: A map of tree canopy which can be represented
as a realisation of a RACS. This is also an example of the
observations used in Section 4.

As an example the pattern of mould on the surface of an
old slice of bread can be modelled as a RACS. The mould
pattern may have some systematic properties (e.g. patch
size) but the precise location, size and shape of the mould
is unpredictable. For this RACS a single realisation is the
pattern of mould on a single slice of bread.

The mathematical field underlying the statistical investi-
gation of random scenes is known as Stochastic Geometry
(Molchanov, 1997). It is the study of statistical meth-
ods for geometrical patterns (Matheron, 1975; Chiu et al.,
2013). Historically an important application has been the
inference of 2D or 3D properties (e.g. properties of rocks)
from lower dimensional samples (Baddeley and Jensen,
2004). This application area, known as stereology, has
developed tools for inference from 0D samples (e.g. pixels)
and from images (2D samples).

Often it is the case in remote sensing of the Earth that
only one realisation of the process is available. For ex-
ample the generation of a native forest, including all its
past disturbances, is usually seen only once at each lo-
cation. We can mitigate this issue by assuming that the
statistical properties of the process are similar at different
locations and that the dependence between distant loca-
tions is small. Thus observations of different regions act
like multiple realisations. These sort of assumptions are
common in spatial analysis.

The strongest similarity assumption is stationarity which
assumes the statistical properties of a process are transla-
tion invariant. In other words the probability of any closed,
bounded set K intersecting X, written P (K ∩X 6= ∅), is
independent of translations of K; the probability depends
only on the shape and size of K. As an example consider
the centre of the mouldy bread slice at high magnification
so that we may ignore the border of the bread and assume
that the process is stationary. This stationarity assump-
tion implies that, before looking at the bread, the prob-
ability that any particular location is mouldy P (x ∈ X),
known as the coverage probability, is the same for all x.
It also means that the probability that a circular region
contains mould depends only on the radius, which leads to
the spherical contact distribution (SCD) discussed later.

These examples correspond to intersecting with a set {x}
and a disc respectively. The stationary assumption has
been common in landscape ecology (Fortin et al., 2003).

There are a number of summary functions that are well de-
fined for stationary RACS. A summary function describes
particular properties of a RACS, typically as a probabil-
ity or the expectation of some quantity. Examples are the
coverage probability, the spherical contact distribution and
the expected perimeter-length per unit area. They have
been used to fit parameters and uniquely determine pa-
rameters for some model classes (Hug et al., 2002).

Once we have observed something about the mould, near
location a say, then the conditional probability of an event
near b, P (event near b|event near a), is not usually trans-
lation invariant because it depends on the location of b
relative to a. In general RACS observations at different
locations can be very dependent.

A stationary process is mixing if, as b gets further away
from a, the probability, P (event near b|event near a), ap-
proaches the value that it would have assuming indepen-
dence. Stationary and mixing processes are ergodic (Daley
and Vere-Jones, 2008, §12.3) which means spatial averages
of large windows may be used instead of averages across
multiple realisations. For example if the bread mould pro-
cess is ergodic then the probability of a particular loca-
tion being mouldy can be estimated by the proportion of
mouldy locations in a large window; multiple slices of bread
are not needed. Note that in practice the stationarity as-
sumption requires observations in windows small enough
that changes in the environment (e.g. a distant change in
soil type) can be ignored whilst estimates using the er-
godic property require large windows. The window size
is then a compromise between estimator accuracy and the
credibility of the stationarity assumption.

3. AN APPLICATION TO LANDSCAPE
PATTERN INDICES

Landscape ecologists study both the effect of spatial pat-
tern on ecological processes wherein spatial pattern is con-
sidered a covariate and the effect of ecological processes on
spatial pattern wherein the spatial pattern is considered a
response or symptom of the ecological process (Fortin and
Agrawal, 2005). Frequently this requires comparing pat-
terns observed in remotely sensed maps of land cover type.

LPIs are numerical descriptions of spatial configuration
that are commonly used in landscape ecology (Lustig et
al., 2015). Current LPIs have proved sensitive to resolu-
tion and boundary effects (Kupfer, 2012). Many LPIs are
also difficult to interpret (Schröder and Seppelt, 2006) and
highly correlated with other LPIs (Cushman et al., 2008;
Schindler et al., 2008; Turner, 2005). There have been
numerous calls for more rigorous statistical interpretation
of LPIs (Lustig et al., 2015; Dramstad, 2009; Wang and
Cumming, 2011) and some calls for more process-based
metrics (Fortin et al., 2003; Remmel and Csillag, 2003).
RACS provide a generic probabilistic framework that al-
lows statistical interpretation, process-based descriptions
and rigorous study of LPI behaviour.

The most popular software package for the calculation of
LPIs is FRAGSTATS (McGarigal, 2015) and many other
packages incorporate LPIs that are conceptually derived
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from FRAGSTATS (VanDerWal et al., 2015). Within the
collection of metrics available in FRAGSTATS we have
noticed that:

1. The percentage of landscape index is an estimator of
coverage probability

2. The edge density index is a (potentially biased) esti-
mator of an identically named concept in RACS the-
ory.

3. The percentage of core area is an estimator of the core
probability which is related to the spherical contact
distribution for a RACS.

4. The description of the radius of gyration given by
(Keitt et al., 1997) is related to the mean star of in-
tersection of a RACS (Molchanov, 1997).

5. Variants of the contagion index can be constructed
that express second-order and geometric properties of
RACS.

A crucial contribution here is that LPIs can be viewed
as estimators of underlying random processes. To the
author’s knowledge this is the first time non-parametric
RACS summary functions have been explicitly correlated
with LPI concepts. Kautz et al. (Kautz et al., 2011) pro-
vide an example of the power of non-parametric RACS
very similar to LPI without directly referring to LPIs. Oth-
erwise previous use of RACS in relation to LPIs have been
for simulation studies (Hargis et al., 1998) and model fit-
ting (Diggle, 1981; Sadler, 2006).

The remainder of this section discusses the core area, the
closely related SCD, and a new contagion index that uses
the SCD. The new SCD-based contagion is less resolu-
tion dependent than the classic pixel-adjacency contagion.
For core area, the RACS perspective provides variance in-
formation, border corrections and natural conditioning on
events. We will also make use of the coverage probability
which is easily estimated by the percentage of landscape.
The details for other indices will be discussed in a forth-
coming paper.

In the following suppose that X is a stationary, mixing
RACS process, and that we have observed a single realisa-
tion, Xobs, in a window W .

3.1 Percentage of Core Area

For a user chosen buffer distance, r, core area is the area
within a class that is more than r distance from the edge
of the class (McGarigal, 2015; Didham and Ewers, 2012).
The percentage of core area in a window is an estimate of
the probability that a point will be further than r distance
from the exterior of X. This is also the probability of
placing a disc of radius r entirely within X,

Percentage of core area ≈ P (Br(o) ⊆ X), (2)

where Br(o) is a disc of radius r about the origin, o. The
origin is used here arbitrarily because the stationarity of X
requires that the probability is the same regardless of the
disc’s centre. Thus the analogous concept of core area for
a random process could be described as Core Probability
and is the probability that a point will be further than r
distance from the exterior of X. In the next section (Sec-
tion 3.1.1) we show that core probability is closely related
to the SCD.

3.1.1 Core Probability and the SCD. The SCD
(also known as the empty space function) is a popular tool
for exploration and inference of random point processes
(Baddeley et al., 2015) and sets (Diggle, 1981; Molchanov,
1997; Heinrich, 1993). The unconditional version is the
probability of X intersecting an arbitrarily located disc of
radius r,

SCDunc
X (r) = P (Br(o) ∩X 6= ∅). (3)

where ∅ is the empty set so ‘ 6= ∅’ can be read as ‘not empty’
and we have arbitrarily used the origin as the centre of the
disc.

The conditional version of the SCD is the probability of X
intersecting a disc given that the centre of the disc is not
in X,

SCDcond
X (r) = P (Br(o) ∩X 6= ∅|o /∈ X). (4)

If o ∈ X then X intersects the disc so the two versions are
related by

SCDcond
X (r) = 1− 1− SCDunc

X (r)

1− p
, (5)

where p is the coverage probability. Recall that the cov-
erage probability is the probability of an arbitrary point
being in X, it can be estimated by the percentage of W
covered by Xobs (Baddeley and Jensen, 2004).

The SCD describes the sizes of space outside X; a RACS
with a large conditional SCD at radius r is less likely to
contain gaps in which a disc of radius r can fit.

The space that is not interior to X is also a RACS, we
denote it by Xc. The superscript ‘c’ denotes the set of
locations not in X and the overline represents the inclusion
of the edges. If X is stationary then so is Xc and thus the
SCD of Xc is well defined. Furthermore the unconditional
SCD of Xc is the probability that an arbitrarily located
disc of radius r intersects Xc which is the negation of the
core probability. In other words

SCDunc
Xc (r) = P (Br(o) ∩Xc 6= ∅)

= P (Br(o) * X)

= 1− core probability.

(6)

The conditional version is the probability that a point in
X is within distance r of the outside of X

SCDcond
Xc (r) = P (Br(o) ∩Xc 6= ∅|o /∈ Xc) (7)

which suggests a conditional core probability (CCP), the
probability that a point in X is in the core of X,

conditional core probability = 1− SCDcond
Xc (r)

= P (Br(0) ⊆ X|o ∈ X).
(8)

Thus the non-parametric properties of the unconditional
and conditional SCD are identical to those of the core prob-
ability and the CCP respectively.

3.1.2 Border Correction. Estimation of the core
probability using percentage of core area risks making an
implicit assumption about X outside the observation win-
dow. See Figure 2. There are points which appear further
than r distance from the edge of Xobs but may not be in
the core of X. The same is true for the SCD. The effect is
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larger with larger buffer distance because the area within
r distance of the boundary is a larger proportion of the
window area. We mention three different border corrected
estimators for the unconditional SCD that are available in
the spatstat package within the R statistical computing en-
vironment (Baddeley et al., 2015). For brevity we describe
them only in terms of the core probability. Despite the-
oretical differences the three estimators perform similarly
well in simulation experiments for a variety of random pat-
terns of points (Stoyan, 2006; Baddeley et al., 2015), which
suggests that they will also perform with similar quality on
RACS. Note that the CCP can be estimated from the ratio
of a core probability estimate and a coverage probability
estimate.

The reduced sample estimate uses only those points further
than r distance from the window’s boundary (Heinrich,
1993). See Figure 2. Due to the different sample size for
each r the estimated core probability can increase as the
buffer distance increases, however an increase in the true
core probability is not possible because a point not in the
core of X for buffer distance r cannot be in the core for
larger buffer distances.

The Chiu-Stoyan correction uses the length of the set of
points exactly k distance from the boundary of Xobs and
integrates k between 0 and the desired radius r. It pro-
duces estimates for each radius r that are unbiased and
can not increase with r, but there is a chance that the
estimate will pass below 0 (Chiu and Stoyan, 1998).

Alternatively the Kaplan-Meier correction, which uses
methods for the analysis of censored survival times (Badde-
ley and Gill, 1994), also provides non-increasing estimates
of the core probability.

3.1.3 Variance. For each radius, r, the reduced sam-
ple estimator is similar to the coverage probability estima-
tor. Molchanov (Molchanov, 1997, §4.3) provides a vari-
ance if certain properties of the process are known a priori.
It may also be possible to estimate the variance using spec-
tral density (Mase, 1982; Böhm et al., 2004), however this
method requires a suitable choice of smoothing bandwidth.

3.2 Disc-State Contagion

Contagion is a popular entropy-inspired LPI for describing
aggregation of classes. The unnormalised version is defined
as (O’Neill et al., 1988; Li and Reynolds, 1993)

Contagion :=

m∑
i=1

m∑
j=1

Pij ln(Pij), (9)

where m is the number of classes and Pij is the probability
of randomly selected adjacent pixels being in class i and
class j respectively. Although it was initially designed for
multiple categories we restrict our focus to two-class maps.

Contagion as it is defined above describes the aggrega-
tion of classes within a distance of double the ground sam-
ple distance (double the ground sample distance because
pixels are typically an average or weighted integral of the
corresponding sample region). Contagions calculated at
different resolutions thus describe aggregation at differ-
ent scales making contagion very sensitive to resolution
changes. Moreover because the definition depends on the
resolution of an observation technique there is no canonical

Figure 2: An example observation of a RACS, Xobs

(hatched regions), showing points within r distance of the
window boundary (grey region) and points that are further
than r distance from the outside of Xobs (dashed bound-
ary). The crosshatched regions are within r distance of
the edge of W and further than r distance from the visible
edge of Xobs. Without more information it is impossible
to know whether these points are in the core area of X.
Reduced sample Estimator: The reduced sample estimator
for the core probability is the proportion of the non-grey
region that is inside the dashed boundary. Chiu-Stoyan
Estimator: The Chiu-Stoyan estimator uses the length of
the dashed boundary outside the grey region given by mul-
tiple smaller buffer distances to estimate the core proba-
bility at the desired buffer distance.

definition for the contagion of a real landscape. A number
of other metrics that use the same pixel adjacency concept
have similar issues.

Ramezani and Holm (Ramezani and Holm, 2011) encoun-
tered this issue when they tried to apply contagion to
polygonal data. Instead they considered the adjacency
probabilities Pij to be the probability of class j intersect-
ing a circle of radius r around a point in class i. Thus
contagion became a functional metric (a function of the
radius r).

We present another variant of contagion that describes the
mixing of classes within a disc, termed disc-state conta-
gion. Let 1 denote inside X and 0 denote outside X. We
define P10(r) as the probability that a point is in X and
not in the core of X,

P10(r) = P (o ∈ X,Br(o) * X), (10)

and P01(r) as the probability that a point is in Xc and not
in the core of Xc,

P01(r) = P (o ∈ Xc, Br(o) * Xc). (11)

We define the remaining elements, P11(r) as the core prob-
ability of X,

P11(r) := P (Br(o) ⊆ X), (12)

and similarly P00 as the core probability of Xc.

For each radius r, this version of contagion quantifies the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B6, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B6-235-2016 

 
238



disorder of a system with four states (1) the entire disc
is in X, (2) the entire disc is outside X, (3) the centre is
within X and some of the disc is outside X, and (4) the
centre is outside X and some of the disc is inside X. A
diagram of each state is in Figure 3. The lowest contagion
(and highest entropy) occurs when the probability of each
of these states is 1

4
.

This disc-state contagion can be estimated using estimates
of the SCD and core probability. It is well defined for any
stationary RACS, and because the disc size is not linked
to resolution it is more robust to resolution changes than
the classic pixel-adjacency contagion (9).

.state

00

.state

11
.

.state

01
.

.state

10
.

Figure 3: Examples of each disc state in disc-state conta-
gion. Hatched regions denote locations inside the realisa-
tion of X.

4. EXPLORATION OF TREE CANOPY
PATTERN PROCESSES AND FEED

QUALITY

We explored decimetre resolution maps of tree canopy in
Perth, Australia, using conditional SCD, CCP, disc-state
contagion and coverage probability. The canopy height
maps were derived from stereo photography through height
estimates (stereo matching) and spectral values (Caccetta
et al., 2015). Two-class categorical maps were then ob-
tained by only keeping canopy that was higher than 4m.

We compared the RACS estimators with field-based anal-
ysis of feed quality of Banskia woodlands for an endan-
gered bird (van Dongen et al., 2016). For each location
of the field-based assessment we used a circular window of
30m radius to estimate RACS properties. We randomly
selected 50% of these field-assessed locations for initial ex-
ploration, reserving the remaining 50% for validation.

In making these estimates it was assumed that each win-
dow observed a stationary and mixing tree canopy process.
Given little information on covariates such as soil, mois-
ture and wind this is a tolerable representation for a first
analysis.

The best gradation of feed quality was obtained by the
CCP. A small cluster of very high feed quality processes
appeared at core buffer distances of 0.75m and above (Fig-
ure 4). In comparison the coverage probability could not

separate very high feed locations from moderate feed lo-
cations (Figure 5). The SCD and disc-state contagion did
not show any obvious association to feed quality (Figure
6).

Unfortunately the above discrimination of high feed loca-
tions did not generalise to the validation data (Figure 7).
Further exploration of other RACS summary functions and
different canopy heights might uncover real associations.
Discrimination might also be achieved through multi-type
RACS (with each class corresponding to a different height
range), 3D stochastic models, or non-stationary RACS.

Conditional Core Probability and Feed Quality
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Figure 4: Conditional core probability for tree canopy
above 4m. Each location/observation is a different curve.
The colours correspond to feed quality (see colour bar on
right). The canopy processes with the three highest feed
quality scores (in red) are clustered together for buffer dis-
tances from 0.75m to 2m (black polygon). Reduced sample
boundary correction was used here but the effect was mi-
nor at these distances (see Section 4.1 and Figure 8). Note
that the steps in the functions were due to the map reso-
lution of 0.2m, and the slight upward directions of some of
these jumps was caused by the reduced sample correction.

4.1 Effect of Border Correction

Border correction had little impact on the above relation-
ship because the buffer distances involved were small (2m)
compared to the window diameter (60m) (Figure 8). How-
ever the impact of border correction on the SCD (Figure
9) suggests that CCP estimates would have been signifi-
cantly impacted if the canopy patches were much larger
(e.g. tens of metres in diameter).

5. COMPUTATION

Computations were performed inside the R statistical en-
vironment (R Core Team, 2016) on a 3.10GHz CPU with
4GB of RAM. The spatstat package (Baddeley et al.,
2015) was used heavily with tools for reading remotely
sensed data provided by the raster package (Hijmans,
2015) and GDAL (GDAL Development Team, 2015). An R
package containing additional necessary functions is avail-
able from the author.

For the 30m radius observations above, estimation of the
SCD, CCP, disc-state and coverage probability usually re-
quired 0.6 seconds of computation. For larger windows of
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Figure 5: Coverage probability of canopy above 4m and
feed quality. Each point is a different location. Note
that high coverage probability suggests higher feed value,
but coverage probability doesn’t discriminate between high
feed locations and moderate feed locations.

1500 by 1500 pixels (300m by 300m) performing the same
estimations required less than 10 seconds.

6. CONCLUSION

RACS provide a powerful generic framework for modelling
the processes underlying categorical maps. They are es-
pecially useful at high resolutions where the geometries
created by patches of many pixels are important. The
RACS framework provides a conceptual tool to guide LPI
use and design including the treatment of sensing artefacts
such as resolution and map extent. Here we focused on
non-parametric RACS tools under the assumptions of sta-
tionarity and mixing. These tools are stochastic, process-
centric versions, of LPI and we discussed the core area LPI
in detail.

Core area is closely related to the spherical contact distri-
bution. We first linked core area to a probabilistic concept,
the core probability, and then showed that core probabil-
ity was the opposite of the spherical contact distribution
evaluated at a particular radius. This lead to functional
versions of the core probability, a conditional core proba-
bility, and border corrected estimators.

The well-defined spherical contact distribution also sug-
gested a resolution-free version of the contagion LPI. This
new version of contagion describes the entropy of the state
of a disc and its centre. The aggregation scale that this new
contagion expresses is chosen by the user and is indepen-
dent of the imaging resolution. In comparison the orig-
inal pixel-adjacency contagion describes interaction over
the width of two pixels and is thus much more sensitive to
resolution change.

A preliminary exploration of tree canopy processes briefly
demonstrated core probability, the spherical contact distri-
bution, disc-state contagion and border corrections. Due
to time restrictions the demonstrations did not include hy-
pothesis tests.
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Figure 6: Conditional SCD (left) and disc-state contagion
(right). Curves are coloured by feed quality. There is no
discernible pattern of high feed quality processes.

Conditional Core Probability
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Figure 7: CCP for the validation data. The region of
high feed process observed in the exploration data is shown
(black polygon). The separation did not generalise to the
validation data.

CCP: Reduced Sample Border Correction
 vs Uncorrected Estimates
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Figure 8: The reduced sample CCP estimates (solid lines)
and uncorrected CCP estimates (dashed lines). At these
small buffer distances (relative to window size) border cor-
rection has minor impact. Note that the uncorrected esti-
mates are lower because they have implicitly assumed that
no tree canopy existed outside the observation window.
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SCD: Impact of Reduced Sample Correction
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Figure 9: The SCD estimate for one location using re-
duced sample correction (solid line) and no border cor-
rection (dashed line). For context the reduced sample
estimates of some other observations are shown in grey.
Note that, similar to the uncorrected estimates of CCP,
the uncorrected estimate of SCD is lower because it has
implicitly assumed that no tree canopy existed outside the
observation window. For some observations, such as the
one shown here, the difference between border corrected
and uncorrected estimates can be quite large. Thus using
the uncorrected estimates could have serious implications
for applications of the SCD.
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