The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Publications Copernicus
Articles | Volume XLI-B7
21 Jun 2016
 | 21 Jun 2016


P. Kupidura

Keywords: SAR Images, Radar Images, Filtering, Mathematical Morphology, Speckle Suppression

Abstract. This paper presents the results of research on the effectiveness of different filtering methods dedicated to speckle suppression in SAR images. The tests were performed on RadarSat-2 images and on an artificial image treated with simulated speckle noise. The research analysed the performance of particular filters related to the effectiveness of speckle suppression and to the ability to preserve image details and edges. Speckle is a phenomenon inherent to radar images – a deterministic noise connected with land cover type, but also causing significant changes in digital numbers of pixels. As a result, it may affect interpretation, classification and other processes concerning radar images. Speckle, resembling “salt and pepper” noise, has the form of a set of relatively small groups of pixels of values markedly different from values of other pixels representing the same type of land cover. Suppression of this noise may also cause suppression of small image details, therefore the ability to preserve the important parts of an image, was analysed as well. In the present study, selected filters were tested, and methods dedicated particularly to speckle noise suppression: Frost, Gamma-MAP, Lee, Lee-Sigma, Local Region, general filtering methods which might be effective in this respect: Mean, Median, in addition to morphological filters (alternate sequential filters with multiple structuring element and by reconstruction). The analysis presented in this paper compared the effectiveness of different filtering methods. It proved that some of the dedicated radar filters are efficient tools for speckle suppression, but also demonstrated a significant efficiency of the morphological approach, especially its ability to preserve image details.