The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016
XXIIl' ISPRS Congress, 12—19 July 2016, Prague, Czech Republic

ACCOUNTING FOR VARIANCE IN HYPERSPECTRAL DATA COMING FROM
LIMITATIONS OF THE IMAGING SYSTEM

B. Shurygin®*, M. Shestakova®, A. Nikolenko®, E. Badasen®, P. Strakhov®

* Dept. of Aerophysics and Space Research, MIPT, Dolgoprudny, Russia -
lodinn@lodinn.com

Commission VII, WG VII/4

KEY WORDS: Supervised classification, decorrelation, Mahalanobis distance, Signal-to-noise ratio (SNR), Bayesian approach, Prin-
cipal component analysis, Pixel-wise calibration.

ABSTRACT:

Over the course of the past few years, a number of methods was developed to incorporate hyperspectral imaging specifics into generic
data mining techniques, traditionally used for hyperspectral data processing. Projection pursuit methods embody the largest class of
methods empoyed for hyperspectral image data reduction, however, they all have certain drawbacks making them either hard to use or
inefficient. It has been shown that hyperspectral image (HSI) statistics tend to display “heavy tails” (Manolakis2003)(Theiler2005), ren-
dering most of the projection pursuit methods hard to use. Taking into consideration the magnitude of described deviations of observed
data PDFs from normal distribution, it is apparent that a priori knowledge of variance in data caused by the imaging system is to be
employed in order to efficiently classify objects on HSIs (Kerr, 2015), especially in cases of wildly varying SNR. A number of attempts
to describe this variance and compensating techniques has been made (Aiazzi2006), however, new data quality standards are not yet
set and accounting for the detector response is made under large set of assumptions. Current paper addresses the issue of hyperspectral
image classification in the context of different variance sources based on the knowledge of calibration curves (both spectral and radio-
metric) obtained for each pixel of imaging camera. A camera produced by ZAO NPO Lepton (Russia) was calibrated and used to obtain
a test image. A priori known values of SNR and spectral channel cross-correlation were incorporated into calculating test statistics used
in dimensionality reduction and feature extraction. Expectation-Maximization classification algorithm modification for non-Gaussian
model as described by (Veracini2010) was further employed. The impact of calibration data coarsening by ignoring non-uniformities
on false alarm rate was studied. Case study shows both regions of scene-dominated variance and sensor-dominated variance, leading to
different preprocession parameters and, ultimatively, classification results. A multilevel system for denoting hyperspectral pushbroom
scanners calibration quality was proposed.

1. INTRODUCTION This success should be mainly attributed to the lack of informa-

tion about the dataset - dimensionality reduction is most often

Hyperspectral imaging is a flexible tool employed in a wide range
of remote sensing applications. Said flexibility comes with a
number of drawbacks, one of which is an extremely high de-
gree of data redundancy in hyperspectral images. Combined with
large image size, data redundancy often requires dimensionality
reduction, which in turn serves as a stepping stone for the further
image processing. A lot of non-specific data mining techniques
for feature extraction are being employed in order to preserve
the maximum amount of information, the most well-known ones
being projection pursuit (PP) methods such as principal compo-
nent analysis (PCA) and independent component analysis (ICA).

However, as was shown by Manolakis (Manolakis2003) and Theiler

(Theiler2005), hyperspectral data tends to display non-normal
distribution of pixel brightness, rendering the base assumption
of ICA incorrect, while PCA does not account for noise contribu-
tion in data variance, leading to over-estimation of informativity
of dark and noisy channels. A number of modifications and adap-
tations of these algorithms has been developed over the course
of past years, most notable examples being noise-adjusted prin-
cipal component (NAPC) transform, non-linear PCA (NLPCA)
and maximum noise fraction (MNF). As mentioned by Wang
(Wang2006), PCA-based approaches tend to conceal “many sub-
tle material substances uncovered by very high spectral resolution
hyperspectral imaging sensors”, however, they are still one of the
most accessible and efficient tools in the field of hyperspectral re-
mote sensing.
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required in cases where little to no spectra of the objects on the
acquired scene are known a priori or obtained during the series
of ground measurements. At present, a few other means to incor-
porate auxiliary information in the processing algorithms were
made, including previously mentioned NAPC and its modifica-
tion, INAPCA (interference and noise-adjusted principal compo-
nents analysis (Chang1999)), which can attribute for noise frac-
tion and interference in hyperspectral imaging systems. These
approaches, however, are often inapplicable by the end users due
to lack of information about the noise.

In this work, we analyze the impact of employing the pixel-wise
radiometric and spectral calibration curves on the ability to ex-
tract the meaningful signal and filter the noise from the data dur-
ing supervised classification and propose a method to estimate a
noise fraction and covariance matrix based on sensor specifica-
tions.

2. NOISE SOURCES IN HYPERSPECTRAL DATA

2.1 Noise types

In most hyperspectral imaging systems, the only source of a ran-
dom noise is the photosensitive matrix, often presented by a charge-
coupled device (CCD). Signal measured by a camera consists of
4 main components - the light intensity intended to be measured,
thermal noise background (dark current), shot noise, and read-
out noise. Signal-to-noise ratio for such system is given by the

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B7-365-2016 365



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016
XXIIl' ISPRS Congress, 12—19 July 2016, Prague, Czech Republic

equation
Nsig

B \/Nsig + Nda'rk + Nfeadv

where Ng;q is the number of light-induced electrons detected,
Ngark is the number of thermal electrons detected, and Nyeqq
accounts for the readout noise. As it can be seen, depending on
signal level expected SNR may vary, being significantly lower for
regions with low incident light intensity and/or low quantum ef-
ficiency of the CCD in question.

Another major contribution to the decline in image quality caused
by imaging system limitations is improper accounting for the im-
age forming, including blur, infamous “’smile effect”, striping and
other artifacts.

SNR

2.2 Calibration quality levels

For the given hyperspectral sensor, full calibration data would in-
clude spectral response curves and radiometric response depend-
ing on exposure time on per-pixel basis. However, this data is
usually not available for the end user. Instead, simplifications
are made. Most commonly, spectral response curves are substi-
tuted with channel central wavelengths and widths; sometimes, a
single background and/or radiometric scaling coefficient are as-
signed for the whole photosensitive matrix in the stead of a matrix
of coefficients. Depending on a system design, that may lead to
the multiple artifacts, as it was mentioned in the previous section.
In this article, we propose a grade system for the calibration data
quality and availability for the end user, from best to worst:

1. Spectral and radiometric response curves are available for
each pixel, auxiliary flight data allows to match acquisition
parameters with ones used in pre-flight calibration.

2. Spectral and radiometric response curves were measured on
per-pixel basis and simplified to the few parameters, namely
dark current, radiometric calibration curve slope, pixel cen-
tral wavelength and width of spectral response curve.

3. Channel width is not measured, central wavelength and ra-
diometric coefficients are available on per-pixel basis.

4. Calibration data (central wavelength, spectral width, dark

current and radiometric coefficients) is available on per-channel

basis.

5. Channel width is not measured, only central wavelength and
radiometric coefficients are available on per-channel basis.

6. Channel width is not measured, central wavelength are known
on per-channel basis, radiometric coefficients are available
only for the matrix as a whole.

Normally, end user would operate with the levels 3-4 of calibra-
tion data. For this work, we had access to level 1 quality of cal-
ibration data according to the scheme above, which was subse-
quently brought down to level 2. In the course of the presented
research, we imitated levels 3-5 of calibration data as well, ex-
tracting them from the selfsame level 1 dataset. Extraction was
done by fitting data using MATLAB and omitting parts of the
data set wherever necessary. Initial data set comprised 87 mil-
lions of data points (approximately 330 Gb), level 2 data included
580000 parameters (2.2 Gb), level 3 data had one parameter less
than level 2 data for each pixel, resulting in 1.67 Gb of calibration
data. Finally, levels 4 and 5 yielded approximately 1 Mb of cal-
ibration data each. Level 6 contains a negligible amount of data
and results in the fastest, but the most inaccurate pre-processing

of an image.

It can be seen that level 1 data is highly impractical, levels 2 and
3 are usable, but in many cases, levels 4 through 6 would be pre-
ferred because of less stored data and significantly faster process-
ing.

3. INCORPORATION OF CALIBRATION DATA INTO
CLASSIFICATION ALGORITHMS

3.1 Preparation of calibration data for testing

From the equation for SNR in section 2.1, lower signal values re-
sult in higher noise fraction. For hyperspectrometers with variat-
ing channel width (prism-based), this means that areas with finer
spectral resolution tend to be intrinsically more noisy than ar-
eas with coarser spectral resolution, and for the normal operat-
ing mode of hyperspectral camera, when SNR is photon noise-
limited, the SNR ratio is expected to be proportional to the square
root of channel width under assumption there is no other a priori
knowledge about signal levels in different spectral ranges. Other
way of estimating it is the inverse square root of the radiometric
calibration coefficient, which is also more precise since it takes
into account possible vignetting and other sources of signal dwin-
dling towards the edges of the CCD matrix.

The camera we used in this research was a pushbroom hyper-
spectrometer made by ZAO NPO Lepton (Russia) and it had the
following parameters:

e Spectral range 400—1000 nm;
e Channel width 2-9 nm;

e 290 spectral channels;

500 pixels cross-track;

Field of view 3.2°.

Dark current background was highly uniform over the matrix,
whereas radiometric multiplicative calibration coefficients were
not (fig. 1). For the further research, this level 2 calibration data
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Figure 1: Radiometric calibration coefficients for the camera used
in research.
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was brought down to the level 4 by averaging radiometric re-
sponse over channels. Relative error
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Figure 2: Relative error in radiometric calibration coefficients af-
ter whitening.

where C is the radiometric calibration coefficient, ¢ denotes chan-
nel number, j denotes cross-track coordinate, is presented on the
figure 2. Notably, shown distribution of relative error results in
darker edges of the scene - an artifact commonly found in hy-
perspectral images. In a similar manner, spectral calibration was
also handled.

Distribution of the radiometric calibration coefficients shown on
figure 1 reveals yet another problem - even with constant im-
aged object brightness over the whole spectral range, signal val-
ues would vary up to 8 times due to different channel widths
and quantum efficiency of the matrix depending on the spec-
tral region. This means that regardless of the actual hyperspec-
tral scene, channels in the blue spectral region are expected to
have at least 4 times lower SNR than channels in the green spec-
tral region, in addition, they have also significantly higher cross-
correlation.

3.2 Utilization of calibration data in the feature-weighted
Mahalanobis distance

‘We propose to explicitly compensate for these factors during su-
pervised classification. For that, we utilize a feature-weighted
Mahalanobis distance similar to one described in (Wolfel2005),
but using our estimations for noise fraction as weights:

D=\/(L—-LMTFS-1(L — L¥),

where L is the pixel radiance, L* is the mean radiance for the
user-selected class k, S is the covariance matrix of the training
set, and [ is a noise and interference-whitening matrix identical
to one described in (Chang1999).

This approach requires the prior knowledge of a noise covariance
matrix. Since the noise is signal-dependent, we propose to further
modify it so that F' in the equation above is substituted for gF’,
where F'is calculated under assumption of signal uniformity over
the spectral range and g is a diagonal weighting matrix account-
ing for the variance of noise caused by signal non-uniformity.
That selection allows for the fast calculations since both F' and
S~1 are independent of data point and g is diagonal. Following
the MNF ideology, we propose g of a form

VDNF = DNugars, ifi=j
i =

0, otherwise,

where DN stands for digital number - raw signal before apply-
ing radiometric calibration coefficients. It is worth noting that
the gF'S™' kernel version with g being considered an identity

(a) Original image (b) Thematic map for dizziness

estimation

Figure 3: Image selected for processing

matrix is an a priori generated weighting matrix, while version
with DN modifies the very concept of Mahalanobis distance and
makes it not scale-invariant (brighter areas are considered more
informative).

For the research presented in this paper, modified version of Ma-
halanobis distance with DN-based noise whitening matrix calcu-
lation was used.

4. DATA AND RESULTS

For analysis of calibration data availability impact on the qual-
ity of supervised classification while employing the proposed ap-
proach we have used a hyperspectral image obtained by a camera
presented above. That image was obtained on 23 May, 2014.
A fragment of the image used for analysis as well as the the-
matic map produced using the threshold-based decision tree are
presented on the figure 4.. Namely, channels with central wave-
lengths closest to 450, 500, 550, 600, 670, 750 and 860 nm were
selected, maximum likelihood classifier was employed and the re-
sult was spatially filtered. This way, an artificially produced ref-
erence map representing spectral regions with important spectral
features was acquired. While this result does not pertain an abso-
lute scale of measuring classifier performance, it does guarantee
that the supertypes of objects, such as vegetation, man-made ma-
terials, soil or water should be appropriately detected.

Calibration data level 2 was used to pre-process the hyperspec-
tral image, while level 4 of data is enough to perform all the
necessary computations during classification. For classification
purposes, a training set for 10 classes was provided. It included
5 types of man-made materials, water, soil and 3 types of veg-
etation. Classification was done using unmodified Mahalanobis
distance and feature-weighted Mahalanobis distance. Results are
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(a) Unmodified Mahalanobis
distance

(b) Feature-weighted Maha-
lanobis distance

Figure 4: Classiffication results

presented on figure 4.. Both of the classification results were
not post-processed. It is clearly seen that the proposed modifi-
cation led to significant reduction of contribution of noisy chan-
nels into final result. While using non-modified Mahalanobis
distance, huge part of the grass-like vegetation was erroneously
attributed to forest-like vegetation. After combining 10 classes
into 3 large clusters - water, vegetation, man-made materials - it
was revealed that the non-modified Mahalanobis distance classi-
fier yielded 17.3% cases of wrong detection, while for modified
one this valus is as low as 2.2%.

5. CONCLUSION

We have proposed and tested MNF-based approach to hyper-
spectral image classification, which is based on having a com-
plete set of calibration information for the imaging system. It
has been shown that supervised classification quality is signifi-
cantly improved when employing such data, both from perspec-
tive of dizziness and erroneous detection as compared to human-
produced map with the usage of the known wavelengths contain-
ing important spectral features. Proposed approach does not sig-
nificantly increase computation time needed for the classification,
however, it requires a large amount of information about the cal-
ibration data. In this research, amount of data needed to perform
the image preprocessing was about 2.2 Gb, with estimated rela-
tive error up to 27% in case of not having a complete set of data
and using averaged values instead.
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