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ABSTRACT: 

 

Great efforts are presently taken in the scientific community to develop computerized and (fully) automated image processing 
methods allowing for an efficient and automatic monitoring of sea birds and marine mammals in ever-growing amounts of aerial 

imagery. Currently the major part of the processing, however, is still conducted by especially trained professionals, visually 

examining the images and detecting and classifying the requested subjects. This is a very tedious task, particularly when the rate of 

void images regularly exceeds the mark of 90%. In the content of this contribution we will present our work aiming to support the 
processing of aerial images by modern methods from the field of image processing. We will especially focus on the combination of 

local, region-based feature detection and piecewise global image segmentation for automatic detection of different sea bird species. 

Large image dimensions resulting from the use of medium and large-format digital cameras in aerial surveys inhibit the applicability 

of image processing methods based on global operations. In order to efficiently handle those image sizes and to nevertheless take 
advantage of globally operating segmentation algorithms, we will describe the combined usage of a simple performant feature 

detector based on local operations on the original image with a complex global segmentation algorithm operating on extracted sub-

images. The resulting exact segmentation of possible candidates then serves as a basis for the determination of feature vectors for 

subsequent elimination of false candidates and for classification tasks. 

 

 

1. INTRODUCTION 

Since fall 2013, the monitoring of sea birds and marine 
mammals in the context of environmental impact studies 

concerning offshore wind energy plants within the German 

exclusive economic zone (EEZ) is relying solely on digital 

aerial imaging. According to the presently effective standard 
StUK4 (BSH, 2013), a minimum area of 200 km² of sea surface 

must be digitally captured for a single survey. Given a ground 

sampling distance (GSD) in the range of 2 - 3 centimetres and a 

photographic coverage of 200-300% (due to overlap) this results 
in large amounts of image data. Great efforts are presently taken 

in the community to develop computerized image processing 

methods allowing an efficient and automatic processing of the 

ever-growing amounts of aerial imagery. Currently the major 
part of the processing, however, is still conducted by especially 

trained professionals, visually examining the images and 

detecting and classifying the covered subjects. This is a very 

tedious task, particularly when the rate of void images regularly 

exceeds the mark of 90%. 

 

First reports on automated analysis of aerial imagery for 

wildlife census reach back as far as into the 1980‘s. Overviews 
on the early Approaches are given in (Allen, 1991) and (Groom, 

2013). The utilized approaches range from simple thresholding 

(Bajzak, 1990) and template matching (Allen, 1991) up to the 

simulated annealing of spatial models (namely Markov point 
processes; Descamps, 2011) and Object-based Image Analysis 

(OBIA) (Groom, 2013). Yet, a fully automated process is far 

out of sight. Manual processing of the aerial images is still the 
standard process. Digital image processing, however, is capable 

to ease and accelerate the manual process by pre-filtering the 

huge amounts of image data for potential candidates. The task 

of professionals is then reduced to inspect and classify 
suggested candidates and to examine random samples for 

quality assurance. In order to assure the quality and efficiency 

of such a process, the automated image analysis has to be 

guaranteed not to miss any of the targeted subjects (i.e. under-
estimation). A certain amount of over-estimation (false 

positives), however, is tolerable, since the candidates are yet to 

be examined and classified by a professional. In order to 

achieve a reduction of the effort, it is mandatory that the effort 
to examine the false positive candidates is lower than the effort 

to visually examine the complete aerial image data. 

 

In contrast to the monitoring of breeding colonies or gathering 
areas, where surveys cover relatively small, determinate areas 

with high abundance densities (e.g. Allen, 1991; Descamps, 

2011, Grenzdörffer, 2013), marine bird ecology assessments 

related to the impacts of offshore windfarms on marine life 
cover large geographical extents, where bird densities are 

usually very low (see above). In addition, the standards for a 

minimum flight altitude of 400m and a minimum survey area of 

200km² (10% of 2000km²) given by the standard StUK4 (BSH, 

2013) in combination with the limited daylight and weather 

conditions during the birds resting season in the winter months 

lead to a very limited number of days with acceptable or even 

perfect flight conditions. Whereas images captured at good 
conditions show a homogeneous dark water surface which 

makes it easy to detect individual bird subjects, survey flights 

conducted in acceptable but non-perfect conditions often result 

in image data where the dark water surface is cluttered with 
artefacts from sun glitter, wave crests and disturbed water. 

These artefacts usually manifest themselves as bright or white, 

saturated image areas in different sizes and of irregular shape 
which massively complicate the processing (both, manually as 

well as automated) of those images. Often, these artefacts show 

strong similarities to positive signal patterns (real birds) making 

their definite classification impossible. This is especially true 
for species with a white or bright plumage (Common Eider, 

Long-tailed duck, Herring gull, etc.). The aim of our studies was 

therefore to investigate how the signal patterns caused by 
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water/light phenomena could be discriminated from signal 

patterns caused by birds.  

 

In the content of this contribution we will present our work 
aiming to support the processing of aerial images by modern 

methods from the field of image processing. We will especially 

focus on the combination of local, region-based feature 

detection and piecewise global image segmentation for 

automatic detection of different sea bird species. The presented 

paper contributes to the following scientific topics: 

- The efficient processing of large-format aerial images 

by a combination of locally operating blob-detector and 
a globally operating, complex segmentation method. 

- The performance of a thresholding approach on feature 

vectors for the discrimination between bright-plumed 

sea birds and water/light phenomena.  
- The impact of the GSD of aerial image data on the 

performance of the above method.  

 

 

2. EXPERIMENTAL SET-UP 

The presented results are based on aerial images of two aerial 

surveys that were captured with an interval of approx. 1 hour 

and with different camera systems. The survey area is located in 
the southern Baltic Sea, north of the Zingst peninsula covering 

parts of the offshore wind farm ‘Baltic I’ and was divided in 

two overlapping bands of about 17km length and 2km width. 

Figure 1 shows the location and extend of the survey area. Both 

bands of the survey overlap for about 700m (red-coloured in 

Figure 1) and were designed to cover the complete area with 

aerial imagery. 

 
The northern band (green-coloured in Figure 1) was captured 

using a Vexcel UltraCam Eagle equipped with a 260Mpx sensor 

and a 100.5 mm lens at a ground sampling distance (GSD) of 

approx. 0.03m. Endlap was fixed to 60%, sidelap was 20%. The 
survey was operated by Weser Airborne Sensing (WAS) and the 

number of captured image frames amounts to 547 frames. The 

southern band of the survey (red-brown coloured in Figure 1) 

was captured using a medium-format camera of type PhaseOne 
iXA180 with sensor size of 80 Mpx and equipped with a 

Schneider-Kreuznach lens with f=110mm. Operated at an 

altitude of 420m above sea level, this resulted in a GSD of 

approx. 0.02m. The achievable endlap was limited by the 
minimum flight speed and the storage capabilities of the camera 

and resulted at about 30%. The sidelap was again fixed to 20%. 

The southern part of the aerial survey resulted in a set of 1460 

image frames. 
 

The meteorological conditions were characterized by changing 

sun light due to partial clouds, low sun, and a sea state of 3-4 

and fresh winds. The sea waves showed breaking crests, 
frequent whitecaps and disturbed waters. In directions towards 

the sun the waves frequently showed sun glitter. 

 

The processing of the medium-format raw images was carried 
out using the CaptureOne software provided by the camera 

manufacturer. Processing steps involved Bayer demosaicing, 

reduction of color-depth from 16-bit to 8-bit, vignetting 
correction, correction of chromatic aberration and histogram 

adjustments. The processed image frames were geo-referenced 

and stored as 24-bit sRGB TIFF. The processing of the northern 

image set was done by WAS. 
 

 

Figure 1. The survey area near offshore wind farm Baltic I  

in the southern Baltic sea. 

 

In the following we explain the image analysis approaches we 

user for the automated detection of sea birds. 
 

 

3. METHODOLOGY 

Large image dimensions resulting from the use of medium and 

large-format digital cameras in aerial surveys inhibit the 

applicability of complex image processing methods based on 

global operations, i.e. methods that require accessing the entire 
extent of an image in order to calculate their results. This is 

mostly due to the fact that their complexity leads to inacceptable 

computation times and that these methods require to produce 

intermediate data that easily multiply the size of the input data. 
Aside from this, the relatively small size of the targeted features 

stands in sharp contrast (~1:1.000.000) to the large coverage 

area of a single image. In order to efficiently handle those image 

sizes and to nevertheless take advantage of globally operating 
segmentation algorithms, we will describe the combined usage 

of a simple performant feature detector (MSER) based on local 

operations on the original image with a complex global 

segmentation (graph cuts) operating on extracted sub-images. 
The resulting exact segmentation of possible candidates then 

serves as a basis for the determination of feature vectors for 

subsequent elimination of false candidates and for classification 

tasks. The classification accuracy depends on the sea bird 
species and the overall weather conditions during the image 

survey. Thereby sun glitter and glare as well as the sea state 

influence the accuracy and completeness of the method. 
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 Figure 2. Top row: candidate sub-images extracted from the 

original data; center row: segmentation results; bottom row: 

gradient magnitudes. Columns a+b: Common Eider;  

columns c+d: sun glitter. 

 

For low-level detection of possible candidates in the image 

signal we use the method of Maximally Stable Extremal 
Regions (MSER). The MSER method is a highly efficient, 

locally operating blob detection method mainly used in 

computer vision. The method was first described by Matas 

(Matas, 2002). It is working on panchromatic images, applying 
an ordered series of thresholds to the image data, which results 

in a sequence of binarizations. Regions appearing in the 

binarizations indicate local extrema in the image data. These 
regions are tracked over the course of the sequence until they 

merge with or dissolve in other regions and their stability 

according to their size and location is assessed using a heuristic 

approach. Regions that prove stable over a certain range of 
binarizations are termed ‘maximally stable’ and form the result 

of the method. The detected MSER’s are given as pixel arrays 

masking the actual regions. In our approach we use the OpenCV 

implementation of the MSER method, which is a variant 
improved for computational complexity (Nistér, 2008). As such 

it is able to efficiently handle the image sizes occurring in 

digital aerial imaging. 

 

 
 

Figure 3. Bird or phenomenon? Wave crests and sun glitter 

often are indistinguishable from real birds.  

 

Starting from a MSER mask, we calculate its center of gravity 
and use the center point to extract a sub-image of 64 x 64 pixels. 

The size of the sub-image is chosen large enough to contain a 

bird surrounded by a sufficient portion of background water 

surface, but small enough to separate a single bird and allow the 

efficient computation of the subsequent segmentation step. In 
the segmentation step we use a method based on graph cuts 

(Boykov, 2001). Graph cuts are a very complex, globally 

operating segmentation method. Its application to images of the 

above dimensions would consume large amounts of 

computational power and memory, and thus, was largely 

inefficient. The original method (Boykov, 2001) obtained 

binary segmentations (i.e. foreground/background) based on 

supervised selection of characteristic foreground or background 
pixels, respectively. More recent advances of the method 

introduce unsupervised segmentation of multiple regions (Kim, 

2008). Here, the binary segmentation is sufficient, since in our 

application case the sea birds usually can be strictly separated 
by choosing a sufficiently small image section. In our 

implementation we use the unsupervised graph cut method from 

(Kim, 2008) based on a formulation of the energy function from 

the same publication and an implementation of the MinCut-
MaxFlow algorithm from (Boykov, 2001). The implemented 

energy function yields good results and obtains a number of 

parameters to control the quality of the segmentation result. 

 
Once the candidate regions are determined, a sequence of 

morphological operations is applied to the region masks in order 

to eliminate very small breakaway sections or merge sub-

regions. Subsequently, a feature vector is calculated for each of 
the regions. The feature vector is calculated over the original 

image data as well as over the normalized gradient magnitude of 

the image data. The calculated features include area, convexity, 

circularity, variance, standard deviation and homogeneity. 
Finally, the feature vector is filtered by individually 

thresholding the feature values using a heuristic approach. 

 

 

4. RESULTS 

4.1 Filtering accuracy 

The image sets from the two parallel surveys were captured 

under acceptable, but non-perfect conditions. Low sun, 
changing light and rough seastate induced large amounts of 

artefacts within the images, such as sun-glitter, wave crest, and 

disturbed water. Due to the similarity of the image patterns of 

those artifacts and white- or bright-plumed bird species, the 
differentiation between those patterns poses a particular 

challenge. Even for the well-trained eyes of the professional 

image analysts a number of cases were hard to decide (see 

Figure 3). 
 

According to the assumptions made in (Groom, 2013), the goal 

for automated detection of sea birds is to filter the localisations 

of possible bird candidates in a way, that under-estimation 
should be avoided or minimized, while over-estimation might 

be accepted to a certain degree. Thus, our task was to find a set 

of filter criterions and parameters to balance a trade-off between 

those two antagonal requirements. Since image representations 
of individual birds show large variations between different 

species gender and pose, we focused our study on the detection 

of male Common Eider (Somatera mollisima). For other species 
and gender, appropriate filter and filter parameter might be 

investigated and their results be combined for visual inspection. 

 

For our study we chose about 20 images from each of the two 
surveys that were known to contain localisations of Common 

Eider. We applied the automated detection as described above 
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Frame 

no. 

Bird localisations False negatives by 

confidence classes 

Total counts 

Manual Autom. 1 2 3 MSER Cand. 

8060 6 6    94 21 

8061 1 1    106 11 

8066 3 3    109 9 

8184 3 4*    133 15 

8185 1 1    123 10 

8189 2 2    191 17 

8190 7 7    193 20 

8194 1 0 1   161 22 

8195 1 1    155 18 

8196 2 1 1   193 15 

8310 1 1    73 11 

8930 3 2   1 138 37 

9029 1 1    64 4 

9030 1 1    66 12 

9159 1 1    127 16 

9160 2 1    98 8 

9165 3 3    130 12 

Table 1. Filter accuracy assessment for the image set taken from 

the southern part of the parallel survey. Highest confidence 

class is denoted by 1, columns 7 and 8 list the total counts of 

detected MSERs, and the filtered candidates  

 
and compared its results with the results of the visual 

examination. The results are listed in tables 1 and 2. There we 

further distinguish the localisations by three confidence classes 

determined during visual examination and classification. In the 
table we also list the numbers of positives in relation to the total 

number of candidates detected in the MSER step. 

 

Table 2. Filter accuracy assessment for the image set taken from 

the northern part of the parallel survey. Due to the coarser GSD 

of 0.03m, the discriminatory power of the filter is much lower 

than in the set with GSD of 0.02m. This is manifested by higher 

counts of candidates and higher under-estimation rates. 

 

The results demonstrate that the requirement of a minimized 

false negative rate can be achieved only at the cost of a 

substantial rate of false alarms. In the case of the southern 
survey area the false alarm rate reached a value of 10 false 

alarms on one found bird. In spite of that, some of the birds still 

were not found by the proposed method. Common reasons that 

caused those false negative results were unusual poses (e.g. 

grooming) or backwash due to chasing or landing. 

 

4.2 Impact of GSD on Filter accuracy 

The results of our study show quite significant differences in the 
accuracy of the automated detection between the both parts of 

the survey. The listing in table 2 shows a substantially more 

critical performance on filter accuracy. Whereas for the 

southern band of the survey, the false negative rate calculates to 
1/13th, the northern band yields a false negative rate of more 

than 1/4th. Furthermore, the average ratio of false positives to 

real birds for the northern part exceeds 350, while amounts to 

below 10 for the southern survey area. 
 

Since both camera flights took place on the same day within the 

range of about an hour, we can eliminate the meteorological 

conditions as a reason. A fact that may have partly influenced 
the observed disparity is the use of different camera systems in 

both surveys. The most reasonable cause, however, is the 

difference in the ground resolution of the images. The filtering 

of the candidates relies on a number of local and contextual 

features calculated from the individual segmentation of the 

candidate. With decreasing spatial resolution of the images, the 

discriminatory resolution of those features also decreases. This 

causes contours and patterns of varying complexity to dissolve 
into uniform shapes and indistinguishable flat regions. 
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