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ABSTRACT: 

The Normalized Difference Vegetation Index (NDVI) is widely used for Leaf Area Index (LAI) estimation. It is well documented 

that the NDVI is extremely subject to the saturation problem when LAI reaches a high value. A new multi-angular vegetation index, 

the Hotspot-darkspot Difference Vegetation Index (HDVI) is proposed to estimate the high density LAI. The HDVI, defined as the 

difference between the hot and dark spot NDVI, relative to the dark spot NDVI, was proposed based on the Analytical two-layer 

Canopy Reflectance Model (ACRM) model outputs. This index is validated using both in situ experimental data in wheat and data 

from the multi-angular optical Compact High-Resolution Imaging Spectrometer (CHRIS) satellite. Both indices, the 

Hotspot-Darkspot Index (HDS) and the NDVI were also selected to analyze the relationship with LAI, and were compared with new 

index HDVI. The results show that HDVI is an appropriate proxy of LAI with higher determination coefficients (R2) for both the 

data from the in situ experiment (R2=0.7342, RMSE=0.0205) and the CHRIS data (R2=0.7749, RMSE=0.1013). Our results 

demonstrate that HDVI can make better the occurrence of saturation limits with the information of multi-angular observation, and is 

more appropriate for estimating LAI than either HDS or NDVI at high LAI values. Although the new index needs further evaluation, 

it also has the potential under the condition of dense canopies. It provides the effective improvement to the NDVI and other 

vegetation indices that are based on the red and NIR spectral bands. 

1. INTRODUCTION

The Leaf Area Index (LAI) is defined as one half the total green 

leaf areas per unit ground surface area [1]. It is a parameter 

determined at the canopy scale, and is an important biophysical 

parameter in atmosphere-ecosystem interaction, ecophysiology, 

hydrological and ecological models, and global climate change 

studies [2]. Quantitative evaluation of LAI can provide 

information for the evaluation of crop growth, forecast for crop 

yield, and the possibility of irrigation scheduling information 

based on remote sensing data [3]. 

LAI is functionally linked to the canopy structure and canopy 

spectral reflectance. Its estimation from remote sensing data 

has prompted many investigations and studies in recent years. 

The vegetation index method is a common and widely-used 

approach to estimate LAI by satellite remote sensing 

observations [4-5]. This method is simple to use, but the 

empirical relationship between the indices and the LAI varies 

with vegetation types, space, and time [6], and most vegetation 

indices have limited potential for the interpretation of LAI for 

dense canopies. This saturation problem suggests that other 

elements, such as the three-dimensional distribution of the 

canopy, should be taken into account [7]. Thus, there is a great 

need to develop new and more flexible vegetation indices that 

can be correlated better with LAI, especially for dense canopies 

to improve the saturation problem. 

Single angle remote sensing only gets the information of the 

vegetation structures in the viewing direction, which is related 

to the canopy gap fraction, but the other information in the 

shadows is unknown with this approach [8]. Multi-angular 

remote sensing, as a new observation approach, adds the angle 

information, which enriches target information by the different 

observations directions to the target and thus enhances the 

potential for the inversion of vegetation characteristic 

parameters [9]. The use of multi-angular measurements may also 

make it possible to distinguish between canopy and understory 

vegetation because it would be sensitive to vegetation 

structures and could provide advanced structural descriptions 
[10]. In recent years, a number of multi-angle vegetation indices 

have been proposed (Table 1). Because traditional vegetation 

indices cannot account for the heterogeneity of vegetation 

reflection, vegetation indices combined with multi-angular data 

have the potential to further improve vegetation structure 

parameters estimation [8]. 

The main objective of our study is to develop a reliable 

vegetation index to estimate LAI, especially for dense canopies 

with higher LAI values. To obtain this index, the Analytical 

two-layer Canopy Reflectance Model ACRM 
[16]

 was used to

simulate a series of canopy reflectance with various LAI values 

and view zenith angles, a new vegetation index, the 

Hotspot-darkspot Difference NDVI Index (HDVI) was 

proposed. And then its efficacy was validated in two spatial 

scales, including ground based in situ measurements of wheat 

and satellite data based on CHRIS. 

Indices Formula 

ANIX [11] max min( ) ( ) / ( )ANIX     

NDAX [12] ( ) / ( )red NIR red NIRNDAX ANIX ANIX ANIX ANIX    

HDS [13] ( ) ( ( ) ( )) / ( )HS DS DSHDS          

NDVIHD [14] ( ) / ( )HD NIR red NIR redNDVI HS HS HS HS    

NDVIHS [14] / (1 )Hs nadir redNDVI NDVI HS   

NHVI [7] *NHVI NDVI HDS

HDDI [15] ( ( )) / ( ( ))HS DSHDDI N N       

Table 1. Several multi-angular vegetation indices 
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2. MATERIAL AND METHODS

2.1. Data from in situ measurements 

The in situ wheat data collection was conducted over two years 

during the growing season, especially in the periods of higher 

LAI. Data were collected on 17 April, 3 May, 11 May, 20 May, 

30 May, 9 June 2004 and on 27 April, 28 April, and 6 May 

2011, at the National Experience Station for Precision 

Agriculture (40°10.69′N, 116°32.39′E), in Changping District, 

Beijing, China. Measurements were conducted on three species 

of wheat: wheat 411(erectophile), 9428 (plagiophile) and 

Cao175 (planophile). 

The canopy reflectance was measured at a height of 1.3 m, at a 

time the weather was fine, between 10:00-14:00, using an ASD 

FieldSpec Pro spectrometer with a field of view of 25° and in 

the spectral range of 350-2500 nm. The Bi-directional 

Reflectance Distribution Function (BRDF) was measured using 

the spectrum instrument in the principal plane from -60° 

(back-scattering) to 60° (forward-scatting) at intervals of 10°. 

The multi-angular observation equipment was also used in 

previous study [15]
. A total of 14 observations were made.

Two measurement methods of LAI were adopted. One was the 

destructive measurement in the 2004 experiments [17]. The 

procedure was as follows: all the plants within a 0.6×0.6 m2 

area were harvested immediately after the spectral 

measurements. The samples were placed in a cooled black 

plastic bag and transported to the laboratory for subsequent 

analysis. Leaves of all the collected plants were combined 

together to determine the LAI. A subsample of plant leaves 

(including the non-green elements) was used in the laboratory 

to measure the leaf area in the laboratory with an LI-COR 3100 

area meter (LI-COR, Inc., Lincoln, Nebr.). Measurement with 

an LAI-2000 (LI-Cor Inc., Lincoln, Nebr.) was another data 

acquisition approach. Each LAI measurement represented an 

average of five randomly selected subplots, which were taken 

on a ground area of 1×1 m2. 

Band Min Max Mid Width 

L1 438 447 442 9 

L2 486 495 490 9 

L3 526 534 530 9 

L4 546 556 551 10 

L5 566 573 570 8 

L6 627 636 631 9 

L7 656 666 661 11 

L8 666 677 672 11 

L9 694 700 697 6 

L10 700 706 703 6 

L11 706 712 709 6 

L12 738 745 742 7 

L13 745 752 748 7 

L14 773 788 781 15 

L15 863 881 872 18 

L16 891 900 895 10 

L17 900 910 905 10 

L18 1002 1035 1019 33 

Table 2. Band settings of CHRIS land surface detection mode 

(MODE3) (unit: nm) 

2.2 Satellite data and processing 

European Space Agency ESA’s Compact High-Resolution 

Imaging Spectrometer (CHRIS), a hyper spectral sensor, was 

launched on the Project On-Board Autonomy (PROBA) 

platform. One of its objectives is data collection of the BRDF 

for a better understanding of the spectral reflectance. CHRIS 

acquires surface target radiances with five view angles (0◦, ±36◦ 

and±55◦) and with five image modes. CHRIS Mode 3 (Land 

data), collecting images with 18 channels in the visible and 

near-infrared regions, from 447 nm to 1035 nm, band width 

ranges from 10 nm to 16 nm in the visible domain, and from 6 

nm to 44 nm in the near-infrared domain, has been widely used 

in the study of terrestrial vegetation (Table 2). This new hyper 

spectral sensor provides a new opportunity to effectively 

improve the retrieval accuracy of LAI 
[18-20]

.

2.2.1 Study site and field measurements:  A CHRIS image 

set on June 4, 2008 was acquired for this study (Fig. 1). The 

study region is in Zhangye City, an oasis in the Heihe River 

Basin, in Gansu province, northwest China. This is one of the 

most extremely arid areas of the country, encompassing 

different ecosystems, including mountains, oasis, and deserts. 

The crops grown in the oasis require irrigation. The main 

varieties include winter wheat, corn, beets, barley, and benne 
[21].  

Figure 1. the study area of CHRIS (band 7, 4, 1) 

Our field experiment was one part of the large-scale 

“Watershed Allied Telemetry Experiment Research (WATER)” 

remote sensing experiment [22]. The field campaign was mainly 

concentrated in the peripheral range of Zhangye City, on June 

15, 2008. In this field experiment, measurements were 

conducted on white poplar, desert date and other plantation 

species. The biophysical parameters measured in the artificial 

forests include height, density, crown diameter, LAI and Leaf 

Water Content (LWC).  

The choice of experimental plots was mainly based on the 

requirement that the types of trees should be uniform and to try 

to avoid the mixing of a variety of tree types. The size of the 

study area was about three times the spatial resolution of the 

remote sensing satellite image. Because the ground sampling 

distance of CHRIS is 17m, our experiment was concentrated 

within a 50×50 m2 area. We obtained 15 sets of data in this 

experiment. The LAI-2000 was used to measure the LAI of the 

trees. For an LAI sampling, measurements were made at five 

random locations in each plot. The value of LAI, averaged over 

these five individual points’ measurements, was used as 

reference value for this plot. All plots were geographically 

referenced using differential Global Positioning System (GPS).  

2.2.2 CHRIS images Processing: The preprocessing of the 

CHRIS images mainly included noise removal, radiometric 

calibration and geometric correction. There are often two 

severe horizontal and vertical noises in the CHRIS images. The 

software of ESA HDFclean, which is for processing the HDF 

stored images, was used to remove the noise by filling the 

missing pixel and strip removal. Radiometric correction 
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included atmospheric correction and reflectance calculation. In 

this paper, ESA’s CHRIS image BEAM was used for this 

purpose, which allowed accomplishing noise reduction, cloud 

screening, atmospheric correction, geometric correction, TOA 

reflectance computation and feature extraction. The geometric 

correction relied on a parametric approach taking into account 

the viewing geometry, and geometric distortion due to the 

sensor, platform and topography. A 2.5 m SPOT panchromatic 

image was used as the reference, with the UTM WGS84 

projection. The images were co-located using sets of more than 

40 ground control points based on features such as road 

intersections, pits and swales. The geo-correction error of all 

the images was less than 0.5 pixels. We obtained the image of 

geometric precision correction with quadratic polynomial 

corrective mode and the nearest neighbor resembling method. 

2.3 Methods 

2.3.1 ACRM simulations: The ACRM was proposed by 

Kuusk [16], and addressed a common structure of horizontally 

homogeneous vegetation canopies where a thin dense layer of 

vegetation of different geometrical and (or) optical properties 

was on the ground surface under the main layer of vegetation. 

The model is an extension of the homogeneous Multi-Spectral 

canopy Reflectance Model (MSRM) and the Markov Chain 

canopy Reflectance Model (MCRM). Like the MSRM and 

MCRM models, the new model (Version 07. 2009) accounts 

for non-Lambertian soil reflectance, the spectral reflection of 

direct sun radiation on leaves, the hot spot effect, and a 

two-parameter leaf angle distribution (LAD). The model works 

in the optical domain of radiation, 400-2400 nm, and its 

spectral resolution is 1 nm. 

ACRM can calculate the angular distribution of crop canopy 

reflectance in the range -80 to +80 view zenith angles, with sun 

zenith, azimuth angles and wavelength fixed. To run the 

ACRM model, which requires the input parameters of external 

observation data, canopy structure, biochemical complements 

of leaves and soil, we set a series of parameters according to 

previous studies. Because of the high homogeneity of the 

canopy, LAI for the lower layer was assigned to zero. More 

detailed information is given in Table 3.  

Parameter Description Reference 

value 

Range 

LAI Leaf area index 1.5-6 0-8 

sza Solar zenith angle 30 0-90 

raa Relative azimuth angle 0 0-180 

vza View zenith angle -80 to +80 -90-90 

SL Relative leaf size parameter 0.2 0.01-1 [23-24]

SZ Markov parameter 1 0.4-1 [25]

el Eccentricity of the leaf angle distribution 0 0 [23, 26,27] 

thm Mean leaf angle of the elliptical LAD 90 90 [23, 26,27]

n Factor for refractive index 0.9 0.9 [27-28]

SLW Leaf specific weight (g/m2) 100 100 [27]

Cw Leaf water content (% of SLW g/m2) 150 150 [26]

Cab Chlorophyll AB content(% of SLW g/m2) 0.4 0.3-0.8 

Cm Leaf dry matter content(% of SLW g/m2) 99.6 99.6 [23, 24, 27]

Cbp Brown pigments content(% of SLW g/m2) 0.3 0.3 [29]

S* Soil parameter 0.217 0.05-0.4 [30]

Table 3. Input parameters for the ACRM model 

2.3.2 Construction of the new multi-angular index HDVI: 

Using the ACRM model, we simulated a series of bidirectional 

reflectances with different LAI values in the range of -80° to 

+80° view zenith angles. Fig. 2 plots that change of reflectance 

in red 670 nm and near-infrared 800 nm bands with different 

view zenith angles when LAI is 3. For both 670 nm and 800 

nm, the back-scattering region showed a higher reflectance than 

the forward-scattering. As a typical characteristic of 

non-uniform scattering by vegetation, the strongest vector of 

reflectance appeared in the back-scattering region and the 

weakest in the forward-scattering region. The finding is in 

agreement with the results of a previous study [7]. The peak 

reflectance is the hot spot located in the back-scattering region 

when the view zenith angle coincides with the sun zenith angle. 

Conversely, the weakest vector of reflectance appearing in the 

forward-scattering region is called the dark spot. 
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Figure 2. Changes of reflectance in 670 nm and 800 nm bands 

(LAI=3) 
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Figure 3. NDVI distributions in the view zenith angles with 

different LAI values 

In this study the NDVI is used, which is the most well known 

and widely used vegetation index [31], where, 
800 is the 

reflectance in the near-infrared 800 nm band, and 
670  is the 

reflectance in the red 670 nm band.  

800 670

800 670

NDVI
 

 





   (2) 

The NDVI distribution at the view zenith angles was calculated 

using the ACRM simulation data (Fig. 3). The results show that 

the canopy NDVI varies with angles, and it also has the 

bidirectional features just like the canopy reflectance. This 

feature was expressed as BiNDVI which has already been 

explained in the previous research [32]. Because of the multiple 

scattering of vegetation in the near-infrared bands, a strong 

negative “hot spot’ showed up near the sun zenith angle in the 

figure.  

The shape of BiNDVI changed a little with LAI. LAI Primarily 

affects the size of BiNDVI, which increases as LAI increases. 

In the hot spot position, the differences between the BiNDVIs 

are very large. Conversely, the differences become smaller 

away from the hot spot. The magnitude of the NDVI in the hot 

spot position is determined by both optical properties from the 

foliage, background and canopy architecture. The dark spot is 

also determined by the same optical properties, but more 

dominantly by the amount of canopy shadow. Therefore, the 

difference in the NDVI at hot spot and dark spot is normalized 

against that at the dark-spot, to reduce the influence of leaf 

optical properties, as well as to accentuate the importance of 

canopy geometry. From the theoretical analysis, a new 

multi-angular vegetation index was propose, called the Hotspot 

– darkspot Difference Vegetation Index (HDVI),

D H

D

NDVI NDVI
HDVI

NDVI




(3) 

Where DNDVI and HNDVI represent the NDVI in the 

dark-spot position and hot-spot position, respectively [36]. 

3. RESULTS AND ANALYSIS

The usefulness of the HDVI was tested in the estimation of LAI 

using both the data from in situ measurements of wheat and 

CHRIS/PROBA remote sensing image data. The NDVI and 

HDS were included for comparison analysis. With the 

correlation between NDVI and LAI, we found the extent of 

correlation in the hot spot position was the greatest, so here we 

only analyze the NDVI in the hot spot position. The most 

common spectral bands which were studied are located in the 

red region where chlorophyll absorbs (670 nm) and in the 

near-infrared (NIR 800nm) where vegetation reflects highly 

due to leaf cellular structure [31]. So the HDS was derived using 

two bands, 670 nm and 800 nm, as NDVI used these two same 

bands, referred to as HDS670 and HDS800, respectively. In this 

study, we define the index accuracy as the root mean square 

error (RMSE) between field LAI and the indices estimation, 

and the determination coefficients (R2) for the indices and field 

LAI.

Index Model Formula R2 RMSE 

linear y=0.0828x+0.5685 0.5532 0.0769 

Logarithmic y = 0.2195Ln(x) + 0.5958 0.7244 0.0604 

NDVI Polynomial y = -0.0471x2 + 0.342x + 0.2731 0.7456 0.058 

Power y = 0.571x0.336 0.7132 0.0686 

Index y = 0.5514e0.1246x 0.5265 0.0826 

linear y = -0.1557x + 1.5012 0.0954 0.4957 

Logarithmic y = -0.3669Ln(x) + 1.3993 0.1168 0.4949 

HDS670 Polynomial y = 0.0634x2 - 0.505x + 1.8992 0.1626 0.4911 

Power y = 1.3931x-0.4371 0.1255 0.5113 

Index y = 1.5547e-0.1819x 0.0987 0.5083 

linear y = -0.1312x + 0.5943 0.4128 0.1618 

Logarithmic y = -0.3625Ln(x) + 0.567 0.587 0.1121 

HDS800 Polynomial y = 0.1088x2 - 0.7304x + 1.277 0.7181 0.1357 

Power y = 0.2913x-1.2252 0.0912 0.1656 

Index y = 0.2519e-0.3702x 0.0447 0.2045 
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linear y = -0.0317x + 0.1672 0.6791 0.0225 

Logarithmic y = -0.0764Ln(x) + 0.1483 0.7342 0.0205 

HDVI Polynomial y = 0.0062x2 - 0.0657x + 0.2059 0.7067 0.0216 

Power y = 0.1769x-1.144 0.3997 0.0252 

Index y = 0.2768e-0.5257x 0.4533 0.0226 

Table 4. The different modes between Indices and LAI using the data in situ measurement 

Using the data of in situ wheat measurements, the results of 

fitting different relationships between LAI and vegetation 

indices are shown in Table 4. It can be seen that the choice of 

the model has a significant influence on the estimation 

accuracy for LAI. For all of the NDVI, HDS670, and HDS800, 

the optimal approach is the polynomial. The best choice for the 

HDVI is logarithmic. The scatter diagrams between vegetation 

indices (HDS, NDVI, HDVI) and LAI with the optimal model 

are shown in Fig. 4, which illustrates that HDVI is a better 

proxy of LAI as a higher coefficient of determination 

(R2=0.7342) is observed, as well as a much lower RMSE of 

0.0205 (Fig. 4(d)). For HDS indices, we found that different 

bands lead to very different abilities in terms of LAI estimation 

which is consistent with previous research [33]. HDS670 show a

limited potential for LAI estimation, with low R2 of 0.1626, 

and higher RMSE of 0.4911 with our dataset (Fig. 4(a)). 

However, HDS800 exhibits a better relationship, with R2 of

0.7181 and RMSE of 0.1357 (Fig. 4(b)). An R2 of 0.7456 is 

obtained for NDVI with RMSE of 0.058 with evident 

saturation limit, especially when LAI exceeds 2 (Fig. 4(c)).  

Figure 4. Correlationship between LAI and (a)HDS670, (b)HDS800, (c)NDVI, and (d)HDVI using the data in situ measurements 

( significance level of the relationship is indicated: **P<0.05, *P<0.01) 

The new HDVI index was also successfully applied to 

CHRIS/PROBA remote sensing image data. Here among all the 

bands, we chose L8 (mid wavelength 672 nm) and L14 (mid 

wavelength 781 nm), two channels, the closest to 670 nm and 

800 nm. We also compared the results of a variety of fitting 

curves. The results show that the polynomial is the best choice 

for the NDVI, HDS781, and HDVI. For the HDS672, the optimal 

fit is logarithmic (Table 5). The table also shows that there is a 

better relationship between the vegetation index HDVI and LAI. 

As seen on the scatter diagrams in Fig. 5 (b, c), a different  

predicting ability is also observed for the two HDS indices. 

HDS672 has a high potential for LAI estimation (R2=0.6614,

RMSE=0.103) with our database, while a poorer correlation is 

found for HDS781 (R
2=0.5467, RMSE=0.0396). For the NDVI,

the R2 value is only 0.2301 (RMSE of 0.0955) (Fig. 5a). In Fig. 

5d, for the new multi-angular index, an R2 value of 0.7749 and 

a RMSE value of 0.1013 are observed. Therefore, large 

improvements of the HDVI index to LAI estimation are 

observed by comparison with the results from other indices 

with the CHRIS image data.  
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Index Model Formula R2 RMSE 

linear y = 0.0554x + 0.4027 0.175 0.103 

Logarithmic y = 0.0461Ln(x) + 0.4731 0.0869 0.1083 

NDVI Polynomial y = 0.0376x2 - 0.0687x + 0.4717 0.2301 0.0995 

Power y = 0.457x0.0794 0.0437 0.1093 

Index y = 0.3983e0.1083x 0.1132 0.1035 

linear y = -0.1422x + 0.4282 0.4731 0.1285 

Logarithmic y = -0.1985Ln(x) + 0.2464 0.6614 0.103 

HDS672 Polynomial y = 0.1053x2 - 0.4892x + 0.6211 0.6498 0.1048 

Power y = 0.1592x-0.8174 0.2603 0.1145 

Index y = 0.3425e-0.5995x 0.1952 0.1458 

linear y = -0.0402x + 0.196 0.3421 0.0477 

Logarithmic y = -0.0566Ln(x) + 0.1446 0.4871 0.0421 

HDS781 Polynomial y = 0.0376x2 - 0.1643x + 0.265 0.5467 0.0396 

Power y = 0.1304x-0.393 0.3423 0.0423 

Index y = 0.1836e-0.2677x 0.2213 0.0479 

linear y = -0.192x + 0.5746 0.593 0.1362 

Logarithmic y = -0.2524Ln(x) + 0.3294 0.7347 0.11 

HDVI Polynomial y = 0.1288x2 - 0.6169x + 0.8108 0.7749 0.1013 

Power y = 0.2567x-0.8553 0.6909 0.1242 

Index y = 0.6157e-0.6855x 0.6186 0.1237 

Table 5. The different modes between Indices and LAI using the CHRIS/PROBA data

Figure 5. Correlationship between LAI and (a)HDS670, (b)HDS800, (c)NDVI, and (d)HDVI using CHRIS/PROBA data ( significance 

level of the relationship is indicated: **P<0.05, *P<0.01) 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B7-121-2016

 
126



4. DISCUSSION

This study has demonstrated the potential of the new vegetation 

index HDVI to estimate LAI. Strong biochemical and 

ecological gradients occur vertically within vegetation canopies. 

Extending multi-angular studies to improve estimating of LAI 

may increase our ability to model ecosystem processes across 

broad spatial extents. Compared to multi-spectral index NDVI 

and multi-angular index HDS, HDVI has a more relevant 

relationship with LAI. As we all know, combining the 

high-spectral data and multi-angular data to conduct a joint 

inversion of LAI has a higher accuracy than using only a single 

type of data. The method of implementing the new index HDVI 

to inversion of the LAI is feasible.  

With both in situ experimental wheat data and CHRIS/PROBA 

remote sensing satellite data, for multi-angular indices (HDS 

and HDVI), the values of the indices decrease with the increase 

of the LAI. The finding is in agreement with the results of a 

previous study [13]. But for the NDVI, the trend is opposite, the 

value is consistent with the increase of LAI with evident 

saturation limit, especially when LAI exceeds 2. In the LAI 

estimation of dense wheat, due to the missing of the vegetation 

canopy structure, the performance of HDS is relatively poor. A 

similar ability to estimate LAI is shown for NDVI and HDVI in 

Fig. 5. But HDVI is much better with the lowest RMSE.  

For the sparse trees, the HDS and HDVI have a significant 

advantage over NDVI, as a result of advanced structural 

information from multi-angular observation. For HDS indices, 

we found that different bands lead to very different abilities in 

terms of LAI estimation, so the choice of band is an important 

issue. Information from a single band is subject to greater 

uncertainty from errors and other factors, while the use of two 

or more bands can partially eliminate such uncertainty. That is 

the advantage of HDVI, which not only can reflect the canopy 

structure as well as HDS, but also integrates more information 

from more bands. So the HDVI has a greater potential for LAI 

estimation than HDS. Although we can demonstrate and 

suggest that HDVI is more effective to estimate LAI than 

NDVI and HDS, there are still issues that need further 

consideration. 

First, band selection is an important issue in deriving indices 

because the analysis of the right spectral bands and 

combinations thereof could enhance the sensitivity of indices to 

LAI variations [34, 15]. Due to lack of a large BRDF dataset, here 

we only choose two representative bands, 670 nm (a red band) 

and 800 nm (a near-infrared band). So we explore the 

usefulness of the new index HDVI only using these two bands. 

Therefore, other bands should be considered in further 

evaluation of HDVI. 

Second, we used CHRIS data to assess the new index. The 

issue facing our validation study is the mismatch of spatial 

scales for the point to pixel comparison between remote sensing 

data and field measurements. The differences in scale between 

the remote sensing data and the field measurements can 

introduce some errors and biases into the comparison [35]. 

Efforts should be made to acquire field measurements over 

relatively large and homogeneous areas in order to minimize 

scale effects.  

Third, this study was carried out under limited ecological 

conditions in field measurements, owing to the limitation of the 

selected botanical varieties. While this study indicates the 

potential use of the new multi-angular vegetation index, more 

complicated canopies and different soil backgrounds also need 

to be considered in the future. 

5. CONCLUSIONS

In this paper, a multi-angular vegetation index HDVI is 

proposed to estimate LAI. The efficiency of HDVI has been 

validated with in situ experimental data and with 

CHRIS/PROBA data. For the new index HDVI, higher 

determination coefficients (R2) and lower root RMSE are 

obtained. Although this study is based on limited available data, 

we still demonstrate that HDVI is superior to HDS and to 

NDVI for estimating LAI. From the results, we can conclude 

that HDVI will be a useful vegetation index for estimating LAI, 

and provide the effective improvement to the NDVI and other 

vegetation indices that are based on the red and NIR spectral 

bands. Applying this new index still needs further evaluation, 

both with other more complicated canopies and different soil 

backgrounds and with other multi-angular optical remote 

sensing satellites data.  
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