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ABSTRACT: 

 

Impervious surface area (ISA) is one of the most important indicators of urban environments. At present, based on multi-resolution 

remote sensing images, numerous approaches have been proposed to extract impervious surface, using statistical estimation, sub-

pixel classification and spectral mixture analysis method of sub-pixel analysis. Through these methods, impervious surfaces can be 

effectively applied to regional-scale planning and management. However, for the large scale region, high resolution remote sensing 

images can provide more details, and therefore they will be more conducive to analysis environmental monitoring and urban 

management. Since the purpose of this study is to map impervious surfaces more effectively, three classification algorithms (random 

forests, decision trees, and artificial neural networks) were tested for their ability to map impervious surface. Random forests 

outperformed the decision trees, and artificial neural networks in precision. Combining the spectral indices and texture, random 

forests is applied to impervious surface extraction with a producer’s accuracy of 0.98, a user’s accuracy of 0.97, and an overall 

accuracy of 0.98 and a kappa coefficient of 0.97. 

 

 

1. INTRODUCTION  

Rapid growth of urban impervious surfaces is one of the most 

salient features of rapid urbanization. Impervious surface is 

generally defined as any material that water cannot permeate, 

including the traffic and the construction of the building, which 

is closely related to human activities and living. In the process 

of urbanization, the ground objects information changes 

frequently, including changes from suburb permeability better 

land types to poor permeability transition urbanized land, 

leading to that vegetation coverage area for the main part of the 

natural landscape is replaced by artificially constructed surface 

which is the by-product of urban development. Additionally, 

industrial land in old city and low-density residential land have 

been developed into high-density residential land and 

commercial land. Above changes result in a series of ecological, 

environmental and climate issues, such as urban heat island 

effect, non-point source pollution, air pollution, and reduced 

biodiversity. 

 

Since 1970, ground measurements and manually digitized 

methods were used to estimate impervious surface. Although 

these methods are accurate, the low-level automatization, time-

consuming and data on a small range limited the scope of the 

application of these methods. In contrast, impervious surface 

has caused widespread concern with the advantages of multiple 

spectral bands, detection without geographical and 

environmental constrains, broad perspective, transient imaging 

functionality and low cost. However, most previous research is 

applied primarily to medium/coarse resolution remote sensing 

images, such as Landsat Thematic Mapper (TM) and Enhanced 

Thematic Mapper Plus (ETM+) data. The resulting impervious 

surface estimation, therefore, is difficult to meet the needs of 

urban planning and management and mapping. With more 

details, high spatial resolutions images attract the interests of 

urban planners. However, in order to produce high resolution 

impervious surface information quickly and accurately, it still 

has a great deal of work to do. 

 

At present, research in this field focuses on the application, 

experimental use of existing methods, and contrast .Machine 

learning algorithms such as artificial neural networks, decision 

trees, support vector machines and ensemble classifiers, have 

been successfully adopted to urban impervious surface area 

estimation and monitoring, making it possible to deal with the 

heterogeneous spectral signature of land cover categories over 

large areas (Grinand et al., 2013) .Such algorithms have the 

advantages with high accuracy, and are able to handle large 

volumes of data effectively. Wu et al (2009) quantified high 

resolution impervious surfaces using spectral mixture analysis 

(SMA) from the IKONOS image. To solve within-class 

variability and the mixed pixel, they proposed two approaches：
Interior end-member set selection and spectral normalization. 

Fei and Marvin(2006) investigated digital classification 

techniques of mapping of impervious surface area using high 

resolution Quick bird satellite data, and explored and compared 

two methods – object-based and per pixel classification. In 

addition, Deng sheng Lu et al (2011) got a good performance 

provided by the hybrid method consisting of thresholding 

techniques, unsupervised classification and limited manual 

editing. To reduce the impact of shadows, an algorithm of 

multiple agent segmentation and classification (MASC) that 

includes sub-models of segmentation, shadow-effect, 

MANOVA-based classification and post classification was 
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proposed by Yuyu Zhou and Y.Q. Wang (2008). To assess the 

effectiveness of multi-scale segmentation and Object-oriented 

fuzzy classification method, Robert and Navendu (2008) 

extracted 8 types of land cover classification in the Ohio area 

and achieve an overall accuracy of 93.6%. Mohapatra et al 

(2008) also extracted high resolution impervious surfaces using 

an artificial neural network (ANNs) which is 3-layer structure 

from the IKONOS image in Grafton, Wisconsin area. 

 

Among these algorithms, Random forest (RF) algorithm is a 

new and powerful classification and regression algorithms and 

exhibits many desirable properties, including the robustness of 

over fitting the training data and evaluation of variable 

importance. It also has better performance at capture non-linear 

association patterns between predictors and response and fits for 

parallel computing platforms (Kühnlein et al., 2014).Schneider 

(2012) reported that on the basis of accuracy assessment, RF 

was superior to maximum likelihood classifier and support 

vector machines. This is one of the reasons it has led us to 

investigate the usefulness of RF approaches for urban 

impervious surface area estimation in high resolution remote 

sensing. However, as a statistical learning technique, when the 

number of samples is distributed unequally, the result of RF is 

often biased in favor of the majority class, and vice versa the 

numbers of minority class tend to be underestimated. 

 

The main objective of this study was to effectively and feasibly 

map impervious surfaces in Wuhan, and these research results 

can be used by urban planners to analysis environmental 

monitoring and urban management for sustainable urban 

development. In this paper, combining with texture and the 

spectral indices, including Brightness, Soil adjusted vegetation 

index SAVI, Normalized Differences Water Index (NDWI) and 

the Built-Up Areas Index (BAI), we exact impervious surfaces 

using random forests from the ZiYuan-3 in part area of Wuhan. 

This research shows that overall accuracy and kappa coefficient 

of RF were 0.98 and 0.96, respectively. It is higher than 

decision tree (DT) and artificial neural networks (ANNs) 

methods. 

 

2. RANDOM FORESTS 

In 2001 a random forest (RF) algorithm, which is an ensemble 

of many classification or regression trees designed to produce 

accurate predictions that do not overfit the data, has been 

proposed by Breiman（2001）. Combining Breiman’s bagging 

sampling method (1996a) and the random selection of features 

introduced individually by Ho (1998) and Amit and Geman 

(1997), it perform excellently for linear and nonlinear prediction 

by keeping the balance between bias and variance. Additionally, 

the advantages of RF include (Fawagreh et al., 2014):  

1. Accuracy of classification is very high  

2. Less human intervention is required  

3. Data can provide additional description 

4. Operation is fast 

 

Random forest algorithm, therefore, is increasingly being 

applied to remote sensing image classification and regression 

analysis model (Dye et al., 2012; Akar and Güngör, 2015; Im et 

al., 2012). 

 

Firstly, during training an RF, N bootstrap samples are drawn 

from two-thirds of the training data to construct multiple 

classification trees.  Meanwhile the remaining one-third of the 

training data, called out-of-bag (OOB) data as well, is used to 

assess the accuracy of the predictions. After that an un-pruned 

tree is independently determined employing a bootstrap sample 

of the data set. m predictors of each node ,which is specifying 

one of the standard parameters, are randomly sampled as a 

subset of predictor variables, simultaneously the best split 

between these variables is selected optimally in random split 

selection. Another standard parameter is the number of trees to 

be grown. The results of RF are obtained via majority voting 
(Breiman, 2001). The procedure is as follows: 

1. n observations is randomly selected with replacement 

from the training data to obtain a bootstrap sampler 

2. m predictors are selected at random from predictor 

variables. When tree splitting is terminated, there are 

only one class is present at each terminal node  

Once all N trees are grown in the forest, predicted class 

label are voted with each classifier, afterwards the class 

label that receives the most vote is deemed to classify the 

instance.
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Figure 1.  Tree models of RF 
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3. COMBINING THE SPECTRAL INDICES AND 

TEXTURE INFORMATION 

With the increase of the spatial resolution, detail features of the 

ground objects become even more significant. But due to the 

influence of city landscape heterogeneity, the intra class spectral 

variability enhancement, and synonyms spectrum phenomenon 

is obvious. Shadow, which is produced by terrain fluctuation, 

high buildings and tree canopies, is seriously interfering with 

the spectrum of the underlying surface of the shadow area. And 

the area covered by the shadow may contain many kinds of 

features such as broken grass and road, and it also makes the 

identification of impervious surface more difficult. High-

resolution remote sensing images typically involve only the 

visible and near-infrared bands. It is difficult to deal with the 

problem of within-class variability relying solely on spectral 

characteristics. In order to reduce the influence of the 

phenomenon of synonyms spectrum, texture information and 

object-oriented technology has been widely used (Zhang et al., 

2014; Moran, 2010). Texture is the change of image color as a 

grade function, which can be applied to edge detection and 

reduce the variation in spectral class. The key to obtain the 

suitable texture information is the choice of image, the size of 

the window and the method of texture calculation (Frohn and 

Chaudhary, 2008; Zhang et al., 2014). In order to improve the 

classification accuracy, this paper selects the spectral indices 

and texture features as new bands to join the original image. 

 

3.1 The spectral variables 

In this study the spectral variables used consisted of the 

ZiYuan-3 visible and four spectral indices, including Brightness, 

Soil adjusted vegetation index (SAVI), Normalized Differences 

Water Index (NDWI) and the Built-Up Areas Index (BAI) in 

order to increase the classification accuracy. For the extraction 

of water information from remote sensing imagery, the 

normalized difference water index (NDWI) was proposed by 

McFeeters (1996). Then, Water features have positive values 

and thus are enhanced, while other ground objects usually have 

zero or negative values. Because of the lack of middle infrared 

band, the modified NDWI (MNDWI), even though outstanding 

in removing built-up land noise, was abandoned. Furthermore, 

the SAVI (Alhammadi and Glenn, 2008), increased the different 

between buildings and vegetation, has been used for estimating 

vegetation cover however the NDVI is more suitable for 

detecting a wide range of vegetation densities. Moreover the 

SAVI is more robust, since they account for the contribution of 

the soil background. Developed by Mhangara et al. (2011), the 

Built-Up Areas Index has good performance in detecting asphalt 

and concrete surfaces. It is a very robust index that remains 

relevant even if it is calculated on an image with some 

vagueness. Moreover the brightness method (Hsieh et al., 2011; 

Zhou et al., 2009) , which was defined as the mean of the four 

multispectral bands red, green, blue, and near infrared, is useful 

in distinguishing shadows and non-shadows. The spectral 

indices are calculated as: 

     
(     )

(     )
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(         )
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    (     )

(         )
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(     )
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Where  R= the first band of the ZiYuan-3 image 

 G= the second band of the ZiYuan-3 image 

 B= the third band of the ZiYuan-3 image  

 NIR= the fourth band of the ZiYuan-3 image 

 

3.2 Texture analysis 

Many studies have shown that texture analysis supplies an 

alternative to spectral analysis by employing a combination of 

shape, size and spectral data to classify image, and increases the 

performance of multispectral image classification. In addition, 

to a certain extent, object-oriented technology and texture 

information reduce the noise and increase the classification 

accuracy. In this paper, a texture filter of Co-Occurrence 

Measures used a co-occurrence matrix to calculate texture 

values, was applied. The co-occurrence matrix is a function of 

both the angular relationship and distance between two 

neighbouring pixels. It shows the number of occurrences of the 

relationship between a pixel and its specified neighbour. 

Haralick et al (1973) represented this as a "gray-tone spatial-

dependence matrix". Their implementation took the sum of all 

four directions (0°, 45°, 90°, and 135°) into account between 

neighbouring cells that are separated by some distance. These 

filters contained mean, variance, homogeneity, contrast, 

dissimilarity, entropy, second moment, and correlation. This 

approach described the probability of any grey level arising 

spatially relative to any other grey level within a moving 

window, as shown in Table 1. 

Table 1. Co-occurrence texture measures used in this study 

Texture Formula Description 

Homogeneity ∑
   

  (   ) 

   

     

 

Homogeneity 

calculates the 

smoothness of image 

texture. Large spectral 

changes can result in 

very small 

homogeneity values, 

and vice versa. (Tuttle 

et al., 2006) 

Mean ∑      

   

     

 

Mean measures the 

average value of all 

pixels to replace the 

original pixel value 

within the moving 

window. 

Where  P = the texture index 

 i, j = adjacent texture pixel 

 

4. EXPERIMENTS AND ANALYSIS 

4.1 Study area 

Located in the middle and lower reaches of the Yangtze River, 

Wuhan is a significant scientific research and education base of 

China. It is one of the best cities in the development of Chinese 

higher education, and the third largest scientific and educational 

cantered city only second to Beijing, Shanghai. According to 

statistics, from 2002 to 2012, the number of lake was reduced 

from more than 200 to about 160 in Wuhan, and 

correspondingly total area of Wuhan urban construction is 

growing year by year, from 455.06 km2 (2006) to 
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507.54km2(2011), with a five-year growth rate 11.53%.This 

shows that the rapid development of the city makes the land use 

types change frequently in urban areas. And urban construction 

and expansion makes artificial construction surface replace the 

original wetland lakes and other kind of natural surface. The 

impervious surface area increases every year and has a 

centralized distribution characteristics. The study area (Figure 2) 

covers 3.125 km2 with canter coordinates 114° 21′ 20″ E, 

30° 30′ 14″ N. It has been selected because: (1) Adjacent to 

the Nan lake, it contains rich information of environments and 

land covers; and (2) in recent years, the rapid development of 

the city led to great changes in hydrological characteristics. 

Water-logging caused by the heavy rainfall occurs frequently in 

Wuhan, which brings huge economic loss and bad effect. 

According to the urban waterlogging risk map produced by 

Water Affairs Bureau and Meteorological Bureau of Wuhan in 

2013, there are 20Ⅰlevel risk points and the number of Ⅱ\Ⅲ 

level risk points is 15 and 32, respectively. Therefore we chose 

one ofⅠlevel risk points---the Gaofen community as study area. 

 

The image acquired from the ZiYuan-3 remote sensing images 

in August 2012. The ZiYuan-3--- a Chinese Earth observation 

satellite was successfully launched on January 9, 2012 by a 

Long March 4B rocket from China. It provides assistance 84 

degrees north and 84 degrees south latitude of area 

measurement and carries three high-resolution panchromatic 

cameras and an infrared multispectral scanner (IRMSS) .The 

ground-facing camera records images with a spatial resolution 

of 2.5m and 51.1km ground swath, while the other two (front-

facing and rear-facing) records images with a spatial resolution 

of 4.0m and 52.3km ground swath. In addition, IRMSS 

produces images with a spectral resolution of 6.0m and 51.1km 

ground swath. And it has much significance to conduct surveys 

on monitor resources, help with natural disaster reduction and 

prevention and agriculture, water conservation, urban planning. 

First of all, the DN values are converted to reflectance (range 0-

1) by the radiometric calibration, and then an atmospheric 

correction was applied to image pre-processing. From the image 

cropped a typical waterlogging area with 500 x 500 pixel size 

for experiments, soil adjusted vegetation index(SAVI), 

Brightness, Normalized Differences Water Index (NDWI), the 

Built-Up Areas Index (BAI) and the mean and homogeneity 

characteristics obtained by texture filtering based on second-

order matrix are calculated respectively . As new bands, these 

features are added to the random forest classification to improve 

the classification accuracy (Ghimire and Miller, 2010; Xu, 

2013).

 

 
Figure 2. (a) The administrative boundary of Wuhan in Hubei province  

(b) Part of the administrative region of Wuhan (c) the ZiYuan-3 image of Wuhan in 2012 

 

4.2 Calculate the spectral indices and texture features 

The feature index and texture feature of the image are calculated 

from the pre-processed image, mainly including SAVI, 

Brightness, NDWI, BAI and the mean and homogeneity 

characteristics obtained by texture filtering based on co-

occurrence matrix. Window size used for texture filtering is 3 x 

3 pixels, as shown in Figure3 and Figure4. 
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 (a) (b) 

 

   
 (c) (d) 

Figure 3. The spectral indices (a) SAVI (b) NDWI (c) BAI (d) Brightness 

 

   
 (a) (b)  

Figure 4. Co-occurrence texture measures (a) Mean (b) Homogeneity 
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4.3 Calculate the spectral indices and texture features 

A certain amount of sample was extracted and Google Earth 

images were used as references in identifying land covers. The 

two thirds of training samples are input to the classifier, and the 

remaining one third of training samples is used to calculate the 

error rate of the model. Data processing and analysis were 

carried out in ArcGIS 10.1, ENVI5.1, and Matlab R2013a. The 

experimental error rate was 0.375, lower than 0.5, so the model 

can be used for classification. Results of random forest are 

shown in Figure 5(b), besides, Figure 5(a) shows study area. In 

order to verify the classification effect of this method, the 

classification method of decision tree (DT) and artificial neural 

networks (ANNs) are used for a comparison. Classification 

results are shown in Figure 5(c)-(d). 

 

   
 (a) (b) 

   
 (c) (d) 

Water Veg IS Soil
 

Figure 5. (a) The study area (b) Results of RT(c) Results of DT (d) Results of ANNs 

 

4.4 Accuracy assessments 

In this paper, confusion matrix is used to evaluate the accuracy 

of the classification results.  The total numbers of pixels for 

impervious and non-impervious surfaces were 2346 and 3041, 

respectively. The numbers of regions of interest for impervious, 

vegetation, water and soil were 2346, 1109, 1298 and 634. Due 

to the lack of bare soil area in study area, the total numbers of 

regions of interest for soil was least. In this paper, we didn’t 

extract shadow as a class. 

 

Overall accuracy and kappa coefficient of RF were 0.98 and 

0.96, respectively. It is higher than the other methods. The 

user’s accuracy and producer’s accuracy were 0.97 and 0.98, 

respectively. According to Table 1-3, there was only a tiny gap 

between these methods. Furthermore, it showed that there were 

61 sample points of impervious surfaces was mistaken for non-

impervious surfaces, 7 sample points located in vegetation, 4 in 

the water, and 50 in soil, respectively. Due to spectral confusion 

of heterogeneous impervious surfaces, soil is one of the classes 

were most easy mistaken for impervious surfaces. Table 1-3 

shows the classification accuracy of different methods. 
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Table 2. Confusion matrix of RF 

Class IS VEG WATER SOIL 

IS 2285 1 4 23 

VEG 7 1108 0 0 

WATER 4 0 1294 0 

SOIL 50 0 0 611 

Producer’s 

Accuracy 
0.98 0.99 0.99 0.92 

User’s 

Accuracy 
0.97 0.99 0.99 0.96 

Overall 

Accuracy 
0.98    

Kappa 

Coefficient 
0.97    

Table 3. Confusion matrix of DT 

Class IS VEG WATER SOIL 

IS 2242 8 6 26 

VEG 0 0 1292 0 

WATER 0 0 1292 0 

SOIL 97 0 0 608 

Producer’s 

accuracy 
0.98 0.99 1.00 0.86 

User’s 

accuracy 
0.95 0.99 0.99 0.95 

Overall 

Accuracy 
0.97    

Kappa 

Coefficient 
0.96    

 

Table 4. Confusion matrix of ANNs 

Class IS VEG WATER SOIL 

IS 2124 5 1 15 

VEG 7 1104 0 0 

WATER 3 0 1297 0 

SOIL 212 0 0 619 

Producer’s 

accuracy 
0.99 0.99 0.99 0.74 

User’s 

accuracy 
0.90 0.99 0.99 0.97 

Overall 

Accuracy 
0.95    

Kappa 

Coefficient 
0.93    

 

5. CONCLUSIONS 

It is quite obviously that the machine learning algorithm must 

be used in the treatment of high dimensional data. RF, DT, and 

ANNs all showed strong classification performance. 

Specifically, RF is now possible to exploit multiple feature data 

to map impervious surface, and to resolve confusion between 

impervious surface and soil with similar spectral characteristics. 

And it was found to be an effective and robust tool for 

combining spectral and texture remote sensing image for 

impervious surface extraction. Compared to ANNs and DT, RF 

algorithms showed higher classification accuracy. Impervious 

surface is most likely to be confused with bare soil, followed by 

water, because bare soil and impervious surface have a high 

similarity on the spectrum. For the reason that the best model 

was achieved using the RF backward variable selection method, 

four spectral indices and texture variables were used. Accuracy 

assessment indicated that the producer’s accuracy and a kappa 

coefficient yield 0.98 and 0.96, respectively. However, more 

research is needed to evaluate useful feature selection, which at 

present is based on spectral information solely. And many 

scholars also consider class-imbalance and -overlap the linchpin 

for the application of RF. 
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