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ABSTRACT: 

 

This paper presents a method to estimate the temporal interaction in a Conditional Random Field (CRF) based approach for crop 

recognition from multitemporal remote sensing image sequences. This approach models the phenology of different crop types as a 

CRF. Interaction potentials are assumed to depend only on the class labels of an image site at two consecutive epochs. In the proposed 

method, the estimation of temporal interaction parameters is considered as an optimization problem, whose goal is to find the transition 

matrix that maximizes the CRF performance, upon a set of labelled data. The objective functions underlying the optimization procedure 

can be formulated in terms of different accuracy metrics, such as overall and average class accuracy per crop or phenological stages. 

To validate the proposed approach, experiments were carried out upon a dataset consisting of 12 co-registered LANDSAT images of 

a region in southeast of Brazil. Pattern Search was used as the optimization algorithm. The experimental results demonstrated that the 

proposed method was able to substantially outperform estimates related to joint or conditional class transition probabilities, which rely 

on training samples.   

 

1. INTRODUCTION 

Remote sensing (RS) data has been increasingly applied to 

assess agricultural yield, production, and crop condition. 

Single date classification is inappropriate for this purpose, as 

the spectral appearance changes over time as crops evolve 

through their characteristic phenological circles.  

 

Conditional Random Fields (CRF) have deserved considerable 

attention of the scientific community in the recent years for 

crop recognition from multitemporal images, mainly due to its 

ability to model interactions of neighbouring image sites both 

in the spatial and temporal domains. These two forms of 

interactions are quite different in nature and the strategies 

proposed so far to model them are similarly diverse. In the 

present work we concentrate on the temporal interactions 

alone.  

 

Methods for multitemporal image analysis can be grouped into 

three main categories (Hoberg et al., 2011). The first one is 

related to the classification of single images based on a single 

powerful classifier or on a combination of classifiers. This 

approach does not take into account the temporal dependencies 

(Bruzone et al., 2004) (Waske and Braun, 2009). The second 

one is based on modelling temporal dependencies by rules 

(Simonneaux et al., 2008), or adaptive strategies to select the 

relevance of features over time for specific crops (Müller et 

al., 2010). The last one incorporates temporal dependencies 

into statistical models (Melgani and Serpico, 2004) (Leite et 

al., 2011).  

 

Approaches that take the temporal dependencies into account 

usually model temporal interaction by class transition matrices 

that can be determined by an expert (Hoberg et al., 2010) 

(Hoberg et al., 2011) empirically from existing data sources, 

* Corresponding author 

or computed statistically (Leite et al., 2011) (Kenduiywo et al., 

2015). 

 

In (Hoberg et al., 2015)  and (Liu et al. 2008),  temporal inter-

actions are represented by transition matrices 𝐼𝑑 whose ele-

ments are related to conditional probabilities, in other words,  

𝐼𝑑(𝑖, 𝑗) is related to the probability of an image site belonging 

to class 𝜔𝑗  at epoch 𝑡𝑑+1, given that it belongs to class 𝜔𝑖 at 

epoch 𝑡𝑑, whereby 𝜔𝑖 and 𝜔𝑗  are class labels and 𝑡𝑑 and 𝑡𝑑+1 

are adjacent epochs in the multitemporal data set. 

 

In contrast, other works model interaction potentials as joint 

probabilities (e.g., Niemeyer et al., 2014). In the present con-

text,   𝐼𝑑(𝑖, 𝑗) would be related in this case to the probability of 

an image site belonging to class 𝜔𝑖   in epoch 𝑡𝑑  and to 𝜔𝑗  in 

epoch 𝑡𝑑+1.  

 

Both approaches lead to theoretically plausible estimates of the 

interaction potential, but with no guarantee that it maximizes 

the classification accuracy. 

 

In this work we address this issue. We propose a supervised 

method to estimate the temporal interaction in a CRF based 

framework for crop recognition. Starting from a class 

transition matrix computed upon training samples either as 

conditional or joint probabilities, the method fine tunes the 

estimate so as to maximize the CRF classification accuracy. 

 

The remainder of the paper is organized as follows. Section 2 

presents the CRF based approach used in the experiments as 

well as the proposed method. Section 3 presents and discusses 

the results obtained in the experiments. Finally, Section 4 

summarizes the conclusions obtained in this work and indicate 

future directions. 
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2. METHODOLOGY 

 

2.1 Conditional Random Fields 

Let 𝒚𝑖 = [𝑦𝑖,1, 𝑦𝑖,2, … , 𝑦𝑖,𝐷] denote the vector comprising the 

sequence of class labels associated to an image site 𝑖 ∈ 𝑺 at 

dates 𝑡1, … , 𝑡𝐷 , with 𝑡𝑑 < 𝑡𝑑+1 for 𝑑 = 1, … , 𝐷 − 1, where 𝑺 is 

the set of all geographical sites in the data set. Each component 

𝑦𝑖,1 may take values in 𝛀 = {𝜔1, 𝜔2, … , 𝜔𝐶}, where 𝐶 is the 

number of classes defined by crop types in different 

phenological stages. The label vector 𝒚𝑖 must be inferred from 

the image data consisting of a set 𝑿𝑖 = {𝒙𝑖,1, … , 𝒙𝑖,𝐷}  of site 

wise vectors 𝒙𝑖,𝑑 for 𝑖 ∈ 𝑺 and 𝑑 = 1, … , 𝐷. The CRF solution 

for this problem is the most probable label sequence �̂�𝑖, which 

is obtained by maximizing the posterior probability 𝑃(𝒚𝑖|𝑿𝑖) 

given by:  

 

𝑃(𝒚𝑖|𝑿𝑖) ∝ 𝑒𝑥𝑝 {− [∑ 𝜙𝑑(𝑦𝑖,𝑑 , 𝒙𝑖,𝑑)

𝑑

+ 

(1) 

∑ ∑ 𝜓𝑑,𝑘(𝑦𝑖,𝑑 , 𝑦𝑖,𝑘 , 𝒙𝑖,𝑑 , 𝒙𝑖,𝑘)

𝑘𝜖𝑁𝑑𝑑

]} 

 

where 𝜙𝑑 and  𝜓𝑑  denote respectively the association and the 

temporal interaction potentials at date 𝑡𝑑, and 𝑁𝑑 is the set of 

date indices temporally adjacent to 𝑡𝑑. 

 

By setting 𝑒𝑥𝑝[−𝜙𝑑(𝑦𝑖,𝑑 , 𝒙𝑖,𝑑)] equal to the posterior 

probability 𝑝𝑑(𝑦𝑖,𝑑|𝒙𝑖,𝑑) , and denoting 𝐼𝑑(𝑦𝑖,𝑑 , 𝑦𝑖,𝑘)1  as 

𝑒𝑥𝑝[−2𝜓𝑑,𝑘(𝑦𝑖,𝑑,, 𝑦𝑖,𝑘 , 𝒙𝑖,𝑑 , 𝒙𝑖,𝑘)] , the most probable label 

configuration �̂�𝑖 for site 𝑖 can be written as: 

1 Notice that we simplified the model by dropping the 

dependence on the data for the temporal interaction 

potential. 

 

�̂�𝑖 =  argmax
𝑦𝑖,1…𝑦𝑖,𝐷

 [𝑝1(𝑦𝑖,1|𝒙𝑖,1) 𝐼1(𝑦𝑖,1, 𝑦𝑖,2)𝑝2(𝑦𝑖,2|𝒙𝑖,2)  

(2)  

𝐼2(𝑦𝑖,2, 𝑦𝑖,3) … ∗ 𝐼𝐷−1(𝑦𝑖,𝐷−1, 𝑦𝑖,𝐷) 𝑝𝐷(𝑦𝑖,𝐷|𝒙𝑖,𝐷)] 

 

The posteriors 𝑝𝑑(𝑦𝑖,𝑑|𝒙𝑖,𝑑) can be provided by any 

discriminative classifier. The temporal interaction is 

represented by a 𝐶 × 𝐶 matrix 𝐼𝑑, whose rows refer to the class 

at the earlier date (𝑡𝑑) and columns to the class at the 

subsequent date (𝑡𝑑+1).  

 

2.2 Proposed Method 

The proposed method estimates 𝐷 − 1 transition matrices 𝐼𝑑, 

each refering to a pair of consecutive dates 𝑡𝑑 and 𝑡𝑑+1, for 

𝑑 = 1, … , 𝐷 − 1. Instead of targeting the performance over all 

sequence, each 𝐼𝑑 is estimated separately for each pair of 

consecutive dates. For sequences comprising two dates 

equation (2) takes the form 

 

(�̂�𝑖,𝑑,�̂�𝑖,𝑑+1) =  argmax
(𝑦𝑖,𝑑,𝑦𝑖,𝑑+1)

[𝑝𝑑(𝑦𝑖,𝑑|𝒙𝑖,𝑑) ∗ 

(3) 

 𝐼𝑑(𝑦𝑖,𝑑 , 𝑦𝑖,𝑑+1) ∗ 𝑝𝑑+1(𝑦𝑖,𝑑+1|𝒙𝑖,𝑑+1)] 

 

Basically, the estimation procedure computes the transition 

matrix that maximizes a given accuracy metric 𝑅(𝐼𝑑) 

measured upon an available set of labelled data relative to 

dates 𝑡𝑑 and 𝑡𝑑+1.  

 

Notice that CRF training involves two steps, first the 

classifiers  𝑝𝑑 and 𝑝𝑑+1 that will deliver the association 

potentials for dates 𝑡𝑑 and 𝑡𝑑+1,  and second, the matrix 𝐼𝑑 that 

 

Figure 1: Methodology proposed to calculate the objective function 𝑅. 

 

 

 
 

 

 Objective Function: 
        Let   𝑆 be the set of image sites with known class labels at dates 𝑡𝑑 , 𝑡𝑑+1,  

𝑦𝑗,𝑑 and 𝑦𝑗,𝑑+1 be variables associated to site 𝑗, for all 𝑗 ∈ 𝑆 that may take values in the set 𝛀 = {𝜔1, 𝜔2, … , 𝜔𝐶}, 

at dates 𝑡𝑑 , 𝑡𝑑+1  

𝒙𝑗,𝑑 and 𝒙𝑗,𝑑+1 be the observed data from site 𝑗, 𝑗 ∈ 𝑆, at dates 𝑡𝑑 , 𝑡𝑑+1  

𝑝𝑑 and 𝑝𝑑+1 be discriminative classifiers for  dates 𝑡𝑑 , 𝑡𝑑+1 

𝐼𝑑 be the interaction matrix for dates 𝑡𝑑, 𝑡𝑑+1 

 

1. Partition the sites of 𝑆 in 𝐾 approximately equal sized disjoint subsets. 

2. for 𝑘 =  1 to 𝐾 do 

a. Separate the 𝑘-th subset of 𝑆 for validation (𝑆𝑣) an use the remaining subsets (𝑆𝑡𝑟) for training. 

b. Train discriminative classifiers 𝑝𝑑 and 𝑝𝑑+1 upon the samples in 𝑆𝑡𝑟 for dates 𝑡𝑑 and 𝑡𝑑+1, respectively 

c. Using the classifier 𝑝𝑑 and 𝑝𝑑+1 trained in the previous step, compute the posterior probabilities for the 

data of all sites 𝑗 ∈ 𝑆𝑣 relative to dates 𝑡𝑑 and 𝑡𝑑+1. 

d. Obtain the pairwise CRF solution for all sites 𝑗 ∈ 𝑆𝑣, at dates 𝑡𝑑 and 𝑡𝑑+1; this is the class label pairs 

𝑦𝑗,𝑑
∗  and 𝑦𝑗,𝑑+1

∗  given by: 

(𝑦𝑗,𝑑
∗ , 𝑦𝑗,𝑑+1

∗ ) = argmax
(𝑦𝑗,𝑑,𝑦𝑖,𝑑+1)

[𝑝𝑑(𝑦𝑗,𝑑|𝒙𝑗,𝑑)𝐼𝑑(𝑦𝑗,𝑑 , 𝑦𝑗,𝑑+1)𝑝𝑑+1(𝑦𝑗,𝑑+1|𝒙𝑗,𝑑+1)] 

e. Compute the CRF classification accuracy 𝑅𝑘(𝐼𝑑) achieved in the previous step (different accuracy 

metrics can be used here). 

enddo 

3. Return the average performance  𝑅(𝐼𝑑) =
1

𝐾
∑ 𝑅𝑘(𝐼𝑑)𝑘  over all 𝐾 folds. 
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represents the interaction potential. Cross validation is the 

standard procedure in these cases.  

 

Accordingly, the training data is split in 𝐾 folds. One fold, say 

the k-th one, is taken for validation, while the remaining 𝐾 −
1 folds are used to train the discriminative classifiers 𝑝𝑑 and 

𝑝𝑑+1. For a given 𝐼𝑑, the CRF accuracy 𝑅𝑘(𝐼𝑑) of the data in 

the 𝑘-th fold is computed using the association potential 

provided by  𝑝𝑑 and 𝑝𝑑+1. The procedure is repeated for k 

varying from 1 to 𝐾 and the average over all 𝐾 runs are taken 

as the accuracy associated to 𝐼𝑑, formally 

 

𝑅(𝐼𝑑) =
1

𝐾
∑ 𝑅𝑘(𝐼𝑑)

𝑘

 
(4) 

 

The procedure to estimate the optimum transition matrix 𝐼𝑑 

reduces to an optimization problem having 𝑅(𝐼𝑑) as objective 

function, specifically  

 

𝐼𝑑 =  argmax
𝐼𝑑

 𝑅(𝐼𝑑) (5) 

 

The procedure to compute the objective function is formally 

presented in Figure 1. It should be noted that different 

accuracy functions can be used for 𝑅𝑘(𝐼𝑑).  

 

In the worst case, the number of parameters to estimate is equal 

to 𝐶2, the number of elements of 𝐼𝑑. However, this can be 

reduced by exploiting prior knowledge. For instance, the terms 

referring to class transitions that knowingly do not occur from 

𝑡𝑑 to 𝑡𝑑+1, can be set to zero and need not to be estimated. In 

this way the problem may be considerably simplified and the 

demand for training samples alleviated. 

 

Many optimization algorithms can be used to compute 

equation 5. Most of them require a good starting solution. In 

this study we considered two possibilities. First, we took as 

starting solution the joint probability estimates given by: 

 

𝐼𝑑
𝑗𝑜𝑖𝑛𝑡 (𝑖, 𝑗) = #{𝑦𝑖,𝑑 = 𝜔𝑖 , 𝑦𝑗,𝑑+1 = 𝜔𝑗}/𝑁 (6) 

 

where the numerator #{𝑦𝑖,𝑑 = 𝜔𝑎, 𝑦𝑗,𝑑+1 = 𝜔𝑏} represents the 

number of training samples belonging to class 𝜔𝑖 and 𝜔𝑗  at 

epochs 𝑡𝑑 and  𝑡𝑑+1, respectively, and the denominator 𝑁 is 

the total number of training samples. Second, the starting 

solution is given by conditional probability estimates, formally 

 

 

𝐼𝑑
𝑐𝑜𝑛𝑑 (𝑖, 𝑗) = #{𝑦𝑖,𝑑 = 𝜔𝑖|𝑦𝑗,𝑑+1 = 𝜔𝑗}/𝑁 (7) 

 

where the numerator #{𝑦𝑖,𝑑 = 𝜔𝑎|𝑦𝑗,𝑑+1 = 𝜔𝑏} represents the 

number of training samples belonging to class 𝜔𝑖 at epochs 𝑡𝑑, 

given that it belongs to class 𝜔𝑗  at  𝑡𝑑+1. Again, the 

denominator 𝑁 is the total number of training samples. 

 

3. EXPERIMENTAL ANALYSIS 

3.1 Dataset 

The study area corresponds to 124.100 ha in the state of São 

Paulo, Brazil (see Figure 3). Agriculture is the main activity in 

this area. The most common crops found in the region are: 

sugarcane, soybeans and corn. Sugarcane is a semi-perennial 

crop with cycles of 12 and 18 months. On the other hand, 

soybeans and corn are annual crops with cycles between 3 – 6 

months. Two broad phenological states were considered: 

Growing and Adult. The stages prior to seeding and after 

harvesting, which were assigned to no crop, were also 

modelled. Even though Pasture and Riparian Forest are 

actually not crops, they were also treated as crop types in our 

model.  

 

The image sequence was composed of a total of 12 Landsat 

scenes (see acquisition dates in Table 1), from either 

TM/Landsat-5 or ETM+/Landsat-7 (Sanches, 2004). Bands 

from 1-5, 7 and NDVI were used as features. These images 

were stacked forming a single multi-date image with 72 bands. 

Then, a Gaussian smoothing and the Sobel operator were 

applied (c.f. Leite et al., 2011). Finally, the Watershed 

segmentation algorithm was employed to generate segments 

with consistent borders across all images. As the images were 

co-registered, each segment corresponds to the same 

geographical region, which is crucial for temporal analysis. A 

total of 291 reference image locations were selected in the 

study area and two experts classified them visually in each 

image indicating the crop class and corresponding 

phenological stage. 

 

2002 2003 2004 

  08/01/2003 19/01/2004 

  09/02/2003 - 25/02/2003   

  14/04/03 - 30/04/2003   

  16/05/2003   

  27/07/2003   

  12/08/2003   

02/09/2002     

20/10/2002 15/10/2003   

 

Table 1: Acquisition dates of the images in the dataset. 

 

 
 

Figure 2: The underlying Markov model. 

 

3.2 Model Description 

The dependencies between classes in the study area (c.f. 

Section 3.1) are presented in Figure 2 as a Markov network. 

Two phenological stages, Growing (GR) and Adult (AD) are 
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considered for each crop: corn (CR), soybeans (SJ) and 

sugarcane (SC). We further regarded the prepared soil (PP) 

stage, which corresponds to the time after the soil was 

prepared for sowing before the crop sprouts and while the 

spectral response is mostly determined by bare soil. A fourth 

stage called post-harvesting (PH) was added to the model. It 

represents the period after harvest when the vegetation left 

overs still lay on the soil before it starts being prepared for the 

next seeding. In our model prepared soil (PP) and post-

harvesting (PH) are assigned to no particular crop. As for 

Pasture (PS) and Riparian Forest (RP) we assumed that both 

are permanently in the Adult (AD) stage. 

 

It is important to bear in mind that the basic model of Figure 2 

might change depending on the pair of consecutive dates being 

considered. For instance, class transitions that might occur in 

summer might not occur in winter and vice-versa. 

Furthermore, some classes might not appear at some dates, 

implying in simpler models.  

 

Class Crop Stage # samples 

PP 
No crop 

Prepared Soil 611 

PH Post-Harvest 355 

SJ-GR 
Soybeans 

Growing 48 

SJ-AD Adult 190 

CR-GR 
Corn 

Growing 23 

CR-AD Adult 49 

SC-GR 
Sugarcane 

Growing 356 

SC-AD Adult 1157 

PS Pasture Adult 272 

RF 
Riparian 

Forest 
Adult 357 

 

Table 2: Classes considered in the Markov model and their 

relation to crop types and phenological stages. 

 

Table 2 relates the classes shown in Markov network of Figure 

2, the crop types and the phonological stages. The rightmost 

column of Table 2 informs the number of samples available in 

our data set for each crop type and phonological stage. 

 

Notice that it is an unbalanced dataset, being corn the class 

with least samples and sugarcane the class with most samples. 

 

3.3 Experimental Protocol 

 

Due to the scarcity of available labelled samples (image sites) 

we adopted the leave-one-out strategy. In other words, we 

separated one sample for testing, and trained the model upon 

the remaining 290 samples. Also, for the training procedure 

we followed a leave-one-out strategy, which corresponds to 

setting 𝐾 = 290 in the scheme presented in Figure 1. This 

procedure was repeated for each of the 291 sites in the data set. 

The results presented later in this paper are averages over all 

runs. 

 

To generate association potentials we coded the Rotation 

Forest (ROF) (Rodriguez et al., 2006) classifier in MATLAB. 

Prior to the training step the samples were replicated to 

mitigate the effect of sample imbalance among the classes. 

  

For the optimization task we used a function available in the 

MATLAB Optimization Toolbox that implements the Pattern 

Search (Audet et al., 2003) algorithm. This function permits to 

impose constraints to the search procedure. In all experiments 

the elements of the transition matrices were constraint to be 

non-negative. This follows from the definition of random 

fields. 

 

A second constraint was added to the optimization procedure. 

If it is assumed that transition matrices represent conditional 

probabilities (as in eq. 6) it was imposed to the optimization 

procedure that each row sums up to 1. When transitions are 

assumed to be related to joint probabilities (as in eq. 7), the 

 
 

Figure 3: Study area in São Paulo, Brazil (taken from Leite et al., 2011).  
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elements of the whole transition matrix were constrained to 

sum up to 1; this is necessary to deal with the fact that 

multiplying 𝐼𝑑 on the right hand side of equation (3) by any 

positive factor does not alter the result. 

 

As baseline to compare the performance of our method we 

took in the estimates provided by equation (6), for conditional 

probability based, and by equation (7) for joint probability 

based estimates. These were also used as starting solution for 

the optimization procedure. Thus, the experiments aimed at 

assessing how much our method was able to improve the 

accuracy in relation to the starting transition estimates. 

 

As mentioned before, we reduced the number of parameters to 

be estimated by assuming that elements of 𝐼𝑑 corresponding to 

impossible class transitions were known beforehand as being 

equal to zero. 

 

The objective function 𝑅(𝐼𝑑) was formulated as the overall 

accuracy (OA) or the average per class accuracy (AA), for 

three different set of labels: classes, crop types and 

phenological stages, which correspond to the first, second and 

third columns of Table 2.  

 

3.4 Results 

The results are shown in Figure 4 and represent average values 

computed over all sequences of a given length, which varies 

from 1 to 12. 

 

Figure 4(a) and 4(c) refer to the baseline based on joint and on 

conditional probabilities, respectively. These results confirm 

the expectation that a multitemporal dataset allows for an 

improvement relative to a monotemporal one. The accuracy 

achieved with sequences of length 2 was higher than for a 

single image, for all accuracy metrics. Interestingly, adding 

more images brought little improvement, for some metrics it 

was even deleterious. This can be partially explained by the 

fact that more than one phenological cycle might be included 

as more images are added to the sequence. Indeed, no 

improvement should be expected from adding images if the 

sequence already contains one full cycle. Apart from Pasture 

and Riparian Forest, the phenological cycles of some crops 

are shorter than the time frame covered by the data set. 

Soybeans and corn, for instance, have short cycles (about 5 

months), whereas some sorts of sugarcane have 12 month long 

circles.  

 

In both plots overalll accuracies are much higher than the 

corresponding average class accuracies. The high imbalance 

in the number of samples per classes in our dataset is 

responsible for these results. Recall that in our experiments 

 

  
(a) (b) 

  

(c) (d) 

Figure 4. Accuracies of the baseline (a) of the proposed method and the accuracy improvement (c) for different sequence lengths.  
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samples were replicated to mitigate this problem as far as the 

association potentials was concerned. No strategy was applied 

to alleviate sample imbalance in the estimation of interaction 

potentials. 

 

The estimates based on conditional probabilities (Figure 4c) 

outperformed the joint probabilities based estimates (Figure 

4a) in up to 0.03. The sample imbalance can also have caused 

such superiority. 

 

The accuracies reported Figure 4a and 4c are substantially 

inferior when expressed in terms of classes than in terms of 

crop or stage separately. Obviously, identifying both crop and 

stage as encoded in classes is much harder than identifying 

correctly at least one of them. 

 

Figure 4b shows the improvement brought by the proposed 

method relative to the accuracies reported in Figure 4(b). It 

should be noted that each curve refers to a different metric. In 

each case the same metric was used as objective function for 

the optimization procedure.  

 

The main finding from these results is that the method was 

consistently superior to the baseline for all metrics considered 

in the experiments. The improvement was significant for 

average class accuracies. Our method was able to offset the 

effect of sample imbalance, which degraded the average 

accuracies shown in Figure 4. 

 

For sequence lengths longer than 5 our method outperformed 

the base line in about 0.13 in absolute terms, both for class and 

for crop recognition. For phenological stage recognition the 

improvement was close to 0.05. Similar to Figure 4a the curves 

of Figure 4c also stabilize but at a larger sequence length - 

around 6 instead of 2. This observation is consistent with the 

intuition that the benefits from the CRF based models for 

multitemporal crop recognition is impaired by a poor estimate 

of the interaction potentials. As more images are added to the 

sequence the inaccuracies in the interaction potential estimates 

accumulate, until the inclusion of more images brings no 

additional benefit. Thus, we presume that, in relation to the 

baseline, our method provides a better estimate of the 

interaction potentials and allows for a better exploitation of 

multitemporal data.  

 

The other curves in Figure 4c refer to overall accuracies. Even 

though our method also outperformed the baseline, the 

improvement is not so significant in such cases; around 0.02 

and 0.03 for class and crop recognition and close to zero for 

phenological stage recognition. Again, this is probably due to 

the high sample imbalance in the data set. 

 

Finally, Figure 4d shows how much our method improved the 

accuracy in relation to the baseline derived from conditional 

probabilities. Clearly, the improvement was lower than what 

we observed for baseline based on joint probabilities. 

Nevertheless, most aforesaid conclusions still hold. The only 

exception is the curve of Figure 4d related to OA Stage that 

shows a slight accuracy decrease for sequences longer than 5. 

 

4. CONCLUSIONS 

This work proposed a method to estimate temporal interaction 

in a Conditional Random Field (CRF) based framework for 

crop recognition from multitemporal remote sensing images. 

Temporal interactions are represented by matrices, whose 

elements are independent from the observed data. Basically, 

the method searches the space defined by the elements of the 

transition matrix for the set of values that maximizes the 

accuracy of the CRF based model upon a given set of labelled 

samples. 

 

The method was validated upon a sequence of 12 Landsat 

multitemporal images comprising five agricultural targets. 

Different accuracy metrics were tested as objective function 

for an optimization procedure that delivers the estimates. The 

experiments demonstrated that the method is able to improve 

classification accuracy by refining initial estimates based on 

joint and condition class transition probabilities.  

 

This study only considered temporal interaction. In the 

continuation of this research spatial interaction will be 

incorporated to the CRF model.   
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