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ABSTRACT: 
 
Very high resolution (VHR) aerial images can provide detailed analysis about landscape and environment; nowadays, thanks to the 
rapid growing airborne data acquisition technology an increasing number of high resolution datasets are freely available. 
In a VHR image the essential information is contained in the red-green-blue colour components (RGB) and in the texture, therefore a 
preliminary step in image analysis concerns the classification in order to detect pixels having similar characteristics and to group 
them in distinct classes. Common land use classification approaches use colour at a first stage, followed by texture analysis, 
particularly for the evaluation of landscape patterns. Unfortunately RGB-based classifications are significantly influenced by image 
setting, as contrast, saturation, and brightness, and by the presence of shadows in the scene. The classification methods analysed in 
this work aim to mitigate these effects. The procedures developed considered the use of invariant colour components, image 
resampling, and the evaluation of a RGB texture parameter for various increasing sizes of a structuring element. 
To identify the most efficient solution, the classification vectors obtained were then processed by a K-means unsupervised classifier 
using different metrics, and the results were compared with respect to corresponding user supervised classifications. 
The experiments performed and discussed in the paper let us evaluate the effective contribution of texture information, and compare 
the most suitable vector components and metrics for automatic classification of very high resolution RGB aerial images. 
 
 

 
 

1.1.1.1. INTRODUCTION 

Large datasets of aerial imagery exist in different government 
institutions, such as national land, urban planning, and 
construction departments (Lv et al., 2010). Commonly, the 
spatial resolution can be high or even very high, but the 
spectral resolution is often limited to RGB, and there is a 
general lack of the near-infrared bands (Laliberte and Rango, 
2009). 
In the classification of RGB images, without the fundamental 
contribution of NIR and other bands, the quality of the 
process is variably influenced by different factors such as 
subject, illumination conditions, spatial resolution, vector 
components and metrics used to define the various clusters. 
In order to classify an image, it is common to use methods 
based on statistical analysis of pixels: this approach has 
demonstrated to have good performances only when used to 
classify images with large pixel size (Wang et al., 2004). 
High spatial resolution digital aerial imagery, with a pixel 
size less than one meter, is an underexplored field in which 
the classification process can be complicated by the spectral 
variability within a particular class due to the very small pixel 
size (Aguera et al., 2008), especially in the case of urban 
areas (Kiema, 2002). The urban environment in particular 
represents one of the most challenging problems for remote 
sensing analysis as a consequence of high spatial difference 
and spectral variance of the surface materials (Herold et al., 
2003). 
This question can be overcome with different techniques that 
take into account two fundamental image characteristics: 
colour (spectral information) and texture (Haralick et al., 
1973). Colour has high discriminative power, and in many 
cases objects can be well recognized merely by this 
characteristic (Swain and Ballard, 1991; Burghouts and 

Geusebroek, 2009). Texture information can be used for 
directly classify images or as additional band in the clustering 
process; in the last case, classification accuracies are  
generally improved (Wang et al., 2004; Puissant et al., 2005; 
Rao et al., 2002). Further, texture estimation is important 
because provides information about spatial and structural 
arrangement of objects, thanks to the strong correspondence 
between them and their pattern (Tso and Mather, 2001; 
Permuter et al., 2006). 
Even though colour is the most appealing feature, it is also 
the most vulnerable indexing parameter, since it strongly 
depends on image lighting conditions, pose and sensor 
characteristics. This problem  affects also texture evaluation, 
and there is no valid model able to provide illumination 
invariant entities (Hanbury et al., 2005).  
Few applications of RGB classification for land use 
setimation are present in literature. Among these, Chust et 
al., (2008) used an initial RGB supervised classification as 
reference, and compared it with those automatically obtained 
adding further information – NIR, DTM, aspect, slope – 
reaching a mean accuracy of 73.2% and 75.1% on the two 
test areas considered. Lv et al. (2010) developed a method to 
carry out land cover classifications that depend only on RGB 
bands reaching high values of accuracy. They observed that 
in order to extract building information, it is necessary to 
include spectral and texture features. 
This work provides an experimental assessment of the 
benefits derived from converting the RGB colour 
components into invariant ones, in order to remove or at least 
mitigate the classification biases caused by the varying scene 
illumination conditions, that produce different RGB spectral 
signatures for identical image objects.  
Further, the tests carried out aim to evaluate the actual 
improvements in high resolution colour image classification 
provided by textural information and spatial resolution 
resampling. 
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1.1  Invariant image features 

In image processing, various colour systems related to RGB 
are in use today: among their characteristics, for the purpose 
of image classification, an important colour property is the 
invariance. A colour invariant system contains models which 
are more or less insensitive to the varying imaging conditions 
such as variations in illumination and object pose (Gevers, 
1998). Colour invariants can be obtained by constructing a 
colour ratio model to remove the effects of perspective, light 
direction, illumination, reflected light intensity, and other 
factors. HSV, C1C2C3, l1l2l3, CIE-Lab and CIE-Luv are 
some invariant colour models described in literature and 
briefly recalled below (e.g. Gevers and Smeulders, 1999; 
Geusebroek et al., 2001). In addition, other techniques as the 
SIFT model and image stretch decorrelation can be 
considered for the same purposes. Thanks to these 
characteristics all these methods appear suitable to improve 
the classification accuracy, and to mitigate the distortions of 
RGB caused by different light conditions. 
 
1.1.1 HSV colour model 
HSV is an approximately perceptually uniform colour space 
that provides an intuitive representation of colours and 
simulates the way humans perceive and manipulate them. 
Hue (H) represents the dominant spectral component, and is 
commonly used in tracking applications where some degree 
of illumination changes are expected. The hue component 
doesn’t contain intensity information, and therefore it is 
invariant to intensity changes in illumination, however, it is 
sensitive to light colour changes. Saturation (S) is an 
expression of the relative purity, that is the degree to which a 
pure colour is diluted by adding white. Finally, the value (V) 
corresponds to the colour brightness. In this way, the 
luminous component (V) is decoupled from the colour-
carrying information (H and S).  
HSV can be obtained from RGB through a nonlinear 
invertible transformation. After rescaling the RGB 
coordinates to the range [0,1] by dividing them by their 
maximum theoretical value (e.g. 255 for an 8 bit colour 
band), H, S, and V are estimated as follows: 
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1.1.2 C1C2C3 and l1l2l3 colour model 
C1C2C3 and l1l2l3 represent colour models that are 
theoretically insensitive to viewing direction, surface 
orientation, illumination direction and intensity.  
The C1, C2 and C3 band components can be calculated from 
R, G, B by the following formulas: 
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The following equations provide the transformation from R, 
G, B to l1, l2, l3, that forms a set of normalized colour 
differences: 
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where R, G, B are the Red, Green, and Blue band component 
values respectively (Gevers and Smeulders, 1999). 
 
1.1.3 CIE-Lab and CIE-Luv 
L*a*b* and L*u*v* are two perceptual uniform colour 
spaces, specified by the International Commission on 
Illumination (CIE), that are considered device independent. 
There are no simple and univocal formulas to convert from 
RGB to L*a*b* and L*u*v*, since RGB is device dependent; 
in any case, for classification purposes, a suitable 
transformation can be obtained converting RGB to CIE-XYZ, 
and then deriving L*a*b* and L*u*v* under standard 
conditions. 
To this aim, at first R,G,B coordinates are rescaled to the 
range [0,1] by dividing them by their maximum theoretical 
value, then the X, Y, Z tristimulus values are evaluated as 
follows: 
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L*a*b* are consequently defined as: 
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assuming standard open air illumination conditions. 
 
Regarding L*u*v*, the new components u* and v* are 
obtained as: 
 

L* has same meaning and formulation as in L*a*b* 
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assuming again standard conditions as above. 
 
1.1.4 SIFT colour model 
An RGB histogram is not invariant to changes in lighting 
conditions, however, by normalizing the pixel value 
distributions, scale invariance and shift invariance are 
achieved with respect to light intensity. Because each band is 
normalized independently, the descriptor is also normalized 
against changes in light colour and arbitrary offsets.  
SIFT descriptors are computed for every RGB band 
independently as follow: 
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with µ  the mean and σ  the standard deviation of the 
distribution of the respective colour bands computed over the 
area under consideration. 
 
1.1.5 Decorrelation Stretching 
This colour transformation is used for enhancing the colour 
differences in images with high internal band correlation, as 
evident in many RGB ones. Decorrelation makes possible to 
distinguish picture details that otherwise are not so 
immediately visible. The specificity of the model is the 
following pointwise linear transformation:  
 

target( )T
t c= − +y S R S R x μ μ  

 
where: 
x = input RGB colour pixel vector 
y = output decorrelated RGB colour pixel vector 
µ = input dataset mean 
R = rotation matrix  
Sc = scaling matrix (diagonal)   
St = stretching matrix 
µtarget = backprojected data shift. 
 
Refer to Gillespie et al. (1986) for complete description. 
 
Figure 1 shows some histogram examples representing 
transformations from RGB to invariant colour components: 
worth of note is the lack of correlation existing among the 
various colour spaces. In the graphs, for better comparison 
with the original RGB, the various component values have 
been rescaled to [0  255]. 
 

 
RGB 

 
 

 
C1C2C3 

 
 

 
L*u*v* 

 

Figure 1: Examples of histograms representing 
transformations from RGB to invariant colour components. 
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2.2.2.2. EXPERIMENTS 

 
The experimental assessments have been carried out on two 
image pairs of two suburban environments, acquired 
respectively in summer 2008 and in winter 2011, at the same 
resolution (9 cm) (Figure 2).  
 

  

  

Figure 2: Image pairs employed for the experiment of two 
suburban areas at 9 cm resolution: on the left, pictures 
1_2008 and 2_2008 taken in summer 2008, while on the 
right, the corresponding 1_2011 and 2_2011, acquired in 
winter 2011, showing various long shadows. 

 
The four original images have been resampled, by the median 
method, producing four additional pictures with 27 cm pixel 
size, and further four images at 45 cm resolution. The 12 
samples thus obtained formed the dataset employed to 
investigate the benefits of different invariant colour models, 
together with the role played by pixel size and scene 
illumination.  
In the first step, in order to set a reference for the following 
evaluations, a thorough supervised classification of each of 
the 12 RGB colour images has been carried out: the results 
obtained were assumed to represent the truth. The classes 
considered were: vegetation, urban areas, streets, and 
shadows. 
The 12 RGB images were then converted in their 
corresponding HSV, l1l2l3, C1C2C3 invariant colour 
components, and in CIE-Luv and CIE-Lab colour spaces; in 
addition, a SIFT transformation and a stretch decorrelation of 
the RGB bands was also performed. Each different image 
thus obtained was classified with K-means unsupervised 
method, applying in many cases, for further comparison, two 
possible metrics: Euclidean and cosine distance. 

To analyse the effects of texture information in the 
classification, a further component representing object image 
texture was considered in some cases, and joined to the 
clustering vectors: this parameter was the mean RGB 
component value computed by a structuring element of size 
3x3 or 9x9. 
In this way, varying the vector composition of the test 
images, 228 independent K-means classifications have been 
produced, and individually compared with the corresponding 
reference ones obtained via the supervised approach (Figure 
3 and 4). 
All the various steps of the computations have been 
performed by custom-made Matlab scripts, taking 
advantage of built-in high level functions only when 
necessary (K-means classification and stretch decorrelation). 
 
 

3.3.3.3. RESULTS AND DISCUSSION 

 
Table 1 collects the percentages of agreement between the 
various unsupervised K-means classifications of the different 
pixel components, and the user supervised classifications of 
the same RGB images, assumed to represent the truth. 
Column 1 specifies the composition of the classification 
vector employed, column 2 shows the metric used, and the 
following twelve columns list the results of the various 
experiments. The rows are ordered considering the global 
average agreement obtained in the various tests, and secondly 
their median value. Following this criterion a significant 
outcome emerges: classifications exploiting invariant 
components are generally superior than those based on RGB 
and texture. Excluding the evident worst case represented by 
l1l2l3, RGB based methods generally produce average 
agreements around 71%, while the best three invariant based 
solutions are very close to 80% and over. 
Going in detail, must be noted that, starting from the same 
information, represented by the original RGB image, very 
different agreements – from 45.3% to 93.9% – can be 
produced just selecting a specific colour invariant or by 
stretch decorrelating the colour bands. The minimal variation 
– from to 57.6% to 74.6% – has been obtained in image 
1_2011 at 45 cm, while the maximal one – from 50.9% to 
93.9% – has been observed in image 2_2008 at 9 cm. 
The metric employed appears to be effective only in case of 
RGB, where substituting Euclidean with cosine distance 
improves the average agreement of 5  6%. In the other cases 
the metrics role is very variable.  
RGB texture information does not seem to provide 
significant improvements since it produces contrasting 
results: in the case of RGB, introducing texture 3x3 and 9x9 
slightly worsen the outcomes, while in the case of C1C2C3 
we observe a significant gain with texture 3x3, and a small 
loss with texture 9x9. 
Observing the highest classification results for the various 
images, they show that L*a*b* performed five times over 
twelve as the best classifier vector, as in 2008 imagery, but 
also C1C2C3 based methods achieved similar results, 
particularly in 2011 images. This can be explained by the fact 
that 2011 images contain a larger amount of shadows than the 
corresponding 2008 ones, and the component C3 is 
particularly suited to detect them, as reported in shadow 
detection literature (Duan et al., 2013; Movia et al., 2015). In 
any case, also when CIE-Lab, RGB decorr., and CIE-Luv 
were not the best ones in the tests, their average distance 
from them ranges only from 2.1% to 3.7%. 
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*** Supervised(E) *** 

 
RGB(E) 

 
RGB stretch decorrelated(E) 

 
C1C2C3(E) 

 
l1l2l3(E) 

 
HSV(E) 

 
CIELUV(E) 

 
CIELAB(E) 

Figure 3: Examples of K-Means classifications of Image 2_2008 at 27 cm with different vector components: blue represents urban 
areas, cyan identifies streets and bare soil, brown vegetation and yellow shadows. (E) indicates to Euclidean distance. 

 

 
*** Supervised(E) *** 

 
RGB(E) 

 
RGB stretch decorrelated(E) 

 
C1C2C3(E) 

 
l1l2l3(E) 

 
HSV(E) 

 
CIELUV(E) 

 
CIELAB(E) 

Figure 4: Examples of K-Means classifications of Image 1_2011 at 27 cm with different vector components: here blue represents 
urban areas, cyan identifies streets, yellow vegetation, and brown shadows. (E) indicates Euclidean distance. 
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Method 
and 

components 

 
M 

1 
2008 
9 cm 

1 
2008 
27 cm 

1 
2008 
45 cm 

1 
2011 
9 cm 

1 
2011 
27 cm 

1 
2011 
45 cm 

2 
2008 
9 cm 

2 
2008 
27 cm 

2 
2008 
45 cm 

2 
2011 
9 cm 

2 
2011 
27 cm 

2 
2011 
45 cm 

 
Mean 

 
Med. 

CIELAB E 82.30 90.89 88.64 68.99 86.59 69.89 93.90 87.53 85.63 71.55 74.17 68.35 80.70 83.97 

RGB decorr. E 73.88 91.11 87.65 69.15 85.80 72.42 93.09 86.67 85.38 71.47 76.67 67.53 80.07 81.03 

CIELUV E 80.24 87.71 86.31 68.98 85.33 68.95 86.36 82.89 84.35 72.89 76.38 68.92 79.11 81.57 

C1C2C3+t3 E 82.14 87.04 85.44 69.35 84.88 72.13 86.71 82.50 83.02 71.10 75.99 67.30 78.97 82.32 

C1C2C3+t3 C 86.35 91.40 86.30 68.95 66.56 74.51 88.65 82.36 82.40 70.39 68.70 62.39 77.41 78.44 

RGB C 83.11 87.08 81.39 68.81 75.53 73.66 83.51 79.22 80.90 67.68 74.72 67.57 76.93 77.38 

C1C2C3HSV E 75.94 82.34 79.03 71.58 86.31 74.57 73.63 70.47 71.71 73.66 75.44 71.50 75.52 74.12 

C1C2C3HSV C 76.95 82.61 77.70 71.45 86.08 67.47 73.44 70.61 71.67 73.65 81.92 71.05 75.38 73.55 

C1C2C3 C 83.19 84.75 78.84 65.21 73.24 72.85 82.74 78.20 79.69 63.10 68.15 61.80 74.31 75.72 

C1C2C3 E 84.62 70.68 81.78 66.76 73.45 72.65 83.66 79.15 80.76 64.07 69.43 62.31 74.11 73.05 

C1C2C3+t9 E 82.21 79.05 80.64 69.08 79.84 64.41 84.54 76.69 75.45 69.64 63.28 61.46 73.86 76.07 

HSV E 74.57 81.13 78.92 63.72 83.38 68.17 66.84 69.35 71.05 73.18 73.92 68.54 72.73 72.12 

RGB decorr. C 78.19 84.10 77.12 52.66 66.51 62.56 85.65 80.99 81.25 62.45 69.04 65.93 72.20 73.08 

RGBmean+t3 C 67.97 82.93 81.28 69.41 66.32 61.71 83.78 80.63 75.72 67.67 68.61 58.26 72.02 69.01 

SIFT E 74.13 77.43 78.97 64.81 78.42 63.13 79.44 81.10 78.54 61.34 64.82 57.87 71.67 75.78 

RGB E 74.05 77.39 73.45 64.77 78.37 63.07 79.43 81.12 78.56 61.32 64.68 57.79 71.17 73.75 

RGB+t3 E 74.27 77.48 61.97 65.20 77.46 61.92 79.17 79.47 76.02 61.63 63.28 66.46 70.36 70.37 

RGB+t9 E 73.88 85.13 75.91 64.96 73.88 57.57 77.55 72.17 77.23 60.39 61.05 61.09 70.07 73.03 

l1l2l3 E 63.24 64.15 64.76 45.31 51.01 60.01 50.85 50.96 55.52 53.47 51.18 56.56 55.59 54.50 

Table 1: Agreement percentages between the various unsupervised K-means classifications of the different pixel components, and the 
supervised classifications assumed as reference. Column M specifies the metrics (E=Euclidean, C=cosine), Med. the median values, 
t3 and t9 indicate the window size (3×3 or 9×9 cells) for texture evaluation. 

Finally, regarding the pixel size effect on classification, small 
differences have been observed among the average accuracy 
at 9 cm, 27 cm, and 45 cm; at the same time, increasing the 
pixel size, slightly reduces the classification variability. 
Analysing in detail the examples proposed in Figures 3 we 
can do more specific considerations: CIELab and RGB 
decorrelated, with Euclidean metrics, graphically prove the 
best accordance with the supervised classification; l1l2l3 
appears very noisy and justifies the worst performance.  
Figure 3 shows that RGB mistakenly interprets a large roof 
as vegetation, while HSV identifies even all roofs as 
vegetation. C1C2C3, RGB decorrelated, and CIELab slightly 
underestimate shadows around the buildings, demonstrating 
less sensitive on penumbra pixels.  
Regarding Figure 4, RGB and HSV misinterprets again some 
roofs as vegetation, l1l2l3 classification demonstrates again 
to be very noisy and unable to properly identify shadows. 
 
 

4.4.4.4. CONCLUSIONS 

 
RGB-based aerial image classifications are often influenced 
by shadows, illumination conditions and camera settings. To 
mitigate these effects, an experimental comparison has been 
carried out considering texture information, different 
clustering metrics, RGB decorrelation, and various colour 
invariant transformations of the original RGB colour space.  
Results showed that significant classification improvements 
can been obtained after substituting RBG with CIELab, 
CIELuv, and C1C2C3 respectively, or by stretch-
decorrelating the colour bands. Generally, invariant 
parameters provide better classification results than those 
based on RGB. Furthermore, the introduction of texture 

information in the classification vector, or the application of a 
different clustering distance – Euclidean vs. cosine – does not 
appear to give effective improvements for the segmentation 
process. 
 
 

REFERENCES 

 

Agüera F., Aguilar F., Aguilar M., 2008. Using texture 
analysis to improve per-pixel classification of very high 
resolution images for mapping plastic greenhouses. ISPRS 
Journal of Photogrammetry and Remote Sensing Volume 63, 
Issue 6, November 2008, pp. 635–646. 
doi:10.1016/j.isprsjprs.2008.03.003.  

Burghouts G.J., Geusebroek J.M., 2009. Performance 
evaluation of local colour invariants. Computer Vision and 
Image Understanding 113 (2009) 48–62. 

Chust G., Galparsoro I., Borja A., Franco J., Uriarte A., 2008. 
Coastal and estuarine habitat mapping, using LIDAR height 
and intensity and multi-spectral imagery. Estuarine, Coastal 
and Shelf Science 78:633–43. 

Duan G., Gong H., Zhao W., Tang X., Chen B., 2013. An 
index based approach on high resolution images. In Proc. of 
the International Symposium on Satellite Mapping 
Technology and Application (ISSMTA2013), 2013. 
November 6-8, 2013 Nanjing, Jiangsu, China. 

Geusebroek J.M., Boomgaard R., Smeulders A.W.M., Geerts 
H., 2001. Color invariance. IEEE Transactions on Pattern 
Analysis and Machine Intelligence 23 (12) (2001) 1338–
1350. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B7-311-2016

 
316



 

 

Gevers T., Smeulders A.W.M., 1999. Color Based Object 
Recognition. Pattern Recognition, vol. 32, pp. 453-464. 

Gevers T., 2001. Color in image databases. Intelligent 
Sensory Information Systems. Univesity of Amsterdam. The 
Netherlands. 

Gillespie A.R., Kahle, A.B., Walker R.E., 1986. Color 
Enhancement of highly correlated images.I. Decorrelation 
and HSI contrast stretches. Remote Sensing of Environment. 

Hanbury A., Kandaswamy U., Adjeroh D.A., 2005. 
Illumination-invariant morphological texture classification. 
In: C. Ronse, L. Najman, E. Decencière (Eds.), Proceedings 
of the Seventh ISMM, Computational Imaging and Vision, 
vol. 30, Springer, Dordrecht, Netherlands, 2005, pp. 377–
386.  

Haralick R. M., Shanmugam K., Dinstein I., 1973. Textural 
features for image classification. IEEE Transactions on 
Systems, Man, and Cybernetics, SMC-3, 610−621. 

Herold M., Gardner M., Roberts D., 2003. Spectral 
resolution requirements for mapping urban areas. IEEE 
Transactions on Geoscience and Remote Sensing, 41(9), 
1907−1919. 

Laliberte A. S., Rango A., 2009. Texture and Scale in Object-
Based Analysis of Subdecimeter Resolution Unmanned Aerial 
Vehicle (UAV) Imagery. IEEE Transactions On Geoscience 
And Remote Sensing, VOL. 47, NO. 3, March 2009.  

Lv P., Chen J., Wu G., Yi Y. , Liu Y., Zhou G., 2010. 
Research of RGB Bands Quick Bird Image Land Cover 
Classification of a Sub-watershed in Kunming Dianchi Lake 
Basin. The 3rd International Congress on Image and Signal 
Processing (CISP’2010).  

Kiema J. B. K., 2002. Texture analysis and data fusion in the 
extraction of topographic objects from satellite imagery. 
International Journal of Remote Sensing 28 (4). 767-776.  

Movia A., Beinat A., Crosilla F., 2015. Comparison of 
unsupervised vegetation classification methods from VHR 
images after shadow removal by innovative algorithms. The 
International Archives of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences, Volume XL-
7/W3. 

Permuter H., Francos J., Jermyn I., 2006. A study of Gaussian 
models of color and texture features for image classification 
and segmentation. Pattern recognition 39 (2006) 695-706. 

Puissant A., Hirsch J., Weber C., 2005. The utility of texture 
analysis to improve per-pixel classification for high to very 
high spatial resolution imagery. International Journal of 
Remote Sensing 26 (20), pp. 733-745.  

Rao P. V. N., Sai M. V. R. S., Sreenivas K., Rao M. V. K., 
Rao B. R. M., Dwivedi R. S., Venkataratnam L., 2002. 
Textural analysis of IRSID panchromatic data for land cover 
classification. International Journal of Remote Sensing 23 
(17), pp. 3327-3345.  

Swain M., Ballard D., 1991. Color indexing. International 
Journal of Computer Vision 7 (1) (1991) 11–32. 

Tso B., Mather P. M., 2001. Classification methods for 
remotely sensed data. New York: Taylor & Francis 

Van de Sande K. E. A., Gevers T., Snoek C. G. M., 2010. 
Evaluating Color Descriptors for Object and Scene 
Recognition. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, volume 32 (9), pages 1582-1596. 

Wang L., Sousa W.P., Gong P. , Biging S., 2004. 
Comparison of IKONOS and QuickBird images for mapping 
mangrove species on the Caribbean coast of Panama. 
Remote Sensing of Environment 91 (2004) 432 – 440. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B7-311-2016

 
317




