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ABSTRACT:

We have studied the spectral features of reflectance and emissivity in the pattern recognition of urban materials in several single
hyperspectral scenes through a comparative analysis of anomaly detection methods and their relationship with city surfaces with the
aim to improve information extraction processes. Spectral ranges of the visible-near infrared (VNIR), shortwave infrared (SWIR)
and thermal infrared (TIR) from hyperspectral data cubes of AHS sensor and HYMAP and MASTER of two cities, Alcala de Henares
(Spain) and San José (Costa Rica) respectively, have been used.

In this research it is assumed no prior knowledge of the targets, thus, the pixels are automatically separated according to their
spectral information, significantly differentiated with respect to a background, either globally for the full scene, or locally by image
segmentation. Several experiments on urban scenarios and semi-urban have been designed, analyzing the behaviour of the standarc
RX anomaly detector and different methods based on subspace, image projection and segmentation-based anomaly detection
methods. A new technique for anomaly detection in hyperspectral data called DATB (Detector of Anomalies from Thermal
Background) based on dimensionality reduction by projecting targets with unknown spectral signatures to a background calculated
from thermal spectrum wavelengths is presented. First results and their consequences in non-supervised classification and extraction
information processes are discussed.

1. INTRODUCTION either supervised or unsupervised. In supervised target detection
algorithms lean on prior knowledge such as the spectral
Detection of spectral anomalies aims at extracting automaticallsignature. The detection process for matching signatures is not
pixels that show significant responses in relation to theistraightforward due to the complications of converting data
surroundings. This paper deals with the non supervisedcquired by airborne sensors with material spectra in the ground
technique of target detection, also called Anomaly DetectioffHaboudane et al., 2002). This could be further complicated by
(AD), applied to hyperspectral urban scenes. Since thithe large number of possible objects of interest, as well as
technique assumes no prior knowledge about the target or thacertainty as to the reflectance or emissivity of these objects
statistical characteristics of the data, the only available option iand surfaces.
to look for objects that are differentiated with respect to a
background. Several methods have been developed in the l#st important aim in this research is to establish relationships
decades, allowing a better understanding of the relationshifibat allow the interconnection between spectral anomalies with
between image dimensionality and the optimization of searcmformational anomalies and, therefore, identify actual
procedures (Duran and Petrou, 2007; Schaum, 2005; Stein iaformation about surfaces, materials and their state of
al., 2002) as well as the subpixel differentiation of the spectrgbreservation related to anomalous responses in urban areas
mixture and its implications in anomalous responses (Bar et akather than simply differences from a background without a
2010; Eismann et al., 2009; Manolakis and Shaw, 2002specific meaning. In this sense this work presents a multi-
Nasrabadi 2008). methodology approach applied to the analysis of the
correlations between spectral anomalies and urban materials in
In other sense, image spectrometry has proven to be efficient Alcala de Henares city (Spain) and San José city (Costa Rica).
the characterization of materials based on statistical method¥e analyse the influence of spectral resolution in the
using specific reflection and absorption bands (Marino et aldetermination of the background as a critical parameter in order
2001). Spectral configurations in the VNIR, SWIR and TIRto detect of anomalies using hyperspectral sensors.
have been successfully used for mapping materials in different
urban scenarios (Malpica et al., 2008; Rejas et al., 2007; Segl et 2. STUDY CASESAND DATA SETS
al., 2003).
Several anomaly detectors have been tested with images of the
There has been an increasing interest in the use of highHS for Alcald de Henares and HYMAP and MASTER for
resolution data (both spatial and spectral) to detect small objedBosta Rica corresponding to two different test urban areas but
and to discriminate surfaces in areas with an urban complexityith similar complexity. We used reflectance images of the
This has come to be known as target detection which can H&HS (Rejas et al., 2005) acquired on April 8, 2004 in Alcala de
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Henares city. The AHS scene (80 channels between 0689 outliers. In this sense, we have been calculated a thermal index
and 12.70um) has a dimension of 750 x 4075 pixels, with aTHI (Rejas et al., 2009), taking advantage of the spectral
spatial resolution of 3.4 m. discrimination between diagnostic bands in the emissive
spectrum.

The proposed methodology DATB, Detector of Anomalies from
Thermal Background has been tested with hyperspectral images
from different imaging spectrometers corresponding to several
urban scenarios, therefore with different spectral background.
The four phases of the DATB that can be developed separately
are: () definition of spectral subspacesi) (extraction of
endmembers in subspace VNI[j) projection on the thermal
background and dimensionality reduction aiwl ¢earching the
best projection maximizing the thermal index THI by the RX
standard. The parameters on DABT require an expert
knowledge giving by the expression:

N, = (Swwir /2) Ofc 1

Where S'wir is the spectral resolution in the VNIR port
wavelengths between 0.4 um and 2.5 um, faredcomplexity
factor between 0 and 2, meaning the minimum O to a scene with
absent complexity (for example an image of water) and
maximum 2 for a scene with the highest proportion of surfaces

L L " and materials that can be detected as spectral anomalies (for
Figure 1 AHS rgb 12,6,2 combination image of Alcala de gyamnje images of urban scenarios). DATB method as a

Henares (right) and MASTER rgb 13,7,4 combination of San 4 jation of PP is not looking for the best imaging projection

José (left). for all the hyperspectral cube, but in the identity matrix mxn,

) is the number of channels in the hyperspectral cube VNIR
We used reflectance images of HyMAP sensor (Ca@tlka.,  channels, and thermab the number of channels used to model
1998) and the MASTER sensor (Hoekal., 2001), acquired the subspace bottord & n» <n), thus responding to the above
both the 7 March 2005 in the San José city. The scene HYMARage segmentation strategy between the reflective and the
(125 channels between 0.4588n and 2.491pum) has a emissive spectrum.
dimension of 710 x 2415 pixels, with a spatial resolution of 15
m fused with aerial photography to 4 m. The MASTER scene is
1650 x 4466 pixels, with spatial fused resolution of 9 m and
radiometric resolution of 16-bit. The 50 MASTER image
channels are grouped in a port of 25 channels in the VNIR-
SWIR (0.463um — 2.427um), and 25 channels between 3.075
pm and 13um in the MIR and TIR.

An algorithm Minimum Noise Fraction (MNF) has been applied §
to all data set. Channels sensors presenting a high signal/noise
ratio were rejected, particularly ranging from 53 to 63, and the
38,42,44,53 channels for AH8hannels 62 to 65 and 125 for

HyMAP; and channels 16 to 19, 25 to 41 and 50 for MASTER. |-
The airborne images have been georeferenced directly by GLT [
ENVI algorithm, using the geometry computed from position =N
and orientation data measured by an inertial GPS/ IMU at the
same time of acquisition over the study areas in all cases.

3. ANOMALY DETECTION

Anomalies obtained based on the standard method RX (Reed [\
and Xaoli, 1996), have been verified by those computed using §

Orthogonal Subspace Projection-OSPRX (Borghys et al.,
2012), as well as the Uniform Target Detector (UTD), a mixed
detector RXD-UTD and a projection pursuit (PP) image method
(Malpica et al., 2008).

The computation in all methods has been carried out separately A SR A
for spectral ranges of reflective channels and emissive for theigure 2. OSPRX anomalies in red colour (thermal anomalies in
AHS test data set. The main challenge is how to accurategreen colour not detected in VNIR) from VNIR channels of
characterize “interestingness” in a numerical fashion. In théHS (up) and AHS rgb 6,12,2 combination (down) of the

case of this paper “interestingness” can be defined in terms éficala de Henares test site.
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The results show the benefits of the strategy to detect of gpectral anomalies by replacing the classical model by the
variety of targets whose VNIR spectral signatures havenormal distribution with a robust method. For their achievement
significant deviation in relation to their thermal background.has been necessary to analyse the relationship between
DATB is an automated technique in the sense that there is nbtophysical parameters such as reflectance and emissivity, and
necessary to adjust parameters, providing successfully resultstime spatial distribution of detected entities with respect to their
all cases. Subpixel anomalies which cannot be distinguished Bnvironment, as for example some buried or semi-buried
the human eye, on the original image, however can be detectethterials, or building covers of asbestos, cellular
as outliers due to the projection of the VNIR endmembers witlpolycarbonate-PVC or metal composites.
a very strong thermal contrast. Furthermore, a comparison
between the proposed approach and the well-known RXnomalies detected for all methods have been classified (see
detector and others is performed at both modes, global arfeigure 4) with an unsupervised K-Means algorithm in five
local. clusters: error (cluster 1), background 1 (cluster 2), background
2 (cluster 3), anomaly at confidence level of 50 % (cluster 4)
The suggested method outperforms the existents in particuland anomaly at confidence level of 100% (cluster 5).
scenarios, demonstrating its performance to reduce the
probability of false alarms, as we will discuss in the nextDATB method has been chosen as the most suitable for
section. anomaly detection using imaging spectrometers that acquire
them in the thermal infrared spectrum, since it presents the best
results in comparison with the reference data, demonstrating
great computational efficiency that facilitates its implementation
in a mapping system toward as a Real-Time Mapping technique.

Figure 3. HYMAP RXD-UTD detail of anomalies (up left) and rigyre 4. Example of comparison of RX global anomalies (left)
OSPRX (up rigth) of the San José test site, 4 m pixel size,nq DATB anomalies (right) by K-Means algorithm from
MASTER RXD (down left) detail of anomalies and DATB \aSTER image of San José. The anomalies have been

anomalies (down right) for the same semi-urban area of Saf|assified in five cluster: error, background 1, background 2 in
Jose. withe colour; strong anomalies in black and smooth anomalies

inre
It can be seen that DATB in Figure 3 (down right) ignores the

shadows of t_he clouds in order to Qetect anomalies_ in a wide 4 pISCUSSION AND COMPARATIVE ANALYSIS
area of the city beneath them. The fire can be seen in the lower

left comner (Figure 3, up left), is detected as strong anomaly ife relationship between the spectral anomalies and the
MASTER SSRX, and HyMAP RXD-UTD and OSPRX, giagnostic bands of the urban materials has been studied. In

although global DATB, although it is detected, the value of the, e o do that, it has been linearly adjusted a sample space of

anomaly is lower. 35 points of urban materials and covers (asphalt, concrete, sport
. N . . infrastructures, building roofs, asbestos, gravel roof, tile roof,

It is very significant the change in the results of the anomaliepy,/c roof, metal, glass, synthetic polycarbonate-petrol stations,

detection obtained with MASTER set. This result proves th‘?/vater, sand, trees, bush, etc.) in both test areas of Alcala de
thermal sensitivity of DATB in relation with certain surface yonares and San José.

responses as well the input radiance shadow produced by

clouds. In above in Figure 3 (down right) lightness tonesy|| regressions have been calculated at a confidence level of
represent the pixels detected as strong anomalies that WeBos, removing in each adjustment the sample values that
detected in DATB and not SSRX. The water reservoir of thehowed unusual residues and which correspond  with
central square of San José is detected as anomaly in the$@jiometric distortions and shadows mainly for the MASTER

conditions by DATB method, while it is not in SSRX. set data of San José. The highest correlation coefficients from

. . the regressions,-0.83 and 0.85, indicate a moderately strong
The results of the automatic algorithm DATB have relationship.

demonstrated improvement in the qualitative definition of the
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® Background 0 different image technologies into two urban test areas with
AHS_Image_02_subALC4_SSRX VNIR s similar complexity, Alcala de Henares and San José.
@ Anomaly

ROC (Receiver Operating Characteristic) curves, showing the
8 detection rate (Prob. Detection) versus the false alarm rate
(Prob. False Alarm), are used to evaluate the results obtained
with the various detectors. Instead of arbitrarily choosing a
threshold, it is preferable to select several thresholds and see
how the proportion of pixels correctly or incorrectly classified
varies with changes in the value of the threshold. This
information comes from what is known as the ROC curve which
o o o o, o oo plots the probability of detection versus probability of false
positive. The Figure 6 sets out the ROC curves for all methods
Figure 5. Example of comparison of SSRX anomalies frongnalyzed with the AHS and MASTER test data set of Alcala de
VNIR AHS image of Alcala de Henares: (1) Town, (2) Henares and San José, respectively. For both test data set with
Industrial and (3) Semi-urban areas. resolved targets, an ROC curve is calculated based on all RX

targets in the image.
It has been established a clear relationship between thermal

anomalies and particular urban materials, as PVC, metal and ROC Curve: Test de Son Jone ASTER gobal
roofs of petrol stations, as well as a clear relationship between " T
VNIR anomalies and urban materials with a great influence of '
the diagnostics bands in SWIR spectrum (for example tile roofs, i
asbestos or bullfighting place). b i —— 5
Anomaly Detection (%) — Alcala de Henares city (Spaif) g S ™ A
Detector Town Urban/Resid Industrigl g Z il
RX 0.38 4.18 1.94 . o
SSRX 0.44 3.85 1.50 N s L ]
OSPRX 0.31 3.91 1.89 if
RX-vnir 0.30 3.38 1.66 el ]
RX-tir 0.24 3.26 1.65 :
SSRX-vnir 0.29 3.38 1.48
SSRX-tir 0.33 4.00 1.92 wofl ]
OSPRX-vnir 0.24 2.86 1.36 o " B e acrit e "
OSPRX-tII’ 084 574 251 ROC Curve: Test de Alcald de Henaores AHS glebal
DATB 1.86 4.17 2.76 A )
Table 1. Comparison of results (anomalies %) between anomaly = E;Fg“
detectors for Alcala de Henares city in relation with the full _ ’;‘;?f;
scene (580563 pixels). A e il
Anomaly Detection (%) — San José city (Costa Rica) C _
Detector Town Urban/Resid Industrigl £
RX 3.00 3.31 8.55 2
RX local 4.05 4.43 6.50 £ ot 1
SSRX 3.19 3.99 9.86 )
OSPRX 2.45 2.42 5.36 i ]
uTD 3.48 10.03 9.66 oz :
RX-UTD 3.52 4.49 13.32 ]
DATB 43.14 5.35 0.01
Table 2. Comparison of results (anomalies %) between anomaly i Y Y O Y O R e
detectors for San José city in relation with the full scene ' ' Fo. e o ' '
(1228656 pixels). Figure 6. ROC curves for San José MASTER test data set (up)

and for Alcala de Henares AHS test data set (down).

The difference between spectral anomalies with and without
VNIR diagnostic bands of the AHS case is 0.75%, and for TIRThe results show the best anomaly detector for the HYMAP test
diagnostic bands of the AHS case is 0.84%, while the differencéata set of San Joseé is the RXD-UTD, while for the AHS test
with respect to the background was -2.52% and -2.32%flata set of Alcala de Henares is the OSPRX detector.
respectively.

From the analysis of the thermal spectral anomalies we have
The difference between spectral anomalies with a 10 m pixdlbserved that the AHS data show great discriminatory power
size and with a 4 m pixel size for the MASTER and HyMAP for some urban covers (see Figure 8, right). It has been proved
data set of San José test site was -0.80%, while the differenb@w the cover of petrol stations and PVC roofs, with insulating
with respect to the background was 1.03%. Results of thBiaterial, respond with a very close radiation to the black body
standard RX, OSPRX, SSRX, UTD, mixed RXD-UTD anomalnyf the AHS. These urban covers are mainly placed in the
detectors and DABT were compared in spectral ranges of
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urban/residence areas and the historical city centre of the Alca
de Henares in this case (Figure 7). ;

In other sense, VNIR anomalies are mainly detected in th
industrial area of the Alcala de Henares test site, correspondirg:
with the big number of the SWIR diagnostic bands for the urba®
materials and objects in this area. ;

Figure 8. Anomaly detection detail for Alcald de Henares test:
AHS image true color combination (left) and DATB global
(right) with three relevant results, (1) polyvinyl chloride, (2)
zinc building cover and (3) asbestos building cover.

5. CONCLUSIONS

The characteristic of high resolution data, both spatial and
spectral, for urban covers has been studied by different anomaly
detection methods, using AHS, HYMAP and MASTER test data
sets. This paper evaluates the performance of anomaly detection
methods in scenes with similar backgrounds and types of targets
for Alcald de Henares city (Spain) and San José city (Costa
Rica), respectively.

VALIDATION_Alcala de Henares Test Site AD

Some different anomaly detectors were considered besides the
global RX: subspace methods, local methods, and segmentation
based anomaly detection methods. For global anomaly detection
in hyperspectral scenes of high complexity, OSPRX gives the
BVNR best results for the Alcald de Henares test site with the AHS
BTR data set, while for San José MASTER data set SSRX gives the
best results. However, the DATB method was obtained similar
results than the best methods when it was possible to implement
it (that means DATB requires TIR channels), but with the
advantage to detect anomalies different meaningfully
corresponding with urban covers of great interest such as
asbestos, metals and PVIB.this sense, this research improves
the unsupervised classification processes, searching areas and
automatically detecting urban materials of interest by virtue of
. . . ) their surface characteristics.
Figure 7. Comparison of AHS anomalies between Semi-urban

Sr(le)as /R(l,'d orang3e ﬁrea), Indu(sjtr+a| (24 cgan a.reahigher concentrations of some urban materials in scenarios
rban/Residence (3, yellow area) and Town (4, red area) in ﬂWhere the sources of error are minimized, are correlated with

Alcalda de Henares test site. Validation for Alcala de Henareg o anomalies in the VNIR range. Subjective evaluation of the
test S'tlfe (Wl?l'te rf%l_(igngle is the A:i '?a\?&;?{g)' VNIRGetection results shows that the best performing detectors give
aSnoma '?z( ”le)’E h (magenta) and bot ) (green)complimentary results, and that “false alarms” are mainly due to
(Source: Google Earth). objects with anomalous spectra in the scene such as cars,

. . . elements of buildings or radiometric distortions.
We have obtained some very strong anomalies corresponding to

different surfaces of great interest (Marino et al., 2001). Forrpe spectral mixing associated directly with the spatial

Alcald de Henares test site (see Figure 8) one of the%solution has an impact in a significantly way on the

corresponds to cellular polycarbonate of a cover gas statio haracterization of the urban and semi-urban backgrounds, and
other corresponds to the Polytechnic School building cover us in the spectral anomalies

the University of Alcala composed mainly by zinc, and other
anomaly detected of great interest corresponds with an asbestos ACKNOWLEDGEMENTS
illegal building cover.

@3 VNR+TIR

1 2 3 4

AHS Spectral Anomalies: (1) Semi-urban, (2)
Industrial, (3) Urban, (4) Town
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