The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Publications Copernicus
Articles | Volume XLI-B7
17 Jun 2016
 | 17 Jun 2016


Zhipeng Li, Li Shen, and Linmei Wu

Keywords: Image quality assessment, image texture analysis, Image classification

Abstract. The data from remote sensing images are widely used for characterizing land use and land cover at present. With the increasing availability of very high resolution (VHR) remote sensing images, the remote sensing image classification becomes more and more important for information extraction. The VHR remote sensing images are rich in details, but high within-class variance as well as low between-class variance make the classification of ground cover a difficult task. What’s more, some related studies show that the quality of VHR remote sensing images also has a great influence on the ability of the automatic image classification. Therefore, the research that how to select the appropriate VHR remote sensing images to meet the application of classification is of great significance. In this context, the factors of VHR remote sensing image classification ability are discussed and some indices are selected for describing the image quality and the image classification ability objectively. Then, we explore the relationship of the indices of image quality and image classification ability under a specific classification framework. The results of the experiments show that these image quality indices are not effective for indicating the image classification ability directly. However, according to the image quality metrics, we can still propose some suggestion for the application of classification.