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ABSTRACT:

Extended morphological profile (EMP) is a good technique for extracting spectral-spatial information from the images but large size of
hyperspectral images is an important concern for creating EMPs. However, with the availability of modern multi-core processors and
commodity parallel processing systems like graphics processing units (GPUs) at desktop level, parallel computing provides a viable
option to significantly accelerate execution of such computations. In this paper, parallel implementation of an EMP based spectral-
spatial classification method for hyperspectral imagery is presented. The parallel implementation is done both on multi-core CPU
and GPU. The impact of parallelization on speed up and classification accuracy is analyzed. For GPU, the implementation is done
in compute unified device architecture (CUDA) C. The experiments are carried out on two well-known hyperspectral images. It is
observed from the experimental results that GPU implementation provides a speed up of about 7 times, while parallel implementation
on multi-core CPU resulted in speed up of about 3 times. It is also observed that parallel implementation has no adverse impact on the

classification accuracy.

1. INTRODUCTION

Hyperspectral imaging (Goetz, 2009) sensors capture an image
scene in hundreds of fine contiguous spectral bands in ultraviolet
to infrared region providing rich spectral and spatial
information. Classification is an important tool for hyperspectral
image analysis having applications in many areas including
urban development, environmental studies, agricultural
monitoring, and defense etc. However, the high dimensionality
poses certain challenges to the supervised pixelwise
classification due to curse of dimensionality and limited
availability of training samples. Often dimensionality reduction
is performed as a pre-classification step to mitigate such
problems. PCA (Joliffe, 2002), discrete boundary feature
extraction (DBFE) (Lee and Landgrebe, 1993), discrete wavelet
transform (DWT) (Bruce et al., 2002), and maximum noise
fraction (MNF) (Chang and Du, 1999), etc. are among the most
important feature extraction techniques used for dimensionality
reduction.  Unlike conventional spectral approach, better
classification accuracies can be achieved by integrating spectral
and spatial contents.  Although, spatial information is not
directly inherent with the pixels and usually determined using
pixel neighborhood relationships. Some classes in an image may
have similar  spectral characteristics and therefore,
complementary  spatial information can help better
discriminating the classes.

Mathematical morphology as been successfully used for spatial
feature extraction in the form of structural information.
Morphological operations require a priori definition of
structuring element (SE) with a specified size and shape.
However using a fixed size SE is not appropriate as one
particular size may well detect the objects from a specific class
but may not be suitable to detect objects from some another
class. Benediktsson et al. (2003) used morphological operators
with a multiscale approach to collect structural information. In
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multiscale approach, successive opening and closing operations
are performed using a series of SEs of increasing sizes to build
morphological profiles (MPs). For hyperspectral images the
MPs are build on each of the individual band images. These
MPs all together are called extended MP (EMP). Considering
high dimensionality of hyperspectral images, usually EMPs are
built on the components obtained from some feature extraction
technique. Benediktsson et al. (2005) built EMPs on principal
components (PCs) and reported better results over spectral
methods by experimenting on urban data. Fauvel, et al. (2008)
computed EMPs from PCs and stacked with spectral features to
perform classification with SVM. A different approach is used
by Lv et al. (2014) to build MPs from PCs using multi-shaped
SEs.

Considering volume of data, processing hyperspectral images
results in higher computational cost. Although, feature
extraction alleviates computational burden to some extent,
multicore processors and graphics processing units (GPUs) can
be used to further speed up such operations in parallel
processing environment at desktop level. Tan et al. (2015)
presented parallel version of SVMs on GPUs using compute
unified device architecture (CUDA) (Sanders and Kandrot,
2011) to accelerate classification. Wu et al. (2015) proposed
parallel implementation of composite kernels on SVMs for
hyperspectral image classification. The small calculations are
executed at CPU and intensive computations are ported on
GPUs. The GPU based sparse representation classification of
hyperspectral images is addressed in references (Wu et al.,
2015a, Wu et al., 2015b). Extreme learning machine algorithm
is developed on GPU for spectral-spatial classification for
hyperspectral imagery by Lopez-Fandino et al. (2015) to
significantly reduce execution time.

This paper presents an EMP based spectral-spatial classification
method for hyperspectral images in parallel processing
architecture. The rest of the paper is organized as follows. The
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process of creating EMPs is described in Section 2 and Section 3
presents parallel implementation of EMP based method. The
experimental results with analysis are provided in Section 4.
Finally Section 5 concludes the work.

2. EMP

Mathematical morphology is a useful technique for extracting
structural information from an image. Erosion and dilation are
the two fundamental operators in mathematical morphology
(Soille, 2004), which are applied with a structuring element.
Using erosion and dilation, other morphological operators can
be defined among which, opening and closing are two widely
used operators. Application of opening isolates the bright
structures in the image while closing operation isolates the
structures in darker areas. The concept behind the opening is to
dilate an eroded image to recover eroded image structures bigger
than structuring element. In contrast the closing operation is
achieved by eroding the dilated image in order to recover initial
shape of the dilated image structures. The determination of size
of the structuring element is an important issue as most often the
size of the structures in consideration is not exactly known. For
this reason a range of different growing structuring element sizes
are explored to record the proper response of the structures in
the image. This concept is called granulometry (Soille, 2004).
Pesaresi and Benediktsson (2003) defined the concept of
morphological profile ® using granulometry to analyze the
image structures. The opening profile ®"(z) at pixel  of image
1, which is a collection of n opening outcomes, is defined as

" (@) = {8 (2), 6"V (2), 6 (2)} (1

where ¢‘(x) is opening by reconstruction with structuring
element of size 7. The closing profile U™ (z) at pixel x is given
by

v(2) = (@), 07 (2), . v (@)} @

where '(x) is closing by reconstruction with structuring
element of size ¢. The morphological profile at pixel x is defined
by stacking " (z) and U"(z) as follows

MP(z) = {&" (z), ¥" (z)}
= {6" (), .., 6@ (), ©)
I(2), ¢ (@), ... " (@)}

where @ () = ¥ (z) = I(z). Eq. (3) defines morphologi-
cal profile for one band image. For high dimensional images the
profiles are created from m-band transformed data to form EMP.
The EMP for a pixel x is formed as follows

EMP(z) = {MP"'(z), MP*(z),... MP™(z)} (4

where M P* is the morphological profile built on kth band
image. The serial implementation approach for creating EMPs
are described in Figure 1, where pixels are operated one by one
with the help of a loop. A method for spectral-spatial
hyperspectral image classification is presented in Figure 2.
Although, EMPs consist of both spectral and spatial components
but in this methodology explicit spectral features are combined
with EMPs to fully exploit spectral information.

3. PARALLEL IMPLEMENTATION

In traditional approach, the operations are carried out pixel by
pixel. However, since same operations are performed on all the
pixels, this methodology is well suitable for single instruction

Input: Principal components PC of hyperspectral image, size vector s
Output: Extended morphological profile EMP of the image

for i=1 to npc //npc: number of PCs
for j=1tonp //np: number of pixels
k=(i-1)*2*np+(j-1)*2+1;
EMP[k]=opening(PC,i,j,s);
//opening is function to create opening profile
EMP[k+1]=closing(PC,i,j,s);
//closing is function to create closing profile
end for
end for

Figure 1: Serial approach for creating EMP
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Figure 2: EMP based spectral-spatial classification

multiple data (SIMD) parallel architecture. Modern processors
with multiple cores have capabilities to perform parallel
operations.  The methodology given in Figure 1 can be
implemented on such processor by distributing computational
load among the multiple cores to speed up the execution. The
different cores can simultaneously and independently execute
operations. Languages like MATLAB have in-built features like
parfor to write parallel programs. In order to create
morphological profiles in parallel, the inner loop in Figure 1 can
be replaced by parfor loop as described in Figure 3. The parfor
loop uses processor cores to perform identical operations on
different elements. MATLAB creates multiple copies known as
workers, which are invoked and released as and when required.
If workers are less than the simultaneous identical tasks needed,
the job scheduler switches and coordinates cores among the
tasks.

GPUs are massively parallel processors based on SIMD
programming model. GPU can execute same instruction on
multiple data elements with the help of thousands of concurrent
threads. Individual threads handle different data elements. In
GPU programming model, the parallel threads are arranged in a
2-D grid of blocks. Each block has multiple threads that are
organized in a 3-D array. The grid and blocks are logically
managed by the programmer, however upper limit on the sizes
vary from device to device. In CUDA based implementations a
special function known as kernel is created to specify
instructions for parallel threads. ~GPUs are optimized for
intensive computations (Wu et al., 2015a). Therefore, a hybrid
CPU-GPU model is proposed for executing small operations on
CPU while transferring memory intensive calculations on GPU
as shown in Figure 4. As shown in the figure, after feature
extraction, image data elements are transfered to the GPU. GPU
creates EMPs and classifies with the help of SVM. For K-class
problem, an ensemble of K (K — 1)/2 binary SVMs is created
(Tan et al., 2015). Different binary SVMs can be handled by
different processing threads. The classification map is then
written back to the main memory.
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mycluster=parcluster('local");
saveprofile(mycluster);

for i=1 to npc
parfor j=1 to np

end parfor
end for
delete(gcp('nocreate'));

Input: Principal components PC of hyperspectral image, size vector s
Output: Extended morphological profile EMP of the image

// create cluster profile
mycluster NumWorkers=numWorkers

parpool(mycluster); //Pool of workers is created
/Inpc: no. of PCs
/Inp: no. of pixels
k=(i-1)*2*np+(j-1)*2+1;
EMP[k]=opening(PC,i,j,s);

//opening is function to create opening profile
EMP[k+1]=closing(PC,i,j,s);

//closing is function to create closing profile

//close pool of workers

//numWorkers: no. of workers

Figure 3: Creating EMP on multi-core CPU

Next size in s
A

Figure 4: Framework for CPU-GPU implementation of EMP based spectral-spatial classification

4. EXPERIMENTS AND DISCUSSION

The experiments are carried out to evaluate the impact of
parallel implementations on the execution time and classification
accuracy. The details of experimental setup and results obtained
are discussed in this section.

4.1 Hyperspectral images

The experiments are performed on two hyperspectral images
Pavia University and La Mancha Alta. Pavia University image is
taken over the Engineering School at University of Pavia, Italy
by German aerospace agency with ROSIS-3 sensor. It is
610 x 340 pixels image having 103 spectral bands in
0.43 — 0.86um range. The pixel size is 1.3m. The scene has
nine information classes of interest: (1) Asphalt, (2) Meadows,
(3) Gravel, (4) Tree, (5) Metal sheets, (6) Soil, (7) Bitumen, (8)
Bricks, and (9) Shadow.

La Mancha Alta image having dimensions of 512 x 512 is
captured by DIAS-7915 sensor in spectral range of

0.40 — 12.5m over an agriculture land known as La Mancha
Alta in Spain. This image has 65 bands and pixel size of 5m.
There are eight land cover classes of interest: (1) Bricks, (2)
Pasture land, (3) Soil, (4) Vineyard, (5) Wheat, (6) Hydrophytic
veg, (7) Salt, and (8) Water. The false color composites (FCCs)
of both images are shown in Figure 5.

4.2 Experimental setup

The SVM is implemented with LIBSVM (Chang et al., 2011)
tool using radial basis function (RBF) kernel. The SVM
parameters cost C' and spread of kernel ~ are optimally
determined using 5-fold cross validation. The functions of
LIBSVM are also used for parallel SVM implementation. The
training samples are randomly taken from the ground reference
image and rest of the reference pixels are used to test the
accuracy of the results. The EMPs are created using SE of disk
shape and size is varied as 3 X 3,5 x 5,7 x 7,and 9 x 9. The
implementation is done on Intel Xeon E5-1650 operating at 3.50
GHz that features 6 cores and 16 GB RAM. The GPU is
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Approach Pavia University _La Mancha Alta
Time (s) [ Speed up || Time (s) | Speed up
Serial 29.85 - 36.25 -
Multi-core 10.47 2.85 11.33 3.2
CPU-GPU 4.88 6.12 5.08 7.14

Table 1: Execution time and speed up for different approaches

NVIDIA Tesla T10 GPU having 240 cores operating at 1.296
GHz. The dedicated GPU memory is 4 GB.

The classification accuracies are determined in terms of kappa
coefficient (Congalton and Green, 1999) defined as follows:

K K
o — N s @i — D, Yizi
N2 — Zfil Yizi

where N is the total number of pixels, K is the number of
classes in the image, x; represents the number of correctly
classified pixels in ¢th class, y; is the number of pixels in class 7,
and z; represents the number of pixels classified in class <.

&)

4.3 Results and analysis

The results are obtained for two parameters: execution time and
classification accuracy (k). The reported results for each
experiment are average of ten trials. First, experiments are
carried out for execution time. The execution times for serial,
multi-core, and CPU-GPU implementations for both images are
reported in Table 1. It can be observed that by exploiting
multiple cores of CPU, the execution can be accelerated by a
factor of ~ 3. Since CPU used has only six cores, different
elements are frequently scheduled to have run time leading to
significant overhead. However, GPU being a massive parallel
system is able to achieve speed up of ~ 7 times. Larger the size
of the image, more would be the speed up on GPU as also
evident from the Table 1. La Mancha Alta image has more
number of pixels than Pavia University image to be processed.
Therefore, speed up is better for La Manch Alta image.

The classification accuracies are given in Table 2. Both classwise
and global x values are reported. It can be observed from the
table that there is no adverse effect on the classification accuracy
by parallel execution of the operations. Although, the accuracies
in different implementations are different but differences are not
significant. The observed differences in accuracies are due to
random selection of training samples from the ground reference.

5. CONCLUSION

In this work parallel implementations of EMP based
spectral-spatial classification of hyperspectral imagery are
presented. The implementations are done on multi-core
processor and CPU-GPU hybrid systems. The experiments on
two different kind of hyperspectral images demonstrated that
execution was accelerated significantly without compromising
classification accuracies. The mulit-core CPU implementation
accelerated the execution by ~ 3 times, while CPU-GPU hybrid
implementation resulted in speed up by ~ 7 times.
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Classwise K

Pavia University La Mancha Alta
Class | Train [ Test [ Serial | Multi-core [ CPU-GPU || Class | Train | Test | Serial [ Multi-core | CPU-GPU
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