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ABSTRACT:

The Normalized Difference Vegetation Index (NDVI) is widely used for Leaf Area Index (LAI) estimation. It is well documented
that the NDV1 is extremely subject to the saturation problem when LAI reaches a high value. A new multi-angular vegetation index,
the Hotspot-darkspot Difference Vegetation Index (HDVI) is proposed to estimate the high density LAI. The HDVI, defined as the
difference between the hot and dark spot NDVI, relative to the dark spot NDVI, was proposed based on the Analytical two-layer
Canopy Reflectance Model (ACRM) model outputs. This index is validated using both in situ experimental data in wheat and data
from the multi-angular optical Compact High-Resolution Imaging Spectrometer (CHRIS) satellite. Both indices, the
Hotspot-Darkspot Index (HDS) and the NDVI were also selected to analyze the relationship with LAI, and were compared with new
index HDVI. The results show that HDVI is an appropriate proxy of LAl with higher determination coefficients (R2) for both the
data from the in situ experiment (R2=0.7342, RMSE=0.0205) and the CHRIS data (R2=0.7749, RMSE=0.1013). Our results
demonstrate that HDVI can make better the occurrence of saturation limits with the information of multi-angular observation, and is
more appropriate for estimating LAI than either HDS or NDV1 at high LAI values. Although the new index needs further evaluation,
it also has the potential under the condition of dense canopies. It provides the effective improvement to the NDVI and other
vegetation indices that are based on the red and NIR spectral bands.

make it possible to distinguish between canopy and understory
vegetation because it would be sensitive to vegetation
structures and could provide advanced structural descriptions
1491 In recent years, a number of multi-angle vegetation indices
have been proposed (Table 1). Because traditional vegetation
indices cannot account for the heterogeneity of vegetation
reflection, vegetation indices combined with multi-angular data
have the potential to further improve vegetation structure
parameters estimation [,

The main objective of our study is to develop a reliable
vegetation index to estimate LA, especially for dense canopies
with higher LAI values. To obtain this index, the Analytical

two-layer Canopy Reflectance Model ACRM (181 \yas used to

1. INTRODUCTION

The Leaf Area Index (LAI) is defined as one half the total green
leaf areas per unit ground surface area ™. It is a parameter
determined at the canopy scale, and is an important biophysical
parameter in atmosphere-ecosystem interaction, ecophysiology,
hydrological and ecological models, and global climate change
studies @, Quantitative evaluation of LAI can provide
information for the evaluation of crop growth, forecast for crop
yield, and the possibility of irrigation scheduling information
based on remote sensing data .

LAl is functionally linked to the canopy structure and canopy
spectral reflectance. Its estimation from remote sensing data

has prompted many investigations and studies in recent years.
The vegetation index method is a common and widely-used
approach to estimate LAl by satellite remote sensing
observations “®. This method is simple to use, but the
empirical relationship between the indices and the LAI varies
with vegetation types, space, and time [, and most vegetation
indices have limited potential for the interpretation of LAI for
dense canopies. This saturation problem suggests that other
elements, such as the three-dimensional distribution of the
canopy, should be taken into account ™. Thus, there is a great
need to develop new and more flexible vegetation indices that
can be correlated better with LAI, especially for dense canopies
to improve the saturation problem.

Single angle remote sensing only gets the information of the
vegetation structures in the viewing direction, which is related
to the canopy gap fraction, but the other information in the
shadows is unknown with this approach . Multi-angular
remote sensing, as a new observation approach, adds the angle
information, which enriches target information by the different
observations directions to the target and thus enhances the
potential for the inversion of vegetation characteristic
parameters ®. The use of multi-angular measurements may also

simulate a series of canopy reflectance with various LAI values
and view zenith angles, a new vegetation index, the
Hotspot-darkspot Difference  NDVI Index (HDVI) was
proposed. And then its efficacy was validated in two spatial
scales, including ground based in situ measurements of wheat
and satellite data based on CHRIS.

Indices Formula
ANIX [t ANIX () = Prox (D) | Prin (A)
NDAX [ NDAX = (ANIX,; — ANIX )/ (ANIX,, + ANIX,2)
HDS 13 HDS(2) = (s (4) — pps (A1) / pps (A)
NDVIyp ™ NDVI 5 = (HSyz —HS,y )/ (HSyr + HS,4)
NDVIys NDVI,, =NDVI, ., / (1—-HS,,)
NHVI I NHVI = NDVI * HDS
HDDI 1 HDDI = (N — p,s (1)) / (N — pps (4))

Table 1. Several multi-angular vegetation indices
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2. MATERIAL AND METHODS

2.1. Data from in situ measurements

The in situ wheat data collection was conducted over two years
during the growing season, especially in the periods of higher
LAl Data were collected on 17 April, 3 May, 11 May, 20 May,
30 May, 9 June 2004 and on 27 April, 28 April, and 6 May
2011, at the National Experience Station for Precision
Agriculture (40°10.69'N, 116°32.39'E), in Changping District,
Beijing, China. Measurements were conducted on three species
of wheat: wheat 411(erectophile), 9428 (plagiophile) and
Caol75 (planophile).

The canopy reflectance was measured at a height of 1.3 m, at a
time the weather was fine, between 10:00-14:00, using an ASD
FieldSpec Pro spectrometer with a field of view of 25°and in
the spectral range of 350-2500 nm. The Bi-directional
Reflectance Distribution Function (BRDF) was measured using
the spectrum instrument in the principal plane from -60°
(back-scattering) to 60 (forward-scatting) at intervals of 10<
The multi-angular observation equipment was also used in
previous study (151, A total of 14 observations were made.

Two measurement methods of LAl were adopted. One was the
destructive measurement in the 2004 experiments (1. The
procedure was as follows: all the plants within a 0.6>0.6 m?
area were harvested immediately after the spectral
measurements. The samples were placed in a cooled black
plastic bag and transported to the laboratory for subsequent
analysis. Leaves of all the collected plants were combined
together to determine the LAI. A subsample of plant leaves
(including the non-green elements) was used in the laboratory
to measure the leaf area in the laboratory with an LI-COR 3100
area meter (LI-COR, Inc., Lincoln, Nebr.). Measurement with
an LAI-2000 (LI-Cor Inc., Lincoln, Nebr.) was another data
acquisition approach. Each LAI measurement represented an
average of five randomly selected subplots, which were taken
on a ground area of 11 m2,

Band Min A Max A Mid A Width
L1 438 447 442 9
L2 486 495 490 9
L3 526 534 530 9
L4 546 556 551 10
L5 566 573 570 8
L6 627 636 631 9
L7 656 666 661 11
L8 666 677 672 11
L9 694 700 697 6
L10 700 706 703 6
L11 706 712 709 6
L12 738 745 742 7
L13 745 752 748 7
L14 773 788 781 15
L15 863 881 872 18
L16 891 900 895 10
L17 900 910 905 10
L18 1002 1035 1019 33

Table 2. Band settings of CHRIS land surface detection mode
(MODE3) (unit: nm)

2.2 Satellite data and processing

European Space Agency ESA’s Compact High-Resolution
Imaging Spectrometer (CHRIS), a hyper spectral sensor, was
launched on the Project On-Board Autonomy (PROBA)
platform. One of its objectives is data collection of the BRDF
for a better understanding of the spectral reflectance. CHRIS
acquires surface target radiances with five view angles (0°, 36
and+55°) and with five image modes. CHRIS Mode 3 (Land
data), collecting images with 18 channels in the visible and
near-infrared regions, from 447 nm to 1035 nm, band width
ranges from 10 nm to 16 nm in the visible domain, and from 6
nm to 44 nm in the near-infrared domain, has been widely used
in the study of terrestrial vegetation (Table 2). This new hyper
spectral sensor provides a new op{)ortunity to effectively
improve the retrieval accuracy of LAI 18-20]

2.2.1 Study site and field measurements: A CHRIS image
set on June 4, 2008 was acquired for this study (Fig. 1). The
study region is in Zhangye City, an oasis in the Heihe River
Basin, in Gansu province, northwest China. This is one of the
most extremely arid areas of the country, encompassing
different ecosystems, including mountains, oasis, and deserts.
The crops grown in the oasis require irrigation. The main

varieties include winter wheat, corn, beets, barley, and benne
[21]

Figure 1. the study area of CHRIS (band 7, 4, 1)

Our field experiment was one part of the large-scale
“Watershed Allied Telemetry Experiment Research (WATER)”
remote sensing experiment 1?1, The field campaign was mainly
concentrated in the peripheral range of Zhangye City, on June
15, 2008. In this field experiment, measurements were
conducted on white poplar, desert date and other plantation
species. The biophysical parameters measured in the artificial
forests include height, density, crown diameter, LAl and Leaf
Water Content (LWC).

The choice of experimental plots was mainly based on the
requirement that the types of trees should be uniform and to try
to avoid the mixing of a variety of tree types. The size of the
study area was about three times the spatial resolution of the
remote sensing satellite image. Because the ground sampling
distance of CHRIS is 17m, our experiment was concentrated
within a 50560 m? area. We obtained 15 sets of data in this
experiment. The LAI-2000 was used to measure the LAI of the
trees. For an LAI sampling, measurements were made at five
random locations in each plot. The value of LAI, averaged over
these five individual points’ measurements, was used as
reference value for this plot. All plots were geographically
referenced using differential Global Positioning System (GPS).

2.2.2 CHRIS images Processing: The preprocessing of the
CHRIS images mainly included noise removal, radiometric
calibration and geometric correction. There are often two
severe horizontal and vertical noises in the CHRIS images. The
software of ESA HDFclean, which is for processing the HDF
stored images, was used to remove the noise by filling the
missing pixel and strip removal. Radiometric correction
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included atmospheric correction and reflectance calculation. In
this paper, ESA’s CHRIS image BEAM was used for this
purpose, which allowed accomplishing noise reduction, cloud
screening, atmospheric correction, geometric correction, TOA
reflectance computation and feature extraction. The geometric
correction relied on a parametric approach taking into account
the viewing geometry, and geometric distortion due to the
sensor, platform and topography. A 2.5 m SPOT panchromatic
image was used as the reference, with the UTM WGS84
projection. The images were co-located using sets of more than
40 ground control points based on features such as road
intersections, pits and swales. The geo-correction error of all
the images was less than 0.5 pixels. We obtained the image of
geometric precision correction with quadratic polynomial
corrective mode and the nearest neighbor resembling method.

2.3 Methods

2.3.1 ACRM simulations: The ACRM was proposed by
Kuusk 2% and addressed a common structure of horizontally

homogeneous vegetation canopies where a thin dense layer of
vegetation of different geometrical and (or) optical properties
was on the ground surface under the main layer of vegetation.
The model is an extension of the homogeneous Multi-Spectral
canopy Reflectance Model (MSRM) and the Markov Chain
canopy Reflectance Model (MCRM). Like the MSRM and
MCRM models, the new model (Version 07. 2009) accounts
for non-Lambertian soil reflectance, the spectral reflection of
direct sun radiation on leaves, the hot spot effect, and a
two-parameter leaf angle distribution (LAD). The model works
in the optical domain of radiation, 400-2400 nm, and its
spectral resolution is 1 nm.

ACRM can calculate the angular distribution of crop canopy
reflectance in the range -80 to +80 view zenith angles, with sun
zenith, azimuth angles and wavelength fixed. To run the
ACRM model, which requires the input parameters of external
observation data, canopy structure, biochemical complements
of leaves and soil, we set a series of parameters according to
previous studies. Because of the high homogeneity of the
canopy, LAI for the lower layer was assigned to zero. More
detailed information is given in Table 3.

Parameter Description Reference Range
value
LAl Leaf area index 1.5-6 0-8
0., Solar zenith angle 30 0-90
6,.a Relative azimuth angle 0 0-180
O,a View zenith angle -80 to +80 -90-90
SL Relative leaf size parameter 0.2 0.01-1[23-24]
SZ Markov parameter 0.4-1[25]
el Eccentricity of the leaf angle distribution 0 0[23, 26,27]
thm Mean leaf angle of the elliptical LAD 90 90 [23, 26,27]
n Factor for refractive index 0.9 0.9 [27-28]
SLW Leaf specific weight (g/m?) 100 100 [27]
Cw Leaf water content (% of SLW g/m?) 150 150 [26]
Cab Chlorophyll AB content(% of SLW g/m?) 0.4 0.3-0.8
Cm Leaf dry matter content(% of SLW g/m?) 99.6 99.6 [23, 24, 27]
Chp Brown pigments content(% of SLW g/m?) 0.3 0.3[29]
S* Soil parameter 0.217 0.05-0.4 [30]
Table 3. Input parameters for the ACRM model
2.3.2 Construction of the new multi-angular index HDVI:
Using the ACRM maodel, we simulated a series of bidirectional 0.050 0.60
reflectances with different LAI values in the range of -80°to
+80°view zenith angles. Fig. 2 plots that change of reflectance 00451 —omeronm Loss
in red 670 nm and near-infrared 800 nm bands with different 0.040
view zenith angles when LAl is 3. For both 670 nm and 800 0.035.] [ 0.50
nm, the back-scattering region showed a higher reflectance than . e, /g/ O\ .
the forward-scattering. As a typical characteristic of g 00504 ‘“"*’*"’; % [04s <
non-uniform scattering by vegetation, the strongest vector of © 0025 5 w\o\o\ 3
reflectance appeared in the back-scattering region and the 000" ‘\O\o\o\ A%
weakest in the forward-scattering region. The finding is in 00201 , O\O\o\o\ ﬁ,‘f A 035
agreement with the results of a previous study . The peak 00154 hot spot=—i \"\MMii:jg;%ﬁfo/oﬂo
reflectance is the hot spot located in the back-scattering region 0,010 ‘ ‘ ‘ __—darkspot 0.30

when the view zenith angle coincides with the sun zenith angle.
Conversely, the weakest vector of reflectance appearing in the
forward-scattering region is called the dark spot.

T
-80 -60 -40 -20 0 20 40 60 80
view zenith angle

Figure 2. Changes of reflectance in 670 nm and 800 nm bands
(LAI=3)
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Figure 3. NDVI distributions in the view zenith angles with
different LAI values

In this study the NDVI is used, which is the most well known
and widely used vegetation index Y, where, oy 15 the

reflectance in the near-infrared 800 nm band, and Pero is the
reflectance in the red 670 nm band.

NDVI = Peoo ~ Pero. )
Psoo T Pso

The NDVI distribution at the view zenith angles was calculated
using the ACRM simulation data (Fig. 3). The results show that
the canopy NDVI varies with angles, and it also has the
bidirectional features just like the canopy reflectance. This
feature was expressed as BiINDVI which has already been
explained in the previous research *2. Because of the multiple
scattering of vegetation in the near-infrared bands, a strong
negative “hot spot’ showed up near the sun zenith angle in the
figure.

The shape of BiNDVI changed a little with LAI. LAI Primarily
affects the size of BiNDVI, which increases as LAI increases.
In the hot spot position, the differences between the BiNDVIs
are very large. Conversely, the differences become smaller

away from the hot spot. The magnitude of the NDV1 in the hot
spot position is determined by both optical properties from the
foliage, background and canopy architecture. The dark spot is
also determined by the same optical properties, but more
dominantly by the amount of canopy shadow. Therefore, the
difference in the NDVI at hot spot and dark spot is normalized
against that at the dark-spot, to reduce the influence of leaf
optical properties, as well as to accentuate the importance of
canopy geometry. From the theoretical analysis, a new
multi-angular vegetation index was propose, called the Hotspot
— darkspot Difference Vegetation Index (HDVI),

NDVI, — NDVI,,
NDVI,

HDVI =
©)

Where NDVlo gng NDVI, represent the NDVI in the
dark-spot position and hot-spot position, respectively =61,

3. RESULTS AND ANALYSIS

The usefulness of the HDVI was tested in the estimation of LAI
using both the data from in situ measurements of wheat and
CHRIS/PROBA remote sensing image data. The NDVI and
HDS were included for comparison analysis. With the
correlation between NDVI and LAI, we found the extent of
correlation in the hot spot position was the greatest, so here we
only analyze the NDVI in the hot spot position. The most
common spectral bands which were studied are located in the
red region where chlorophyll absorbs (670 nm) and in the
near-infrared (NIR 800nm) where vegetation reflects highly
due to leaf cellular structure . So the HDS was derived using
two bands, 670 nm and 800 nm, as NDVI used these two same
bands, referred to as HDSg79 and HDSgqq, respectively. In this
study, we define the index accuracy as the root mean square
error (RMSE) between field LAI and the indices estimation,
and the determination coefficients (R?) for the indices and field
LAI

Index Model Formula R2 RMSE
linear y=0.0828x+0.5685 0.5532 0.0769
Logarithmic y =0.2195Ln(x) + 0.5958 0.7244 0.0604

NDVI Polynomial y =-0.0471x2 + 0.342x + 0.2731 0.7456 0.058
Power y = 0.571x%%%¢ 0.7132 0.0686
Index y = 0.5514¢%1246% 0.5265 0.0826
linear y = -0.1557x + 1.5012 0.0954 0.4957
Logarithmic y =-0.3669Ln(x) + 1.3993 0.1168 0.4949

HDSg70 Polynomial y = 0.0634x? - 0.505x + 1.8992 0.1626 0.4911
Power y = 1.3931x %437 0.1255 0.5113
Index y = 1.5547¢0-181% 0.0987 0.5083
linear y =-0.1312x + 0.5943 0.4128 0.1618
Logarithmic y = -0.3625Ln(x) + 0.567 0.587 0.1121

HDSggg Polynomial y =0.1088x2 - 0.7304x + 1.277 0.7181 0.1357
Power y = 0.2913x 1222 0.0912 0.1656
Index y = 0.2519¢ 0370 0.0447 0.2045
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linear y =-0.0317x + 0.1672 0.6791 0.0225
Logarithmic y =-0.0764Ln(x) + 0.1483 0.7342 0.0205
HDVI Polynomial y = 0.0062x2 - 0.0657x + 0.2059 0.7067 0.0216
Power y = 0.1769x 1144 0.3997 0.0252
Index y = 0.2768e 05257 0.4533 0.0226

Table 4. The different modes between Indices and LAI using the data in situ measurement

Using the data of in situ wheat measurements, the results of
fitting different relationships between LAI and vegetation
indices are shown in Table 4. It can be seen that the choice of
the model has a significant influence on the estimation
accuracy for LAI. For all of the NDVI, HDSg7g, and HDSg,
the optimal approach is the polynomial. The best choice for the
HDVI is logarithmic. The scatter diagrams between vegetation
indices (HDS, NDVI, HDVI) and LAI with the optimal model
are shown in Fig. 4, which illustrates that HDVI is a better
proxy of LAl as a higher coefficient of determination

(a) 17

L R™=0.7456%*
RMSE=0.058

R*=0.7181*
RMSE=0.1357

HD St

LAI

(R?=0.7342) is observed, as well as a much lower RMSE of
0.0205 (Fig. 4(d)). For HDS indices, we found that different
bands lead to very different abilities in terms of LAI estimation
which is consistent with previous research B3 HDSg7o show a
limited potential for LAl estimation, with low R? of 0.1626,
and higher RMSE of 0.4911 with our dataset (Fig. 4(a)).
However, HDSgy, exhibits a better relationship, with R? of
0.7181 and RMSE of 0.1357 (Fig. 4(b)). An R? of 0.7456 is
obtained for NDVI with RMSE of 0.058 with evident
saturation limit, especially when LAI exceeds 2 (Fig. 4(c)).

(b) R:0.1626

RMSE=0.4911

ro
n
!

LAI

. RP=0.7342%*

015 RMSE=0.0205

01 r

HDVI

005 r

LAI

Figure 4. Correlationship between LAI and (a)HDSg7o, (b)HDSgy, (C)NDVI, and (d)HDV 1 using the data in situ measurements
( significance level of the relationship is indicated: **P<0.05, *P<0.01)

The new HDVI index was also successfully applied to
CHRIS/PROBA remote sensing image data. Here among all the
bands, we chose L8 (mid wavelength 672 nm) and L14 (mid
wavelength 781 nm), two channels, the closest to 670 nm and
800 nm. We also compared the results of a variety of fitting
curves. The results show that the polynomial is the best choice
for the NDVI, HDS+g;, and HDVI. For the HDSg7,, the optimal
fit is logarithmic (Table 5). The table also shows that there is a

better relationship between the vegetation index HDVI and LAI.

As seen on the scatter diagrams in Fig. 5 (b, c), a different
predicting ability is also observed for the two HDS indices.
HDSg7, has a high potential for LAl estimation (R2=O.6614,

RMSE=0.103) with our database, while a poorer correlation is
found for HDS7g; (R?=0.5467, RMSE=0.0396). For the NDVI,
the R?value is only 0.2301 (RMSE of 0.0955) (Fig. 5a). In Fig.
5d, for the new multi-angular index, an R? value of 0.7749 and
a RMSE value of 0.1013 are observed. Therefore, large
improvements of the HDVI index to LAl estimation are
observed by comparison with the results from other indices
with the CHRIS image data.
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Index Model Formula R? RMSE
linear y = 0.0554x + 0.4027 0.175 0.103
Logarithmic y = 0.0461Ln(x) + 0.4731 0.0869 0.1083
NDVI Polynomial y = 0.0376x? - 0.0687x + 0.4717 0.2301 0.0995
Power y = 0.457x%07% 0.0437 0.1093
Index y = 0.3983¢0108% 0.1132 0.1035
linear y = -0.1422x + 0.4282 0.4731 0.1285
Logarithmic y =-0.1985Ln(x) + 0.2464 0.6614 0.103
HDSg7, Polynomial y = 0.1053x? - 0.4892x + 0.6211 0.6498 0.1048
Power y = 0.1592x 08174 0.2603 0.1145
Index y = 0.3425¢ 05995 0.1952 0.1458
linear y = -0.0402x + 0.196 0.3421 0.0477
Logarithmic y =-0.0566Ln(x) + 0.1446 0.4871 0.0421
HDS7g; Polynomial y = 0.0376x? - 0.1643x + 0.265 0.5467 0.0396
Power y = 0.1304x70%% 0.3423 0.0423
Index y = 0.1836e 02577 0.2213 0.0479
linear y =-0.192x + 0.5746 0.593 0.1362
Logarithmic y = -0.2524Ln(x) + 0.3294 0.7347 0.11
HDVI Polynomial y = 0.1288x? - 0.6169x + 0.8108 0.7749 0.1013
Power y = 0.2567x 0853 0.6909 0.1242
Index y = 0.6157¢ 06855 0.6186 0.1237

Table 5. The different modes between Indices and LAI using the CHRIS/PROBA data

@ 03 ) 08
é y . i L R’=0.6614**
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Z04F 0 204l
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Figure 5. Correlationship between LAI and (a)HDSg70, (b)HDSgo0, (C)NDVI, and (d)HDV 1 using CHRIS/PROBA data ( significance
level of the relationship is indicated: **P<0.05, *P<0.01)
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4. DISCUSSION

This study has demonstrated the potential of the new vegetation
index HDVI to estimate LAIl. Strong biochemical and

ecological gradients occur vertically within vegetation canopies.

Extending multi-angular studies to improve estimating of LAI
may increase our ability to model ecosystem processes across
broad spatial extents. Compared to multi-spectral index NDVI
and multi-angular index HDS, HDVI has a more relevant
relationship with LAl As we all know, combining the
high-spectral data and multi-angular data to conduct a joint
inversion of LAI has a higher accuracy than using only a single
type of data. The method of implementing the new index HDVI
to inversion of the LAl is feasible.

With both in situ experimental wheat data and CHRIS/PROBA
remote sensing satellite data, for multi-angular indices (HDS
and HDVI), the values of the indices decrease with the increase
of the LAI. The finding is in agreement with the results of a
previous study 3!, But for the NDVI, the trend is opposite, the
value is consistent with the increase of LAl with evident
saturation limit, especially when LAl exceeds 2. In the LAI
estimation of dense wheat, due to the missing of the vegetation
canopy structure, the performance of HDS is relatively poor. A
similar ability to estimate LAI is shown for NDVI and HDVI in
Fig. 5. But HDVI is much better with the lowest RMSE.

For the sparse trees, the HDS and HDVI have a significant
advantage over NDVI, as a result of advanced structural
information from multi-angular observation. For HDS indices,
we found that different bands lead to very different abilities in
terms of LAI estimation, so the choice of band is an important
issue. Information from a single band is subject to greater
uncertainty from errors and other factors, while the use of two
or more bands can partially eliminate such uncertainty. That is
the advantage of HDVI, which not only can reflect the canopy
structure as well as HDS, but also integrates more information
from more bands. So the HDVI has a greater potential for LAI
estimation than HDS. Although we can demonstrate and
suggest that HDVI is more effective to estimate LAI than
NDVI and HDS, there are still issues that need further
consideration.

First, band selection is an important issue in deriving indices
because the analysis of the right spectral bands and
combinations thereof could enhance the sensitivity of indices to
LAI variations ®* !, Due to lack of a large BRDF dataset, here
we only choose two representative bands, 670 nm (a red band)
and 800 nm (a near-infrared band). So we explore the
usefulness of the new index HDVI only using these two bands.
Therefore, other bands should be considered in further
evaluation of HDVI.

Second, we used CHRIS data to assess the new index. The
issue facing our validation study is the mismatch of spatial
scales for the point to pixel comparison between remote sensing
data and field measurements. The differences in scale between
the remote sensing data and the field measurements can
introduce some errors and biases into the comparison F%,
Efforts should be made to acquire field measurements over
relatively large and homogeneous areas in order to minimize
scale effects.

Third, this study was carried out under limited ecological
conditions in field measurements, owing to the limitation of the
selected botanical varieties. While this study indicates the
potential use of the new multi-angular vegetation index, more
complicated canopies and different soil backgrounds also need
to be considered in the future.

5. CONCLUSIONS

In this paper, a multi-angular vegetation index HDVI is
proposed to estimate LAI. The efficiency of HDVI has been
validated with in situ experimental data and with
CHRIS/PROBA data. For the new index HDVI, higher
determination coefficients (R?) and lower root RMSE are
obtained. Although this study is based on limited available data,
we still demonstrate that HDVI is superior to HDS and to
NDVI for estimating LAI. From the results, we can conclude
that HDVI will be a useful vegetation index for estimating LA,
and provide the effective improvement to the NDVI and other
vegetation indices that are based on the red and NIR spectral
bands. Applying this new index still needs further evaluation,
both with other more complicated canopies and different soil
backgrounds and with other multi-angular optical remote
sensing satellites data.
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