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ABSTRACT: 

 

Polarimetric Synthetic Aperture Radar (PolSAR) imagery is a complex multi-dimensional dataset, which is an important source of 

information for various natural resources and environmental classification and monitoring applications. PolSAR imagery produces 

valuable information by observing scattering mechanisms from different natural and man-made objects. Land cover mapping using 

PolSAR data classification is one of the most important applications of SAR remote sensing earth observations, which have gained 

increasing attention in the recent years. However, one of the most challenging aspects of classification is selecting features with 

maximum discrimination capability. To address this challenge, a statistical approach based on the Fisher Linear Discriminant 

Analysis (FLDA) and the incorporation of physical interpretation of PolSAR data into classification is proposed in this paper. After 

pre-processing of PolSAR data, including the speckle reduction, the H/α classification is used in order to classify the basic scattering 

mechanisms. Then, a new method for feature weighting, based on the fusion of FLDA and physical interpretation, is implemented. 

This method proves to increase the classification accuracy as well as increasing between-class discrimination in the final Wishart 

classification. The proposed method was applied to a full polarimetric C-band RADARSAT-2 data set from Avalon area, 

Newfoundland and Labrador, Canada. This imagery has been acquired in June 2015, and covers various types of wetlands including 

bogs, fens, marshes and shallow water. The results were compared with the standard Wishart classification, and an improvement of 

about 20% was achieved in the overall accuracy. This method provides an opportunity for operational wetland classification in 

northern latitude with high accuracy using only SAR polarimetric data.  

 

 

1. INTRODUCTION 

 

Wetlands are important natural features that are tied to climate 

change, water and carbon cycles. Despite their importance, 

wetlands have been severely damaged by human interference 

and poor management (Walter et al. ,2007). Therefore, there is 

an urgent need to monitor and manage wetland areas. However, 

wetland mapping and monitoring on large scales is challenging 

and expensive. Synthetic aperture radar (SAR) has shown to be 

important for wetland monitoring, especially under conditions 

in which optical images are useless. SAR images are also able 

to penetrate vegetation canopies to some degree, in which 

longer wavelength such as L-band has the deeper penetration 

capability compared to the shorter wavelengths such as X-band 

which just interact with upper part of vegetation (Kasischke et 

al.,1997, Mahdian et al., 2013). Polarimetric SAR (PolSAR) 

decomposition has gained more attention during the past several 

decades and has been found to be successful for vegetation 

mapping of various wetland areas (Cloude, 1988; van Zyl, 

1992; Cloude and Pottier  

1996; Touzi et al., 2004b.) 

Several studies have used remote sensing techniques for 

wetland monitoring (Dronova et al. 2012; Belluco et al. 2006; 

Evans et al. 2014; Marechal et al. 2012). For example, a 

classification approach using spectral and spatial properties of 

neighbouring pixels has been reported by Dekok and colleagues 

(1999). A new method for monitoring the Amazon floodplain 

using the fusion of single polarized radar data and optical image 

has also been proposed in Silva et al. (2010). Many classifiers 

and machine learning methods, such as the maximum likelihood 

classifier (MLC) (Erdas, 1999), support vector machine (SVM) 

(Vapnik and Chervonenkis., 2015; Vapnik., 1999; Osuna., 

1998), and artificial neural networks (ANNs), have been 

adopted for PolSAR data classification over wetland regions 

(Chen et al.,2003).   The main challenge of most classification 

methods is that features with moderate and low between-classes 

discrimination capabilities are removed and only features with 

high class separability are incorporated into classification. 

Another important step in processing of PolSAR data is de-

speckling (Mahdian et al., 2013).  

In this paper, a novel method for feature weighting is proposed 

to increase the classification accuracy of PolSAR data in 

wetland areas. Specifically, Fisher linear discriminant analysis 

(FLDA) is used as a classical machine learning approach to 

increase the class separability as well as the accuracy of wetland 

classification (Welling., 2005; Liu and Wechsler., 2002; Chen et 

al.,2015). FLDA will also be more efficient as a statistical tool 

for PolSAR data when it is integrated with practical physical 

interpretations. Therefore, the method proposed here uses an 

initial classification approach based on H/α plane to identify 

different basic scattering mechanisms which are further verified 

with physical interpretation. 
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In this study, full polarimetric C-band RADARSAT-2 data from 

the Avalon area in Newfoundland and Labrador, Canada, have 

used for classification of different vegetation types in wetlands. 

The utility of using remote sensing to monitor wetlands in the 

Avalon study area is presented in Section 2. Next, the 

methodology and the steps of our proposed approach are 

discussed in detail in Section 3. Section 4 demonstrates the 

performance of the method with real PolSAR data and discusses 

the results. Finally, our findings are summarized in the 

concluding section.  

  

2. CASE STUDY AND REMOTE SENSING DATA 

 

Canada is home to 25 % of the world’s wetlands; more than any 

other country (Tiner et al., 2015). The present study was, 

therefore, carried out in the province of Newfoundland and 

Labrador, a spatially diverse region of approximately 660 𝑘𝑚2 

that includes wetlands with diverse characteristics such as bogs, 

fens, marshes, and shallow water. Wetland complexes are 

distributed throughout the province and the vegetation in the 

study area comprises mainly marshes with fewer bogs and fens 

and swamp. Figure 1 shows the study area which is the Avalon 

pilot site located in the north eastern portion of the Avalon 

Peninsula, on the island of Newfoundland, Canada, in the 

Maritime Barren ecoregion (See Fig. 1). 

 

In this study, two Fine Quad (FQ) RADARSAT2 C-band 

images, in descending mode, from Study area have used for 

classification. 

 

 
 

Figure 1. The location of study area. 

 

 

3. METHODOLOGY 

The proposed classification framework includes five major 

steps (Fig. 2). First, the Sinclair scattering matrix is converted to 

a coherency matrix because it has more physical interpretation 

meaning than a covariance matrix. After that, de-speckling as 

most important step in PolSAR pre-processing should be done 

(Mahdianpari et al., 2012). This step is followed by an 

Enhanced Lee adaptive de-speckling step. Then, H/�̅�  

unsupervised classification is performed to identify the base 

scattering models, specular, double bounce and volume 

scattering. In the fourth step, a feature weighting technique is 

employed in order to determine appropriate features weights. 

Then, these modified weights are used for supervised Wishart 

classification. These general steps are described in more detail 

in the following sections. 

 

 
Figure 2. The flowchart of proposed method for wetland 

classification. 

 

  

3.1 Initial H/α Classification 

There are various polarimetric representations of which the 

most commonly used are the covariance and coherency 

matrices. The coherency matrix was used in this study because 

it has more physical meaning and has been captured using Pauli 

basis (Lee and Pottier., 2009 ) as follows: 

 

𝐾 =
1

√2
[𝑆ℎℎ + 𝑆𝑣𝑣 𝑆ℎℎ − 𝑆𝑣𝑣 2𝑆ℎ𝑣]

𝑇 
(1) 

 

where 𝑆ℎ𝑣 is the scattering element of horizontal (h) receiving 

and vertical (v) transmitting polarization, respectively, and other 

three elements can be similarly defined. The coherency matrix 

is then generated from the outer product of the Pauli vector with 

its conjugate transpose as follows: 

[𝑇]3×3 = 〈K⃗⃗  . K⃗⃗ ∗𝑇 〉 (2)  
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where the superscript “T” denotes the matrix transpose. In this 

study, an unsupervised H/α classification approach based on 

coherency matrix was performed as an initial classification. The 

entropy, H, was used to measure the randomness of scattering 

mechanisms while α is used to determine different types of 

scattering mechanisms. The parameters were calculated based 

on the eigenvalues and eigenvectors of the coherency matrix T, 

as follows: 

 

𝑇 =  𝑈3  [

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

] 𝑈3
∗𝑇

 

 

(3) 

According to the eigenvalues, the entropy (H) and mean 𝛼 are 

defined, respectively, as follows: 

 

𝐻 =  ∑ − 𝑃𝑖 ln 𝑃𝑖
3
𝑖=1  where 𝑃𝑖 =  

𝜆𝑖

∑ 𝜆𝑗
3
𝑗=1

 (4) 

𝛼 = 𝛼1𝑃1 + 𝛼2𝑃2 + 𝛼3𝑃3 (5) 

 

In terms of the H/𝛼 plane (Lee and Pottier., 2009), eight initial 

classes with different scattering mechanisms are acquired and 

can be seen in Fig. 3. 

 

 

 
 

Figure 3. The initial unsupervised classification using H/α 

plane. 

 

 

3.2 Fisher Linear Discriminant Analysis (FLDA) 

Linear Discriminant Analysis (LDA) is a classification method 

that projects high-dimensional data onto a line and performs 

classification in this one-dimensional space. Specifically, Fisher 

Linear Discriminant Analysis is a statistical approach for 

dimensionality reduction using linear transformation. The 

projection maximizes the distance between the means of the two 

classes while minimizing the variance within each class. This 

defines the Fisher criterion, which is maximized over all linear 

projections. It has also been successfully applied for image 

classification (Chen et al.,2015). 

In an image with K classes in N dimensions, the Fisher linear 

discriminant can be formulated as follows: 

 

𝐹(𝑛) = ∑∑(
(𝜇𝑖(𝑛) − 𝜇𝑗(𝑛))

2

𝜎𝑖
2(𝑛) + 𝜎𝑗

2 (𝑛)
 )

𝑘

𝑗≠𝑖

𝐾

𝑖=1

 

(6) 

 

where µ and 𝜎 represent the mean and variance of the nth 

feature and can be illustrated, respectively, as follows: 

 

𝜇𝑖(𝑛) =
1

𝑚
 ∑ 𝑥𝑖𝑚(𝑛)

𝑀

𝑚=1
 

 

(7) 

 

𝜎𝑖
2(𝑛) =

1

𝑚 − 1
 ∑ (𝑥𝑖𝑚(𝑛) − 𝜇𝑖(𝑛))2

𝑀

𝑚=1
 

 
{𝑥𝑖𝑚|𝑚 = 1,2,… ,𝑀} 

(8) 

  

For PolSAR image classification using a coherency matrix, the 

nine elements are given equal weight in a conventional 

classification method. This is an applicable scenario for 

classification of images with different target backscatters. 

However, this conventional approach can easily either remove 

some classes with close backscatters or misclassified them. 

Therefore, a robust technique for feature discrimination can 

significantly improve classification accuracy.  

However, selecting the best feature with maximum 

discrimination ability is a challenging task. One practical 

approach is to consider within-class and between-class 

distances. Ideally, such an approach will keep within-class 

differences minimal and between-class differences as large as 

possible. In Fisher Linear Discriminant analysis, the differences 

between classes are defined using mean differencing and 

variance summation and are applied to determine within-class 

differences. Therefore, the following equation is used to 

determine weight of n-th feature: 

 

𝐹(𝑛) = (∑
(𝜇𝑖(𝑛) − 𝜇𝑗(𝑛))

2

𝜎𝑖
2(𝑛) + 𝜎𝑗

2 (𝑛)
)

𝐾

𝑗≠1
 𝑖=1 

                 +(∑
(𝜇𝑖(𝑛) − 𝜇𝑗(𝑛))

2

𝜎𝑖
2(𝑛) + 𝜎𝑗

2 (𝑛)
)

𝐾

𝑗≠2
𝑖=2

+ ⋯ 

                         

         +(∑
(𝜇𝑖(𝑛) − 𝜇𝑗(𝑛))

2

𝜎𝑖
2(𝑛) + 𝜎𝑗

2 (𝑛)
)

𝐾

𝑗≠8
𝑖=8

 

, 𝑛 = 1,2,… ,9 

 

(9) 

 The final weight of each feature is calculated using the 

summation of all weight of feature in different class as follows: 

 

𝐹(1) = 𝐹1(1) + 𝐹2(1) + ⋯+ 𝐹8(1), 
𝐹(2) = 𝐹1(2) + 𝐹2(2) + ⋯+ 𝐹8(2), 

                       . 

                       . 

                       . 

(10) 
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𝐹(9) = 𝐹1(9) + 𝐹2(9) + ⋯+ 𝐹8(9) 

 

Therefore, the weighting matrix is represented by: 

 

 

𝐹 = 𝐹1 + 𝐹2 + ⋯+ 𝐹8 = [
𝐹(1) 𝐹(2) 𝐹(3)

𝐹(4) 𝐹(5) 𝐹(6)

𝐹(7) 𝐹(8) 𝐹(9)
] 

(11) 

 

The discrimination between classes can be further increased 

using physical interpretation of different backscatter 

mechanisms in a modified coherency matrix. According to the 

H/𝛼 plane, 1st and 3rd classes represent the low entropy surface 

scattering events and the low entropy multiple scattering, 

respectively. The lack of volume scattering is clear in these two 

classes. Also, the element 𝑇33 only represents the volume 

scattering mechanism in the coherency matrix. Therefore, 

adding physical interpretation to the statistical approach makes 

feature discrimination more powerful by assigning zero weights 

to the corresponding elements of the Fisher coefficients, as 

follows: 

 

𝐹∗
1 = [

𝐹1(1) 𝐹1(2) 𝐹1(3)

𝐹1(4) 𝐹1(5) 𝐹1(6)

𝐹1(7) 𝐹1(8) 𝐹1(9)
] = [

𝐹1(1) 𝐹1(2) 0

𝐹1(4) 𝐹1(5) 0
0 0 0

] 

(12) 

 

 

𝐹∗
3 = [

𝐹3(1) 𝐹3(2) 𝐹3(3)

𝐹3(4) 𝐹3(5) 𝐹3(6)

𝐹3(7) 𝐹3(8) 𝐹3(9)
] = [

𝐹3(1) 𝐹3(2) 0

𝐹3(4) 𝐹3(5) 0
0 0 0

] 

(13) 

 

The final weighting matrix  𝐹𝑀 can be defined as follows: 

 

 

𝐹𝑀 = 𝐹∗
1 + 𝐹2 + 𝐹∗

3 + ⋯+ 𝐹8 (14) 

 

The coherency matrix was then modified by multiplying the 

final weights (𝐹𝑀) and coherency matrix (T):  

 

𝑇𝐹 = 𝐹𝑀. 𝑇 = [

𝐹𝑀(1)𝑇11 𝐹𝑀(2)𝑇12 𝐹𝑀(3)𝑇13

𝐹𝑀(4)𝑇21 𝐹𝑀(5)𝑇22 𝐹𝑀(6)𝑇23

𝐹𝑀(7)𝑇31 𝐹𝑀(8)𝑇32 𝐹𝑀(9)𝑇33

] 

(15) 

 

This modified coherency matrix with better discriminating 

capability, was then used in Wishart classification. The 

experimental results are presented in the following section. 

 

4. EXPERIMENTAL RESULTS AND ANALYSES 

 

For better evaluation of the proposed method, comparison 

between two classified maps, one based on conventional 

Wishart classification and the other based on the proposed 

method, was performed. The classification map has 8 different 

wetland classes which are bog, built-up, fen, marsh, open water, 

shallow water, swamp and upland. Fig. 4 shows the difference 

between two classifications.  

 

 
 

(a) 

 

 
(b) 

 

Figure 4. Classification results: (a) Wishart classification 

method, (b) Fisher-based Wishart classification method. 

 

 

The accuracy assessment was based on confusion matrices 

generated during each classification procedure. The overall, 

user and producer accuracy were computed for quantifying the 

robustness of the proposed method (Table 1).  
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Wishart Classification Method 

 Producer 

Accuracy 

(%) 

User 

Accuracy 

(%) 

Overall 

Accuracy 

(%) 

Bog 53 61  

52.43 Built-up 42 45 

Fen 3 13 

Marsh 28 25 

Open Water 70 98 

Shallow Water 24 2 

Swamp 35 12 

Upland 53 52 

 

Fisher-based Wishart Classification Method 

Bog 79 70  

71.76 Built-up 57 83 

Fen 4 91 

Marsh 57 31 

Open Water 99 100 

Shallow Water 100 51 

Swamp 59 37 

Upland 69 63 

 

Table 1. Classification accuracy based on the coherency matrix 

for conventional and Fisher-based Wishart classification 

method. 

 

 

It is clear from Table 1 that the proposed method was more 

accurate for classifying wetland types in the study area than the 

conventional method. In both methods, Wishart classifier was 

used, but in first scenario, Wishart classification method was 

applied over a coherency matrix while in the second scenario 

the modified coherency matrix was considered as an input 

matrix. The results illustrate the efficiency of combining the 

physical interpretation and Fisher statistical analysis on a 

coherency matrix, which was improved by approximate 20 %.  

 

  

5. CONCLUSIONS 

 

In this study, a novel method for classification of different 

wetland types was proposed. The method uses H/α classification 

as its first step to identify the major scattering mechanisms. 

Fisher Linear Discriminant analysis was applied to modify the 

weight of the coherency matrix. The proposed method provides 

the most discriminate features by assigning large weights to 

strong features. Accordingly, poor features are devalued by 

assigning them small weights. One of the advantages of the 

proposed method is removal of irrelevant and redundant 

features while enhancing the powerful features. Furthermore, 

physical interpretation was applied to better distinguish classes 

with close backscatter. The modified weights were then used in 

Wishart classifier for classification of wetland types using 

RADARSAT2 images from the Avalon study area in 

Newfoundland, Canada. The results showed more accurate and 

reliable land-covers information of various wetland types by the 

proposed method when compared to the classic ones. 
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