
BENCHMARK OF MACHINE LEARNING METHODS FOR CLASSIFICATION OF         

A SENTINEL-2 IMAGE 
 

 

F. Pirotti a,b, F. Sunar c, M. Piragnoloa,b  

 
a CIRGEO, Interdepartmental Research Center of Geomatics, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy 

(francesco.pirotti, marco.piragnolo)@unipd.it 
b TESAF Department, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy  

c Istanbul Technical University, Civil Engineering Fac., Geomatics Engineering Dept., 34469 Maslak Istanbul, Turkey 

fsunar@itu.edu.tr 

 

Commission VII, WG VII/4 

 

 

KEY WORDS: Machine learning, Sentinel-2, Remote sensing, Neural nets, Agriculture, Land cover, Classification 

 

 

ABSTRACT: 

 

Thanks to mainly ESA and USGS, a large bulk of free images of the Earth is readily available nowadays. One of the main goals of 

remote sensing is to label images according to a set of semantic categories, i.e. image classification. This is a very challenging issue 

since land cover of a specific class may present a large spatial and spectral variability and objects may appear at different scales and 

orientations.  

In this study, we report the results of benchmarking 9 machine learning algorithms tested for accuracy and speed in training and 

classification of land-cover classes in a Sentinel-2 dataset. The following machine learning methods (MLM) have been tested: linear 

discriminant analysis, k-nearest neighbour, random forests, support vector machines, multi layered perceptron, multi layered 

perceptron ensemble, ctree, boosting, logarithmic regression. The validation is carried out using a control dataset which consists of an 

independent classification in 11 land-cover classes of an area about 60 km2, obtained by manual visual interpretation of high resolution 

images (20 cm ground sampling distance) by experts. In this study five out of the eleven classes are used since the others have too few 

samples (pixels) for testing and validating subsets. The classes used are the following: (i) urban (ii) sowable areas (iii) water (iv) tree 

plantations (v) grasslands.  

Validation is carried out using three different approaches: (i) using pixels from the training dataset (train), (ii) using pixels from the 

training dataset and applying cross-validation with the k-fold method (kfold) and (iii) using all pixels from the control dataset. Five 

accuracy indices are calculated for the comparison between the values predicted with each model and control values over three sets of 

data: the training dataset (train), the whole control dataset (full) and with k-fold cross-validation (kfold) with ten folds.  Results from 

validation of predictions of the whole dataset (full) show the random forests method with the highest values; kappa index ranging from 

0.55 to 0.42 respectively with the most and least number pixels for training. The two neural networks (multi layered perceptron and its 

ensemble) and the support vector machines - with default radial basis function kernel - methods follow closely with comparable 

performance.  

 

 

 

 

1. INTRODUCTION 

Thanks to space agencies, e.g. ESA and USGS, a large bulk of 

free digital images of the Earth surface is readily available 

nowadays for download by anyone with internet access. As a part 

of the European Copernicus program, the recently launched 

Sentinel-2 satellite provides remotely sensed data of the Earth 

features for the key operational services related to environment 

and security on a regional to global scale; and is now 

available/ready for its scientific and commercial exploitation.  

One of the main goals of remote sensing is to label images 

according to a set of semantic categories, i.e. image 

classification. This is a very challenging issue since land cover of 

a specific class may present a large spatial and spectral variability 

and objects may appear at different scales and orientations.  

However, the increased availability, not only from satellite 

sensors, but also from distributed participatory sensors (Chen et 

al., 2015), has pushed for faster and better algorithms for 

classification of the available images. Within this context, the 

machine learning methods have developed at fast pace in the past 

years due to the growing amount of data available and the bigger 

size of the data itself. Doubtless, successful development of 

machine learning methods and their correct application for the 

data obtained from the new advanced sensors will benefit all 

fields where land-cover is a necessary information in planning 

and decision making. In the urban context, fitting models can 

help to contribute to the “smart-city” paradigm, e.g. by 

monitoring land-surface temperature (Scarano, 2015) or 

providing data for anthropic impact assessment in urban areas 

and outside urban areas (Akın et.al., 2015; Piragnolo et al., 2014). 

In environmental context, remote sensing provides a global view 

of the Earth’s phenomena and all the variables which are 

necessary to assess and predict its dynamics. One important 

example is the estimation of the biomass for carbon source/sink 

(Pirotti et al., 2014) that uses various remote sensing data due to 

the necessary global scale of monitoring (Pirotti, 2010). Another 

critical aspect is the risk monitoring at various scales, ranging 

from subsidence of the Earth crust to fire and landslides (Scaioni 

et al., 2014).  

However, for a range of products dedicated to accurate thematic 

mapping in these applications such as mentioned above, the 

development and benchmarking of the machine learning 

algorithms for the new satellite missions such as Sentinel-2 
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satellite need to be validated and demonstrated in collaboration 

with national and international users.  

The goal of this paper is to analyse the performance of the 

different machine learning algorithms for land-cover mapping 

using a Sentinel-2 image. The novelty resides in discussing not 

only a typical assessment of accuracy from a classification step, 

but a comparison of three typical methods for accuracy 

assessment: (i) comparing against training areas without cross 

validation, (ii) comparing against training areas using K-fold 

cross validation and (iii) comparing against a much bigger 

independent dataset. Several accuracy metrics are extracted and 

all results are cross-compared to investigate on common pitfalls 

in the evaluation of the classification results. Therefore, our study 

performs a benchmarking of different classification algorithms 

highlighting the adequacy and efficiency of the Sentinel-2 data 

for land cover mapping. 

 

 

2. STUDY AREA 

The study area is located at south-east of city of Padova, in the 

Italian Veneto Region (Figure 1). The area is approximately 11 

km in the East-West axis and 16 km in the North-South. The 

extension of the data polygons is approximately 60 km2. The area 

is roughly composed of urban areas, grassland, and crop sowable 

area. 

 
 

Figure 1. The satellite image (above) and land  

use map (below) of the study area. 

 

 

3. MATERIALS AND METHODS 

3.1 Satellite images – Sentinel-2 

The Sentinel-2A satellite successfully launched on 23 June 2015, 

is becoming an important image data source for a wide spectrum 

of applications reaching from agriculture to forestry, 

environmental monitoring to urban planning. The reason is to be 

found in the following sensor features. A combination of 

different spatial resolutions (10 to 60m) with novel spectral 

capabilities (e.g., three bands in the ‘red-edge’ which provide key 

information on the state of vegetation plus two bands in the 

SWIR) – see Table 1. Wide coverage (swath width of 290 km) 

and minimum five-day global revisit time (with its twin, Sentinel-

2B, to be launched in 2016) (Malenovský et. al., 2012). The 

satellite's orbit is Sun-synchronous, at 786 km altitude, 98.5° 

inclination. Temporal resolution is 10 days with one satellite and 

5 days with 2 satellites. In this study, the Sentinel-2 satellite data 

dated on 13th August 2015, is used to assess the three methods 

for accuracy assessment proposed. 

 

Band  

Central 

Wavelength 

(nm) 

Bandwidth 

(nm) 

Spatial 

resolution (m) 

Band 1  443 20 60 

Band 2  490 65 10 

Band 3  560 35 10 

Band 4 665 30 10 

Band 5  705 15 20 

Band 6  740 15 20 

Band 7  783 20 20 

Band 7  783 20 20 

Band 8  842 115 10 

Band 8A  865 20 20 

Band 9  945 20 60 

Band 10  1375 30 60 

Band 11  1610 90 20 

Band 12  2190 180 20 
 

Table 1. Band description of Sentinel-2 sensor. 

 

 

3.2 Classification methods  

Supervised classification considers a set of observations S = {x1, 

x2, …, xn} - sometimes referred to as features, attributes, 

variables or measurements - for each sample of an area with 

known class C. This set is called the training set and is usually 

determined manually by setting regions of interest (ROI). The 

classification problem is then to find a good predictor for the 

class C of any sample of the same distribution (not necessarily 

from the training set) given observation S (Venables and Ripley, 

2002). To find good predictors, various machine learning 

methods are used. The machine learning methods (MLM) tested 

in this study are given below: 

 

1. Linear Discriminant Analysis (lda),  

2. K-nearest Neighbour (kknn),  

3. Random Forests (randomForest),  

4. Support Vector Machines (svm),  

5. Multi Layered Perceptron (mlp),  

6. Multi Layered Perceptron Ensemble (mlpe),  

7. CTree (ct),  

8. Boosting (b),  

9. Logistic Regression (lr).  

 

A brief explanation of each method is given below together with 

some references for further reading:  

- Linear discriminant analysis is similar to principal component 

analysis, where finding the best linear combination of variables 

to best explain the data is the goal of the process (Venables and 

Ripley, 2002). 

- K-nearest neighbour is a popular technique which uses kernel 

functions to weight the neighbours according to their distances. 

As a matter of fact, not only kernel functions, but every 
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monotonic decreasing function will work. The number of 

neighbours used for the "optimal" kernel should be: 

 

[(
2(𝑑+4)

𝑑+2
)
(

𝑑

𝑑+4
)𝑘
]    (1) 

 

where: d is the distance and k is the number that would be used 

for unweighted classification, a rectangular kernel. See 

(Samworth, 2012) for more details. 

- Random forests is a very well-performing algorithm which 

grows many classification trees. To classify a new object from 

an input dataset, put the set of observations (S) down each of 

the trees in the forest. Each tree gives a classification, and we 

say the tree "votes" for that class. The forest chooses the 

classification having the most votes (over all the trees in the 

forest). Each tree is grown with specific criteria, which are 

thoroughly reported in (Breiman and Cutler, 2015). The main 

features of the random forests method that makes it particularly 

interesting for digital image analysis are that it is unexcelled in 

accuracy among current algorithms, it runs efficiently on large 

data sets (typical among digital images to have a large number 

of observations), it can handle thousands of input variables 

without variable deletion and it gives estimates of what 

variables are important in the classification. Also generated 

forests can be saved for future use on other datasets. For more 

reading (Breiman, 2001; Yu et al., 2011). 

- Support vector machines is another popular MLM which has 

been particularly applied in remote sensing by several 

investigators (Plaza et al., 2009). It uses hyper-planes to 

separate data which have been mapped to higher dimensions 

(Cortes and Vapnik, 1995). A kernel is used to map the data. 

Different kernels are used depending on the data.  In this study, 

the radial basis function kernel is applied. 

- Multi layered perceptron and multi layered perceptron 

ensemble are two neural networks, differing on the fact that the 

latter method uses average and voting techniques to overcome 

the difficulty to define the proper network due to sensitivity, 

overfitting and underfitting problems which limit 

generalization capability. A multi layered perceptron is a 

feedforward artificial neural network model that maps sets of 

input data onto a set of appropriate outputs. It consists of 

multiple layers of nodes in a directed graph, where each layer 

is fully connected to the next. Each node is a processing 

element with a nonlinear activation function. It utilizes 

supervised learning called backpropagation for training the 

network. This method can distinguish data that are not linearly 

separable (Cybenko, 1989; Atkinson and Tatnall, 1997; Benz 

et al., 2004).  

- CTree uses conditional inference trees. The trees estimate a 

regression relationship by binary recursive partitioning in a 

conditional inference framework. The algorithm works as 

follows: 1) Test the global null hypothesis of independence 

between any of the input variables and the response (which may 

be multivariate as well). Stop if this hypothesis cannot be 

rejected. Otherwise select the input variable with strongest 

association to the response. This association is measured by a 

p-value corresponding to a test for the partial null hypothesis 

of a single input variable and the response. 2) Implement a 

binary split in the selected input variable. These steps are 

repeated recursively (Hothorn et al., 2006). 

- Boosting consists of algorithms which iteratively finding 

learning weak classifiers with respect to a distribution and 

adding them to a final strong classifier. When they are added, 

they are typically weighted in some way that is usually related 

to the weak learners' accuracy. In this study, the AdaBoost.M1 

algorithm is used (Freund and Schapire, 1996). 

- Logistic regression method is also being applied in remote 

sensing data classification (Cheng et al., 2006). It fits 

multinomial log-linear models via neural networks.  

 

3.3 Classification  

Our total dataset consists in approximately 60 km2 therefore, 

taking as measuring unit the pixel size 10 x 10 m, 6x105 pixels. 

For each pixel we have information on its land-cover class due to 

manual interpretation which was provided as polygons with land-

cover classes (Figure 1 – bottom left). Because the study requires 

numerous runs with different combinations of MLM and size of 

training data, to limit computation time while keeping statistic 

robustness, we took a smaller subset of the total number of pixels. 

Pseudo-random stratified sampling was used to choose 20% of 

the pixels, which gave us 1.2x105 pixels with known classes to 

work with, hereafter defined as our control dataset. The sampling 

is “pseudo-random stratified” because two criteria were used to 

pick “cleaner” pixels. The first criterion consists in choosing only 

pixels falling completely in a polygon, i.e. no pixels are shared 

between polygons, thus theoretically decreasing spectral mixing 

in our control.  The second criterion consists in balancing 

numerosity of pixels per class to avoid having under-represented 

classes. 

The training is then done automatically for each MLM also with 

stratified random sampling of the control dataset obtained with 

the aforementioned procedure. Thirty training subsets are picked 

for each MLM subsetting from 1% to 50% (1200 to 6x104 pixels). 

The same procedure described above is also carried out over a 

much smaller subset consisting of 4% of the total dataset pixels. 

This further processing was done to see the impact of a smaller 

dataset on results, and results are reported as blue points and red 

points, on figures 2 and 3, for 4% and 20% respectively. 

 

3.4 Validation 

The control dataset consists of an independent classification with 

11 land-cover classes in the total area (see Figure 1). The class 

attribution was done by manual visual interpretation of high 

resolution images (20 cm ground sampling distance) by experts. 

In this study, only five out of the eleven classes are used since the 

other classes cover very small areas with the consequence that 

the samples (pixels) for testing and validating subsets are not 

frequent enough to be tested significantly. The classes used are 

the following: (i) urban, (ii) sowable areas, (iii) water, (iv) tree 

plantations, and (v) grasslands. 

Five accuracy indices are calculated:  

- Classification accuracy rate (ACC) [0-100] 

- Classification error (CE) [0-100] 

- Balanced error rate  (BER) [0-100] 

- Kappa index (KAPPA) [0-100] 

- Cramer's V (CRAMERV) [0-1] 

Validation is carried out using three different approaches: (i) 

using pixels from the training dataset (train), (ii) using pixels 

from the training dataset and cross-validated via k-fold cross-

validation with ten folds of the training set (kfold) and (iii) using 

all pixels from the control dataset (all). The former will give the 

least independent validation whereas the latter will provide the 

most independent validation. As described in the previous 

section, since multiple trials were tested for the benchmarking 

speed and accuracy depending on the size of the training samples,  

the number of pixels used in the first two methods range from 

1200 to 6x104 pixels; whereas in the last method whole control 

dataset was used, i.e. 1.2x105 pixels.  
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4. RESULTS AND DISCUSSION 

As reported in the previous section, validation has been done 

using three sets of data. The validation against the training set 

(train) is not reported in a figure, because it is not cross-validated 

in any way and not independent. As a matter of fact, as expected, 

the accuracies from train validation were much over-estimated 

when compared to the other methods; i.e. for one of the MLM 

method, RF, the accuracy was 100%, as the decision trees model 

the training data perfectly (with decisions) and thus validation 

against training does not have any sense.  

The k-fold cross-validation and the validation against the full 

dataset are reported in Figure 2 and Figure 3, respectively. 

 

 

 
Figure 2. Accuracy metrics of k-fold cross validation  

over the training set. 

 

 

4.1 Best performing classifier 

The first question that needs to be asked is: what is the best 

classifier? As can be seen in Figure 2, the random forests (RF) 

performs better than the others, however there are several points 

that should be made. First of all, RF keeps the title of “best 

performer” when there are enough training variables. As can be 

seen in both plots, below 20 x103 pixels for training RF tends to 

be as accurate, if not less, than other MLM. 

The two MLM based on neural networks (MLP and MLPE) seem 

to perform better than RF when considering smaller number of 

pixels for training. This is particularly clear from the validation 

results from the full independent dataset (Figure 3), where RF 

drops.  RF also gets the title of best performer when comparing 

accuracies with the k-fold cross validation, keeping the title also 

at lower number of training pixels. 

 

 

 
Figure 3. Accuracy metrics of results over  

the full independent dataset. 

 

 

A final remark is that the neural networks seem the most robust 

performers also with little training data. This can be inferred from 

observing how the accuracy (ACC) and kappa index (KAPPA) 

are more constant than the other classifiers, both for the full 

validation and for the k-fold validation. This is an important 

characteristic since more training data means more computation 

time and more manual work for determining the training areas 

over the image. 
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4.2 K-fold versus full validation  

K-fold does have a small drawback when compared against 

validation from the full dataset. It overestimates accuracy when 

using the 2% of total polygons (blue dots) as opposed to the 10% 

of total polygons (red dots). This is explained by the smaller set 

used for training when using 2% of the available pixels as 

opposed to 10%. K-fold cross-validation uses available training 

data to assess accuracy, simulating independent sets of data by 

sampling from the training data and applying the model to it. 

Therefore, a smaller set will overestimate accuracy as opposed to 

a larger training set, which has more variance. It is trivial to state 

that validation against the full dataset is more robust. This type 

of overestimation of accuracy is observed in RF and KKNN, but 

not in the other classifiers.   

 

4.3 Processing speed 

Each combination of MLM and number of pixels used for 

training were also benchmarked for its speed in processing 

(Figure 4). This benchmark was performed by running the MLMs 

with R cran rminer package (Cortez, 2010)  on a workstation with 

1 Intel® Xeon® Six-Core Processor X5660 (2.80 GHz, 12 MB 

cache, 1333 MHz memory), 12 Gb RAM running Windows©7 

64 bits.   

 

 

 
Figure 4. Benchmark results of processing speeds for each MLM 

with different number of pixels used in the training phase. 

 

 

 
Figure 5. Processing speed of different MLMs for training and 

classification using the highest number of pixels for training 

(6x104). 

 

This type of benchmark is to be considered for testing relative 

performance issues between MLMs in this particular case, and 

not an indicator for a final conclusion on speed of the algorithms 

as they are influenced by many factors which have not been 

monitored in this study.  

As shown n Figure 5, a group of classifiers are much faster in the 

training phase, especially when the highest number of training 

pixels – i.e. 6x104 pixels, are used. In training, the faster MLMs 

are lda, lr, ctree, and mlp. In the classification phase only 

boosting and kknn, followed by ctree, are significantly faster. The 

more complex methods, randomForest and svm, require longer 

processing times for both classification and training.  

 

5. CONCLUSIONS 

In this study, the benchmarking of 9 machine learning algorithms 

is carried out for accuracy and speed in training and classification 

of a Sentinel-2 dataset for land-cover mapping. Some interesting 

points which are worth reporting are outlined as below:  

- Overall, the RF is among the best performing method for the 

classification, i.e., Kappa index ranging from 0.55 to 0.42 

respectively with the most and least number pixels for training. 

- Next, the neural networks (mlp and mlpe) follow closely to 

randomForest and also have an important added value of 

keeping a high accuracy with smaller training datasets, as 

opposed to randomForest, i.e., drops in accuracy with a smaller 

number of training data.  

- The support vector machines also follow close, and it can be 

said that there are various methods to improve performance of 

SVM which have not been investigated in this study.  

- Although many factors which have not been monitored in this 

study, affect the speed of the algorithms used, in general, the 

more complex methods, such as randomForest and svm, 

showed that they require longer processing times for both 

classification and training phases.  

 

As a final remark, it might be the case that an optimized SVM 

over the same Sentinel 2 data used might lead to have an 

improved result; hence it is thought that it will be an interesting 

topic for future investigations.  
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