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ABSTRACT: 

 

In recent decades, many spectral vegetation indices (SVIs) have been proposed to estimate the leaf nitrogen concentration (LNC) of 

crops. However, most of these indices were based on the field hyperspectral reflectance. To test whether they can be used in aerial 

remote platform effectively, in this work a comparison of the sensitivity between several broad-band and red edge-based SVIs to 

LNC is investigated over different crop types. By using data from experimental LNC values over 4 different crop types and image 

data acquired using the Compact Airborne Spectrographic Imager (CASI) sensor, the extensive dataset allowed us to evaluate broad-

band and red edge-based SVIs. The result indicated that NDVI performed the best among the selected SVIs while red edge-based 

SVIs didn’t show the potential for estimating the LNC based on the CASI data due to the spectral resolution. In order to search for 

the optimal SVIs, the band combination algorithm has been used in this work. The best linear correlation against the experimental 

LNC dataset was obtained by combining the 626.20nm and 569.00nm wavebands. These wavelengths correspond to the maximal 

chlorophyll absorption and reflection position region, respectively, and are known to be sensitive to the physiological status of the 

plant. Then this linear relationship was applied to the CASI image for generating an LNC map, which can guide farmers in the 

accurate application of their N fertilization strategies. 
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1. INTRODUCTION 

1.1 General Instructions 

The Nitrogen concentration is one of the most important N 

nutrient diagnosis indicators of plants, which the plant growth, 

yield, and quality have a close relation with; it is often 

positively associated with leaf chlorophyll content and 

photosynthetic capacity (Stroppiana et al., 2009; Li et al., 

2014b). However, excessive application of nitrogen fertilizer 

will induce the nitrate nitrogen (NO3-N) losses in crop 

production, which is considered to be one of the major 

agricultural non-point pollutions (Inoue et al., 2012). Hence, 

timely and effectively detecting the nitrogen concentration of 

crops on a regional scale is important not only to obtain the 

growth status of crops but also to gain an overview of the 

nitrogen spatial distribution, which can guide farmers to 

implement the precision fertilization technology in the field. In 

recent decades, remote sensing has been recognized as a reliable 

method for estimating the nitrogen concentration due to it is 

functionally linked to the canopy spectral reflectance (Feng et 

al., 2014). There have two widespread approaches to retrieve 

nitrogen concentration from reflectance measurements. One of 

them is a physically-based method, which uses models that 

simulate reflectance spectra from leaf biochemical parameters 

and vice versa (Darvishzadeh et al., 2012). However, this 

approach generally involves the “ill-posed” inverse problem for 

lack of sufficient prior knowledge. An alternative approach is 

the empirical retrieval methods, which typically consist of 

relating the nitrogen concentration against spectral vegetation 

indices (SVIs) through linear or nonlinear algorithmic 

techniques (Kanke et al., 2012). The advantage of vegetation 

indices is that they allow obtaining the information between 

spectral reflectance and nitrogen concentration in a fast and 

easy way and the underlying mechanisms are well-understood. 

The characteristic absorption wavebands of nitrogen (1510nm, 

1730nm, 1940nm, etc.) are mainly in the short-wave infrared 

region, which can be well used to design the SVIs of nitrogen, 

whereas there have two strong water absorption wavebands 

(1450 nm, 1940 nm) also plays a significant role in this spectral 

range, that masked the sensitive wavebands of nitrogen. So, 

several researchers designed the SVIs by using the red edge 

wavebands based on the good correlation between nitrogen and 

chlorophyll (Chen et al., 2010; Clevers, Jan G. P. W. and 

Kooistra, 2012). Li et al. (Li et al., 2014a) evaluated the red-

edge based spectral indices for estimating plant N concentration 

and uptake of summer maize, they found that the red edge-

based canopy chlorophyll concentration (CCCI) had good 

performance. Although the red edge-based SVIs showed 

promising potential for estimating the nitrogen concentration in 

many studies, but they are mostly constructed by using field 

hyperspectral reflectance. When the red edge-based SVIs are 

applied to an aerial platform, many factors such as the scale and 

spectral resolution should be considered. So far, little literature 
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has been reported on evaluating the potential of using red edge-

based spectral vegetation indices for estimating nitrogen 

concentration based on the aerial remote sensing data, as 

compared with commonly used broad-band SVIs such as NDVI, 

RVI, GNDVI and CVI. Therefore, the objectives of the present 

study were (i) to evaluate broad-band and red edge-based SVIs 

for estimating crop nitrogen concentration, (ii) to infer the most 

powerful and robust two-band vegetation indices from CASI 

data for estimating nitrogen concentration, and (iii) to map the 

spatial distribution of nitrogen concentration in the study area. 

 

2. TITLE AND ABSTRACT BLOCK 

2.1 Site description 

The aerial experiment was carried out on July 7, 2012 in the 

Heihe River basin (38°54′N, 100°24′E), Gansu province, 

northwest China (Fig 1). The climate in this area is a humid 

continental monsoon, with very cold winters and warm 

summers. The annual average temperature, precipitation, and 

solar amounts are 2.8-7.6℃ , 200-300mm and 3000-4000h, 

respectively. These climatic characteristics are suitable for many 

field crops (e.g. corn, wheat, rice and soybeans), which have 

only one harvest per year. As the most widely planted crop in 

this area, it has become one of the most important commodity 

grain bases in China. 

 

Figure 1. CASI image of the crops acquired on July 7, 2012 

 

2.2 Acquisition of field and CASI data 

To establish a meaningful relationship between nitrogen 

concentration and CASI data, ground measurements should be 

collected at the same time of image acquisition. Based on this, 

the ground-based measurements were taken on July 7, 2012, 

meanwhile, the CASI hyperspectral sensor was flown over the 

experimental sites at a flight altitude of 2000m. The acquired 

image data have 1m spatial resolution and forty-eight spectral 

bands with a bandwidth of 14nm. In the field, fifteen plots of 

maize and vegetables were sampled and each plot center 

locations were recorded with a real-time differential global 

positioning system. For the acquired CASI data, the 

uncalibrated images were converted into radiance by using 

calibration coefficients calculated from the field hyperspectral 

reflectance. After that, the atmospheric and geometric correction 

were carried out by FLAASH module of ENVI software. To 

obtain a representative plant sample, the plants were 

destructively sampled by randomly cutting 2-3 leaves in the 

upper layers after the CASI hyperspectral sensor flied. All green 

leaves were separated from stems and oven-dried at 70℃ and 

weighed. Dried leaf samples were ground and passed through a 

1mm screen, and stored in plastic bags for subsequent analysis. 

The LNC (g per 100g dry weight) was measured by using the 

Kjeldahl-N method. 

 

2.3 Calculation of vegetation indices 

To identify the best-performing algorithms and indices, we 

developed, tested and compared three types of algorithms and 

their corresponding indices, based on the relationship between 

the nitrogen concentration and spectral reflectance (Table 1). 

First, the commonly used indices are broad-band SVIs (e.g. 

NDVI, RVI, GNDVI, CVI), most of them were initially 

developed for the study of LAI. Since they were originated from 

broad-band sensors, which forms still the majority of the Earth 

observing satellites. Second, various alternatives to the 

conventional broad-band vegetation indices have been proposed 

with the advent of hyperspectral technique. So, we tested a wide 

range of red edge-based vegetation indices such as REP, MTCI, 

CIred edge, etc. to acquire the most useful information on crop 

growth and nitrogen status. Third, in an attempt to further 

optimize the sensitivity of these vegetation indices, the NDSI 

and RSI were used to evaluate all two-band combinations in the 

range of 425.70-1055.50nm that lead to optimizing linear 

correlation with nitrogen concentration using CASI data, the 

evaluation was done by calculating the coefficient of 

determination (R2). By this approach, it was demonstrated that 

the better results were retained in only a few selected bands 

while the rest becoming redundant. Specifically, Li et al. (Li et 

al., 2014b) have explored that the band combination between 

600 and 800nm can improve the estimation of summer maize 

nitrogen status. However, this investigation was only done by 

field hyperspectral reflectance, whether it can be applied to the 

aerial remote sensing data should be further verified.

 

Vegetation index Formula Reference 

Broad-band vegetation 

indexes 

  

Normalized difference  

vegetation index (NDVI) rednir

rednir

RR

RR





 
(Tucker, 1979) 
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Ratio vegetation index (RVI) red

nir

R

R
 (Tucker, 1979) 

Green normalized  difference 

vegetation index (GNDVI) greennir

greennir

RR

RR





 

(Gitelson and 

Merzlyak, 1996) 

Chlorophyll vegetation index 

(CVI) 
green

red

green

nir

R

R

R

R


 

(Vincini et al., 

2008) 

Red edge-based vegetation 

indexes 

 
 

Normalized difference  red 

edge index (NDRE) 

)/()( 720790720790 RRRR   
(Fitzgerald et al., 

2010) 

Red edge chlorophyll  index 

(CIred edge) 

1/ 720790 RR  (Gitelson, 2005) 

MERIS terrestrial chlorophyll 

index (MTCI) 

)/()( 680710710750 RRRR 
 

(Dash and Curran, 

2004) 

Red edge position index 

(REP) 700740

700780670 2/)(
40700

RR

RRR




  

(Guyot G, Baret 

F, Major D J, 

1988) 

Modified chlorophyll  

absorption in reflectance 

index / Optimized soil-

adjusted vegetation 

index (MCARI/OSAVI) 

 
)16.0/()()16.01(

)/()(2.0)(

670800670800

670700550700670700





RRRR

RRRRRR
 (Daughtry, 2000) 

Transformed chlorophyll 

absorption in reflectance 

index/Optimized soil-adjusted 

vegetation  index 

(TCARI/OSAVI) 

 

)16.0/()()16.01(

)/()(2.0)(3

670800670800

670700550700670700





RRRR

RRRRRR
 

(Haboudane et al., 

2002) 

Two-band optimized 

vegetation indices 

 
 

Normalized difference 

spectral index (NDSI) 

21
21

21 ,
)(

)(




 



RR

RR

RR

 

This study 

Ratio spectral index (RSI) 
21

2

1 , 


  RR
R

R

 

This study 

Table 1. Vegetation indices used in this study, where Rλ is the reflectance at wavelength λ (nm)

 

3. RESULTS 

3.1 Evaluating vegetation indices to estimate the nitrogen 

concentration 

The Heihe River basin field dataset, along with the ensemble of 

CASI images, was used to develop a simple spectral method 

applicable for remote sensing estimation of nitrogen 

concentration over a complete set of different crops. Results 

indicated that the most widely used SVIs, NDVI and RVI, 

proposed by Tucker (Tucker, 1979) have shown the higher R2 

values (0.50 and 0.51). Because NDVI saturates easily at 

moderate to high canopy coverage conditions, green waveband 

substituted the red region (strong pigment absorption waveband) 

and incorporated into the normalized vegetation index, 

however, the GNDVI-based model didn’t perform significantly 

better than the aforementioned vegetation indices (Fig 2). 

Several researches pointed out that the relationship between 

LNC and chlorophyll is linear (Clevers, Jan G. P. W. and 

Kooistra, 2012), so vegetation indices best for estimating leaf 

chlorophyll may be the best indicators for estimating leaf and 

plant nitrogen concentration. Chlorophyll vegetation index 

(CVI)  (Vincini et al., 2008), a broad-band vegetation index 

that is sensitive to leaf chlorophyll, was investigated in this 

study. But there has no correlation between the CVI and 

nitrogen concentration (R2=0.07), which is not a good 

candidate. Thus, in order to compare the estimation accuracy 
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with the narrow-band SVIs, six red-edge vegetation indices 

developed by using hyperspectral reflectance were tested. The 

result showed that NDRE, REP and TCARI/OSAVI which 

performed well in estimating crop nitrogen concentration (Fig 3) 

while lower R2 values were generated by the other red-edge 

vegetation indices (CIred edge, MTCI and MCARI/OSAVI). 

 

Figure 2. Relationships between broad-band SVIs and nitrogen concentration 

    

         Figure 3. Relationships between broad-band SVIs and nitrogen concentration 
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3.2 Evaluation of optimized spectral vegetation indices 

To evaluate the stability of spectral indices in estimating plant 

nitrogen concentration, we established the relationships 

between NDSI, RSI and LNC by all possible combinations of 

two wavebands. Each of these indices was subsequently 

correlated with LNC using linear regression and R2 was 

calculated. The resulting correlation matrices shown in Fig 4, 

enables us to inspect variation in the R2 coefficient over all the 

two-band combinations. The figure is marked by an optimized 

region shown in red with strong correlations and a maximum 

R2 of 0.65 and 0.64 were obtained by the two-band 

combination of i = 626.20 and j = 569.00 nm. Compared with 

broad-band and red edge-based SVIs, optimized normalization-

based NDSI has significantly increase the predictive power of 

LNC. 

 
 Figure 4. Contour diagrams of the coefficient of determination (R2) between NDSI(i , j), RSI(i , j) and nitrogen content (The letters A, B 

represent NDSI and RSI, respectively.) 

 

 

Figures Fig 5 shows the resulting relationship between its 

values and the measured LNC values in a scatterplot. A linear 

relationship can be fitted through the data points according to 

the following regression equation: 

                  LNC =10.58 × NDSI(626.20,569.00) + 4.80                  (1) 

Where NDSI(626.20, 569.00) has been calculated using the 626.20 

and 569.00 nm bands. 

 
Figure 5. Relationships between NDSI, RSI and LNC 

This regression equation yielded a strong linear correlation 

with field LNC measurements. So, the next step consists of 

applying this equation to the CASI image, which leads to an 

LNC map over the study area. Given the final map in Fig 6, 

different LNC spatial distribution can be distinguished based 

on the image. The green and red tones represent LNC 

distributions ranged from 0.79% to 5.76%, which shows that 

the proposed NDSI performs adequately for obtaining large 

areas LNC maps over an entire crop from space-based imagery. 
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Figure 6. Maps showing the spatial variation of nitrogen 

concentration using NDSI(626.20, 569.00) based on the CASI data 

 

4. DISCUSSION 

Plant nitrogen concentration and uptake are important crop 

nitrogen status indicators, which can be used to guide farmers 

for nitrogen management. Remote estimation of the LNC of 

crops have been comprehensively discussed by many studies 

(Chen et al., 2010; Clevers, Jan G. P. W. and Kooistra, 2012; 

Kanke et al., 2012). Most of the studies addressed in these 

papers are based on the vegetation indices developed with field 

hyperspectral reflectance. The results found in these studies 

showed that the spectral parameters used were closely related 

to the LNC. In contrast, our experiment was conducted by the 

aerial sensor, which obtained the high spatial resolution 

imagery allowing identification of within-field variations in 

LNC. Since more nitrogen supply can increase chlorophyll, 

which absorbs more light and decreases reflectance of visible 

wavebands, meanwhile, excessive nitrogen fertilizer can also 

increase plant biomass and LAI, resulting in more scattering 

back of incident solar radiation in the NIR region by the plant 

canopy (Heege et al., 2008). So, several broad-band SVIs such 

as NDVI, RVI, GNDVI, etc. were used to estimate the LNC. 

The NDVI as the most widely used SVI performed well in 

estimating LNC, the possible reason may be that this successful 

index utilizes the normalized ratio between the reflected energy 

in the red chlorophyll absorption region and NIR, thus, the 

difference of these two wavebands can be maximized. In 

addition, our experiment was conducted in the trumpet period 

and LAI value was relatively lower (1 to 3), which avoid the 

well-known “saturation” problem. Fig 2C provides the 

relationship between GNDVI and LNC, however, it can't obtain 

the satisfactory result as well as NDVI, the main reason is that 

the spectrum of chlorophyll reflecting region was substituted 

by the 569nm, which means that this index suffered a lot from 

the bandwidth. In comparison, also, the performance of red 

edge-based spectral vegetation indices has been evaluated. Fig 

3 shows experimental LNC dataset of the field campaign 

plotted against the values of the selected indices. Overall 

poorer correlations than the broad-band vegetation indices were 

obtained but three indices showed a slightly better linear 

relationship with LNC, being NDRE, REP and TCARI/OSAVI. 

These indices rely on potions at 550, 670 and around the red-

edge region (720, 750nm), although they remain to be 

evaluated whether these were the most optimized bands in 

other growth periods. The result indicated that broad-band 

SVIs were superior to estimate the LNC by using CASI data. A 

possible reason for this is that spectral resolution of red edge-

based SVIs was almost 1nm while broad-band SVIs used the 

central wavelength of the sensors. In addition, the scale effect 

should also be taken into account. This suggests that it would 

be worthwhile to simulate the CASI sensor by using the 

hyperspectral reflectance. Since agriculture decisions are 

routinely made by the farmers, a simple, robust and up-to-date 

monitoring application would be most welcome. Specifically, 

frequent availability of LNC maps will allow the farmer to 

better monitor the growth of crops and guide to apply fertilizer 

more accurately. Fig 4 and Fig 5 proposed NDSI proved to be 

successful in establishing a linear relationship with LNC. The 

two optimized wavebands were located around the relative 

chlorophyll absorption and reflection maximum, which is the 

reason why the estimation accuracy (R2) improve to 0.65. Fig 6 

shows that the equation (1) applied to high spatial resolution 

imagery allows identification of within-field variations in LNC. 

Overall the higher LNC distribution was located in the 

northwest and south regions, thus, more fertilizer should be 

supplied to the other areas. 

 

5. CONCLUSIONS 

The result of a comparison of the sensitivity of several broad-

band red edge-based SVIs to LNC from the analysis of several 

synchronized datasets confirms that the broad-band NDVI 

performed similarly and constantly better than the selected red 

edge-based SVIs. In addition to existing indices, in this work, 

all the bands were optimized using band optimum algorithms. 

Based on LNC field measurement and CASI hyperspectral data 

simultaneously collected on July 7, 2012, we have fully 

exploited the hyperspectral information available in the CASI 

image. The predictive power of all available two-band 

combinations has been analyzed according to NDSI and RSI. 

The wavebands of NDSI that led to best correlation with the 

LNC dataset were encountered at 626.20 and 569.00nm, which 

are sensitive to the physiological status of the plant. It led to an 

R2 of 0.65 and then subsequently compared against broad-band 

and red edge-based spectral vegetation indices, which 

significantly improved the LNC predictive power. Finally, the 

regression equation between NDSI and LNC was applied to the 

CASI image for LNC mapping and the result showed that more 

fertilizer should be supplied to the middle of study areas. This 

methodology allows identification of within-field variations in 

LNC, which makes the approach potentially applicable to 

precision farming when applied to high spatial resolution 

imagery. 

 

ACKNOWLEDGEMENTS  

This study was supported by the Beijing Natural Science 

Foundation (4141001), the Natural Science Foundation of 

China (41271345), the Special Funds for Technology 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B7-137-2016

 
142



innovation capacity building sponsored by the Beijing 

Academy of Agriculture and Forestry Sciences 

(KJCX20140417) and the Open Funds of State Key Laboratory 

of Remote Sensing Science, jointly sponsored by the Institute 

of Remote Sensing Applications of Chinese Academy of 

Sciences and Beijing Normal University (OFSLRSS201308). 

 

 

REFERENCES  

Chen, P., Haboudane, D., Tremblay, N., Wang, J., Vigneault, 

P., Li, B., 2010. New spectral indicator assessing the efficiency 

of crop nitrogen treatment in corn and wheat. Remote Sensing 

of Environment, 114 (9), pp. 1987–1997. 

Clevers, Jan G. P. W., Kooistra, L., 2012. Using Hyperspectral 

Remote Sensing Data for Retrieving Canopy Chlorophyll and 

Nitrogen Content. IEEE Journal of Selected Topics in Applied 

Earth Observations and Remote Sensing, 5 (2), pp. 574–583. 

Darvishzadeh, R., Matkan, A.A., Dashti Ahangar, A., 2012.  

Inversion of a Radiative Transfer Model for Estimation of Rice 

Canopy Chlorophyll Content Using a Lookup-Table Approach. 

IEEE Journal of Selected Topics in Applied Earth Observations 

and Remote Sensing, 5 (4), pp. 1222–1230. 

Dash, J., Curran, P.J., 2004. The MERIS terrestrial chlorophyll 

index. International Journal of Remote Sensing, 25 (23), pp. 

5403–5413. 

Daughtry, C., 2000. Estimating Corn Leaf Chlorophyll 

Concentration from Leaf and Canopy Reflectance. Remote 

Sensing of Environment, 74 (2), pp. 229–239. 

Feng, W., Guo, B.-B., Wang, Z.-J., He, L., Song, X., Wang, 

Y.-H., Guo, T.-C., 2014. Measuring leaf nitrogen concentration 

in winter wheat using double-peak spectral reflection remote 

sensing data. Field Crops Research, 159, pp. 43–52. 

Fitzgerald, G., Rodriguez, D., O’Leary, G., 2010. Measuring 

and predicting canopy nitrogen nutrition in wheat using a 

spectral index—The canopy chlorophyll content index (CCCI). 

Field Crops Research, 116 (3), pp. 318–324. 

Gitelson, A.A., 2005. Remote estimation of canopy chlorophyll 

content in crops. Geophysical Research Letters, 32 (8). 

Gitelson, A.A., Merzlyak, M.N., 1996. Signature Analysis of 

Leaf Reflectance Spectra. Algorithm Development for Remote 

Sensing of Chlorophyll. Journal of Plant Physiology, 148 (3-4), 

pp. 494–500. 

Guyot G, Baret F, Major D J, 1988. High spectral resolution: 

determination of spectral shifts between the red and near 

infrared. International Archives of the Photogrammetry and 

Remote Sensing. International Archives of the Photogrammetry 

and Remote Sensing. 

Haboudane, D., Miller, J.R., Tremblay, N., Zarco-Tejada, P.J., 

Dextraze, L., 2002. Integrated narrow-band vegetation indices 

for prediction of crop chlorophyll content for application to 

precision agriculture. Remote Sensing of Environment, 81 (2-

3), pp. 416–426. 

Heege, H.J., Reusch, S., Thiessen, E., 2008. Prospects and 

results for optical systems for site-specific on-the-go control of 

nitrogen-top-dressing in Germany. Precision Agriculture, 9 (3), 

pp. 115–131. 

Inoue, Y., Dabrowska-Zierinska, K., Qi, J., 2012. Synoptic 

assessment of environmental impact of agricultural 

management. A case study on nitrogen fertiliser impact on 

groundwater quality, using a fine-scale geoinformation system. 

International Journal of Environmental Studies, 69 (3), pp. 

443–460. 

Kanke, Y., Raun, W., Solie, J., Stone, M., Taylor, R., 2012. 

RED EDGE AS A POTENTIAL INDEX FOR DETECTING 

DIFFERENCES IN PLANT NITROGEN STATUS IN 

WINTER WHEAT. Journal of Plant Nutrition, 35 (10), pp. 

1526–1541. 

Li, F., Miao, Y., Feng, G., Yuan, F., Yue, S., Gao, X., Liu, Y., 

Liu, B., Ustin, S.L., Chen, X., 2014a. Improving estimation of 

summer maize nitrogen status with red edge-based spectral 

vegetation indices. Field Crops Research, 157, pp. 111–123. 

Li, F., Mistele, B., Hu, Y., Chen, X., Schmidhalter, U., 2014b. 

Reflectance estimation of canopy nitrogen content in winter 

wheat using optimised hyperspectral spectral indices and partial 

least squares regression. European Journal of Agronomy, 52, 

pp. 198–209. 

Stroppiana, D., Boschetti, M., Brivio, P.A., Bocchi, S., 2009. 

Plant nitrogen concentration in paddy rice from field canopy 

hyperspectral radiometry. Field Crops Research, 111 (1), pp. 

119–129. 

Tucker, C.J., 1979. Red and photographic infrared linear 

combinations for monitoring vegetation. Remote Sensing of 

Environment, 8 (2), pp. 127–150. 

Vincini, M., Frazzi, E., D’Alessio, P., 2008. A broad-band leaf 

chlorophyll vegetation index at the canopy scale. Precision 

Agriculture, 9 (5), pp. 303–319. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B7-137-2016

 
143




