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ABSTRACT:
Heavy metal stress will induce the change of the bio-parameters like chlorophyll, nitrogen and water content of rice. In this paper, we
analyzed the traditional spectral index which has strong relationship in general with the three bio-parameters using hyperspectral data
acquired by ASD. It is found that some indies do not work well when the heavy metal stress exists, however, some indies still has
ability to estimate the above three bio-parameters. A new interpretation is proposed to classify the stress level based on both the
physical mechanism analysis and the statistic model after we describe and discuss studies on the expression of spectral indices of rice
under heavy metal stress. The 3-axes spectral indices spaces, which are constructed of 3 spectral indices sensitive to rice’s
chlorophyll concentration, nitrogen concentration and water concentration respectively, are used to visualize the linkage between
heavy metal stress and spectrum of rice canopy.

1. INTRODUCTION

Heavy metal contamination in soil is going to be worse in China
and will damage the food safety. Rice is a main food source
widely in the world and its ability to accumulate heavy metal is
significantly higher than that of other dry land crops (Kastori et
al., 1998). Farmland heavy metal contamination is a global
ecological problem and become a threat to human survival and
sustainable development due to heavy metal can be induced into
food by crop absorption and metabolism, or migrate into the
water body.

It is time-consuming to measure the soil quality by traditional
chemical methods, and especially the vegetarian coverage
makes the soil’s spectrum hard to be acquired directly. It is
practicable using remote sensing data to indirectly detect the
crops’ healthy status. However, there are not professional
spectral vegetation indices for detection heavy metal
contamination or to differentiate between plant diseases and
contamination stress on crops. The dynamic, accurate, detection
of rice under heavy metal stress shows a great significance and
become a practical problem need to be solved urgently. There
are some researches identified the heavy metal stress can induce
the spectrum response of rice because the change of its health
status, including its cellular structure, water content,
biochemical composition, pigments content and etc.(Horleret al.,
1983; Milton et al., 1989a,b; Guyot et al., 1992; Slatonet al.,
2001; Andrew, 2003; Zengin and Munzuroglu, 2005; Meiling
Liu, 2011&2012). Therefore the level of heavy metal stress
level can be estimated using remote sensing data.
*

Many studies have used many types of spectral index to
quantitative estimate the chlorophyll content, water content and
other parameters about the crops health status separately.
Actually the chlorophyll content, water content and other
parameters will change simultaneously when the heavy metal
stress occurs and the change is very subtle and complicated.
Only one parameter’s change is not enough to identify the status
or level of heavy metal stress the crops undergo. In this paper
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we tried to classify the heavy metal stress level considering the
change of chlorophyll content, water content and nitrogen
content of rice at the same time, which means we found three
single spectral index which is sensitive to chlorophyll content,
used them to construct a spectral indies space which can show
the heavy metal stress level visually.

2. STUDY AREA AND DATA COLLECTION

2.1 Study Area

Changchun City and Jilin City is two big city in Northeast
China. This region is not only the major grain producing areas
of Jilin Province,China, but its industrial sector is also relatively
complete, which has formed chemical industry, machinery
processing industry center mainly based on Jilin Chemical
Industrial Company and Changchun automobile manufacturing
factory. Considering the pollution status of industrial production,
road traffic and other factors on the farmland, the study chooses
several rice field samples polluted by heavy metals in the
suburbs of Changchun and Jilin. In addition, there are some
relatively clean farmland to do the parallel analysis.

Figure 1. the location of sampling area

The region belongs to temperate continental climate with an
average annual rain-fall of 522–615 mm and an average annual
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temperature of 5.8 ◦ C. There were 6 sampling areas in three
pollution levels in every grow period, and in a similar growth
environment, fertilization, water conditions. Pollution lever 0
means the farmland are clean, and lever 2 is more serious than
level 1.

Area Location Coordinate Pollution
Level

A Changchun 125°11′E，43°51′N 0

B Changchun 125°09′E，43°51′N 0

C Changchun 125°10′E，43°51′N 1

D Jilin 126°24′E，43°59′N 1

E Jilin 126°28E，43°57′N 2

F Jilin 126°37′E，43°55′N 2

Table 1. Location of sample sites

2.2 Data Collection

2.2.1 Spectrum Measurement

The FieldSpec 3 spectrometer of United States Analytical
Spectral Devices (ASD) company is used for spectral test of
field crops. June 2008 to September, July 2009 to September,
every 10-20 days, we choose sunny windless weather at 10:30 -
14:00 GMT to do spectral measurements.15-20 positions were
selected and marked from different sampling sites as the
spectral acquisition sites before the spectral measurements,with
the immediately collection of crop plants and soil samples after
the spectral acquisition.Spectral acquisition points require
uniform distribution. Spectrometer must be preheating 10-30
minutes after the work. When they perform white calibration
before each sample implementation spectral measurement,
optimization and acquisition whiteboard reference , white board
placed horizontally must fully cover the lens field of view,
recapturing the whiteboard reference for every 10-15
minutes.Setting 10°as field angle, the sensor probe is vertically
downward, about 1 meter from the top of the canopy. 10
spectral data is collected for each test point,whose average value
is considered as the result of a sample.

2.2.2 Heavy Metal Contamination Measurement

After spectral data measured, in the center of each sampling
points, 0~10cm depth of the surface soil samples are collected
with a plastic shovel, mixing at the scence, quartering about 1kg
soil samples. Take them back to the laboratory for appropriate
treatment including to measure the As, Cr, Zn, Cu, Cd, Pb
contents. The test was completed in parallel by the Chinese
Academy of Agricultural Sciences and Analytical Center of
Northeast Normal University.

According to soil environmental quality standards of China
(GB15618-1995) and environmental background values of
study area, the evaluation result of soil pollution status were got
by ecological rish index(Hakanson, 1980).

2.2.3 Rice Health Status Measurement

At the same time of spectral data measurement, the chlorophyll
concentration was tested by the SPAD502 (Minolta Corporation,
New Jersey, USA) chlorophyll readings, and then the following
equation was used to calculate the chlorophyll concentration.

y = 0.996x − 1.52 (1)

where y and x are chlorophyll concentration and SPAD502
chlorophyll reading, respectively.

After spectral data measured, we collected the upper leaves of
rice plants, saved in clean envelope (exhaust air), labeled,
indicating the location, measurement number, plant parts.
Appropriate treatment to get dry weight, moisture content and
The nitrogen content of plants are carried in the lab.

3. METHOD

3.1 Spectral Index

Traditionally spectral indies especially vegetation index like
NDVI were used to estimate LAI, chlorophyll content and other
parameters of vegetation.In this study 66 vegetation indies
(Table 2) were employed to estimate the chlorophyll content,
more than 20 other spectral indies used to estimate water
content and nitrogen of rice in the study area, where each index
derived every parameter as a function of an independent
variable.(Zarco-Tejada et al, 2004; Huete,1997; ;Qi, 1994;
Penuelas, J., BaRet, F., & Filella, I. ,1995; Daughtry, 2001;
Gitelson et al., 2003; Woodhouse, 1994; Wu et al., 2008,
2009a,b; Yoder, 1995; Dash, 2007;Blackburn, 1998a and 1998b)

Besides the Vegetation index, some spectral index constructed
by spectrum shape was used to analyzed the the possibility of
estimate the stress level by hyperspectral data. These spectral
index were calculated from the continuum removal reflectance
spectrum and their indentification are shown in the Figure 2.

Figure 2. Reflectance spectrum character after continuum removal

3.2 Correlation Analysis

The correlation analysis method usually can describe clearly the
relationship between spectral index and bio-parameters of rice.
In this study, the correlation analysis were used to find most
sensitive index to indicate the subtle change of bio-parameters
of rice when the heavy metal stress occurs.

3.3 Spectral Index space

Spectral Index space can visualize well some relationships
between two factors by 2-dimension space. Spectral
characteristic parameters sensitive to the changes of 3
biochemical indies--- rice chlorophyll, nitrogen and water
content and respond well to heavy metal pollution stress level
are selected, pairwise combined to build a three-dimensional
spectral index space. We can find that the differences of heavy
metal stress level are clearly presented by cluster of samples in
feature space, meanwhile the heavy metal pollution stress
information has been significantly enhanced.

Wavelength/nm
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Table 2. Veagetation Indies used to estimate chlorophyll content

4. RESULTS AND DISCUSSION

4.1 Sensitive Spectral Indies

In the study, some indies do not show good relationship with
the bio-parameters while they can do good job normally (Figure
3). It seems the unhealthy rice under heavy metal stress has
different sensitive spectral indies from that of healthy rice.

Figure 3. Goodness of fitting between rice chlorophyll
and vegetation indies

4.1.1 Chlorophyll Sensitive Index

Vegetation chlorophyll content is closely related to its health
status,which is one of the most important indexes to indicate
plant nutrition stress, photosynthetic capacity and development
status (Demetriades-Shah, 1990). Typically, after heavy metals
(pollution) stress, the growth of green crop is stimulated or
inhibited, resulting in the changes of chloroplast structure and
leaf color.Through the analysis of the leaves and canopy spectra
of rice and other vegetation, domestic and foreign scholars have
confirmed that spectral characteristics and biochemical
parameters were significantly correlated.It is feasible to
establish the chlorophyll content retrieval model by
hyperspectral remote sensing data.

The study area shows a negative correlation of the chlorophyll
content and the degree of heavy metal pollution. But it is
noteworthy that in different growth stage the impact of heavy
metal pollution stress in chlorophyll content is different. Firstly,
this paper uses vegetation index to extract the chlorophyll
content information.then selects the vegetation index sensitive
to the chlorophyll content, further selects the sensitive
parameters to heavy metal pollution stress from last step. The
vegetation index are more sensitive to the spectral changes than
single band, conducive to the eliminate the effects of soil
brightness, atmospheric and topographic.

The best fitting degree is X24(D725/D702).D725 represents the
first derivative of reflectance spectra in 725nm wavelength.
D702 represents the first derivative of reflectance spectra in
702nm wavelength. X40(R780-R710)/(R780-R680):R780-R710
represents the sum of vegetation spectral reflectance from
780nm to 680nm band. These high fitting degree of vegetation
index are selected to inversion chlorophyll content, as shown in
figure 3.

Here, the goodness of fit refers to the square of the correlation
coefficient. Rice canopy chlorophyll content is significantly
correlated with the spectral information, moreover the fitting
degree of chlorophyll content and spectral information reaches
maximum in the red band(figure 4), which is closely related to
the chlorophyll strong absorption of blue and red light. The
fitting degree of the original spectrum and the chlorophyll

VI Formula VI Formula

X1 R800/R680 X34 (R550-R450)/(R550+R450)

X2 R800/R650 X35 (R531-R570)/(R531+R570)

X3 R800/R550 X36 (R415-R435)/(R415+R435)

X4 R750/R700 X37 (D722 - D700)/(D722+ D700)

X5 R750/R550 X38 (D722-D502)/(D700-D502)

X6 R740/R720 X39 (R850-R710)/(R850-R680)

X7 R725/R702 X40 (R780- R 710)/(R780- R 680)

X8 R710/R760 X41 1/(R695-705)-1/(R750-800)

X9 R705/R722 X42 (R800-R445)/(R800-R680)

X10 R700/R670 X43 (R750-R445)/(R705-R445)

X11 R695/R670 X44 (R750-R706)/(R750+R706-2R445)

X12 R695/R760 X45 (R734-R747)/(R715-R720)

X13 R695/R420 X46 (R734-R747)/(R715+R726)

X14 R672/R550 X47 (R728-R720)/(R728+R720-2R434)

X15 R657/R700 X48 (R728-R434)/(R720-R434)

X16 R630/R680 X49
[(R750-R705)-0.2( R750-
R550)](R750/R705)

X17 R605/R760 X50
[(R700-R670)-0.2( R700-
R550)](R700/R670)

X18 R600/R680 X51
TCARI=3[( R700- R670)-0.2(R700-

R550)*( R700/ R670)]

X19 R430/R680 X52
(1+L)(R800-R670)/(R800+R670+L), L

=0.16

X20 R860/(R550×R708) X53
(1+L)(R800-R670)/(R800+R670+L), L

=0.5

X21 R675/(R700×R650) X54
(1+L)(R800-R670)/(R800+R670+L), L

=0.2

X22 R672/(R550×R708) X55 TCARI/OSAVI1，L=0.16

X23 D715/D705 X56 TCARI/OSAVI2，L=0.5

X24 D725/D702 X57 TCARI/OSAVI3, L=0.2

X25 R800-R550 X58
0.5{2R800+1-[(2R800+1)2-8( R800-

R670)]1/2}
X26 (R680-R550)/R750 X59 [(R800/R670)-1] /(R800/R670+1)1/2

X27
(R800-

R680)/(R800+R680)
X60 [(R750/R705)-1] /(R750/R705+1)1/2

X28 LOG(1/R737) X61 (R800-R670)/(R800+R670)

X29 1/R700 X62 (R800-R635)/(R800+R635)

X30 1/R670 X63 (R774 -R677)/(R774+R677)

X31 1/R550 X64 (R750-R705)/(R750+R705)

X32 1/R530 X65 (R750-R550)/(R750+R550)

X33 1/R450 X66 (R570-R670)/(R570+R670)
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content was relatively stable before 710nm, and then decreased
rapidly, and the correlation was almost zero at 750nm. In
comparison, the fitting degree of derivative spectra and
chlorophyll content is better than the original spectra.The
maximum goodness of fit between original spectrum and
chlorophyll content of rice is 0.53; the maximum goodness of fit
between the first derivative spectra and chlorophyll content of
rice is 0.64 ;the maximum goodness of fit between second order
derivative spectra and chlorophyll content of rice is 0.72; this
shows that the first derivative spectra is more effective to the
inversion of chlorophyll content. The fitting degree of first
derivative spectrum and chlorophyll content reaches the
maximum at 730-760nm band, which is consistent with the
conclusions of Changshan Wu et al . The fitting degree of other
bands such as 540-560nm, 680-700nm are better as well.

Figure 4. Correlation between the degree of pollution stress and
vegetation index, chlorophyll content in Rice

4.1.2 Nitrogen Sensitive Index

When rice was affected by heavy metal stress, heavy metals
would hinder the nitrogen absorption, and nitrogen deficiency
would cause the inadequate development of crop leaf, smaller
mesophyll cells, leaf senescence, lower chlorophyll, water
content and protein content . This series of biological physical
and chemical changes will inevitably bring reflection spectrum
response.

Figure 5. Rice nitrogen sensitive index matrix

Two spectral indices are selected to establish the inversion
model,whose goodness of fit to nitrogen content are better than
others. NI10 is the best spectral index to inverse nitrogen
content of rice, determination coefficient 0.592; followed by
NI23, determination coefficient is 0.459. In figure 4, N10 is
R1927/R533,where R1927 is the reflactance at wavelength.1927nm.

4.1.3 Water Content Sensitive Index

Moisture content of crops is often used to measure the health
status.Stressed by heavy metals contaminated, leaf cell structure
and moisture absorption ability of crops change, accordingly
moisture content of crops varying.Traditional method to
measure crop water content by individual plant in small area is
low efficiency, one-sided and destruction. For real-time
monitoring and diagnosing crop moisture content, remote
sensing technology not only improve the efficiency, plays a
guiding role on crop growth management and water control, but
also has an important implications for the plant cover of
flammable and forest fire monitoring by remote sensing.The
study has carried on correlation analysis between reflectance of
700-700 nm, 1350-1810 nm and 1900-2400 nm band and water
content of rice.

The inversion of leaf water content can use canopy (or blade)
spectral reflectance, but the spectral reflectance is easily
affected by light condition and the operation of spectral
acquisition process.Therefore, differential calculation and
continuum removed method can be used to deal with the
original reflection spectra, construction of all kinds of spectral
parameters such as moisture absorption depth and water remote
sensing indices, in order to improve the calculation precision of
the moisture content changes under heavy metal pollution stress,
and further find spectral parameters that are sensitive to heavy
metal pollution stress.

WI2(R950/R900) is the best moisture spectral index to the
inversion effect of rice, whose determination coefficient of
quadratic polynomial fitting is 0.616; followed by
WI3(R810/R640), whose determination coefficient of quadratic
polynomial fitting is 0.593.
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Similar to nitrogen sensitive index and Chlorophyll Sensitive
Index, water content sensitive index shows much lower
correlation degree with water content when the rice undergo the
heavy metal stress, however, they all do this well when the
crops are healthy.

4.2 Spectral Index Space

Based on the above analysis, three types of index can used to
create the three axes of Index Space, which means we integrate
the change of chlorophyll content, water content and nitrogen
change of the rice under heavy metal stress (Figure 6.). It is
obviously that the samples with different pollution level locates
farther than those points with similar pollution level. In figure 6,
the green points which locates upper in the graph come from the
clean farmlands, while the dark points which locate lower in the
space come from the polluted farmlands with level 2. The
middle points in the space in red and blue come from the subtle
pollution stress rice lands.

Figure 7. Two Typical Spectral Index Space

In figure 7, two indices has not mentioned above, they are NRG
and SDg/SDr. The two indices are both sensitive to the
chlorophyll content. SDg refers the abosorption area in green
bands and SDr refers the abosorption area in red bands. The
ration of SDg and SDr. will decrease when the chlorophyll
contens decrease. NRG is normalized green peak reflectance,
which is calculated by reflectance spectrum after continuum
removal.

Actually, chlorophyll, nitrogen and water conternt can reflect
the healthy status of plant. So 3 spectral indies sensitive to the 3
bio-parameters respectively can describe the healthy status of
rice. In addition, the 3 spectral indies we got used the
information from visible to near Infrared bands, which means
the 3 indies used most information of the whole spectrum. In
figure 8, it can be found the classification result of heavy metal
stress level by the 3 indies is better than single index.

Figure 8. Heavy metal stress level evaluation model

This thesis has comprehensively analyzed rice spectral response
characteristics to heavy metal pollution stress from three
viewpoints of the change of chlorophyll, nitrogen and water
content respectively. At present, the domestic and foreign
research on crop heavy metal pollution stress monitoring by
remote sensing mainly selects leaf area index, chlorophyll
concentration, N, P and other nutrients content moisture status
and other agronomic parameters.and then uses remote sensing
data to calculate their quantity target and changes, as the
indicator of pollution degree and status. But in fact,the crops’
physiological and ecological response to heavy metals stress is
very weak, small and unstable reflecting in the changes of these
agronomic parameters. Many studies mainly rely on color
properties of crops growth, for example they select pigment
changes as the major evidence of crop pollution stress, despite
its reasonable side. However, there are many factors that affect
the changes of pigment, such as light, water and fertilizer
change,.The impact of these factors on crop pigment is huge, so
the small changes caused by pollution stress are likely to be
covered by it. This paper quantitatively extracts crop
information stressed by contamination from remote sensing data
and does the corresponding analysis. This paper effectively
enhances and calculates the remote sensing spectral weak effect
on crops stressed by heavy metal, providing a rapid and reliable
method for monitoring crop heavy metal pollution stress by
satellite remote sensing.But satellite remote sensing data suffers
more influence factor than ground test data. Follow-up works
can carry out experiments and studies on satellite hyperspectral
remote sensing data, for rapidly monitoring crops’ information
about heavy metal pollution stress. In addition, other stress
factors such as water, fertilizer and light can also make crops
produce similar physiology characteristic and spectral response
to heavy metal stress. Therefore, we should actively explore the
small difference of various stress factors in spectral response,
not only determine crop stress level, but also the causes of stress.

5. CONCLUSIONS

The study has analyzed the distribution of heavy metal elements
in soil and crops based on the experimental data, and studied
heavy metal pollution stress effect mechanism to the change of
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crops’ chlorophyll, nitrogen and water content. The study has
comprehensively analyzed crop spectral reflectance
characteristics, researched and verified the response relationship
of crops biochemical parameter changes under spectral indices
and heavy metal contamination stress, established the
hyperspectral inversion model about the small change of crop
chlorophyll, nitrogen and moisture content.The results shows
that the many conventional remote sensing indexes, which is
used for the retrieval of crop physiological indexes, is severely
decreased in the accuracy under the heavy metal pollution stress.

The best the goodness of fit is X24 (D725/D702) in chlorophyll.
NI10 is the best spectral index to inverse nitrogen content in
rice, determination coefficient 0.592. WI2(R950/R900) is the
best moisture spectral index to inverse moisture content in rice,
quadratic polynomial fitting determination coefficient 0.616.

The plots with different pollution levels have better clustering
characteristics in the 3d spectral index space. Because the
spectral index space is constructed by the three indies which are
sensitive to the 3 key bio-parameters respectively, the pollution
level is easily expressed by the points location cluster feather.
SVM is a good non-linear classification method and do a good
job here to classify the samples into its pollution level with a
high correct degree.

The heavy metal stress level is identified well in this paper, but
this work need to calculate a big deal of spectral indies and their
relationship with bio-parameters of rice. The further work need
to focus on the spectral index which are suitable for most plants
and stable with the environments change. In addition, it is more
important that inducing this method to remote sensing images,
which will bring much more applications.
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