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ABSTRACT: 

 

In this paper an algorithm designed to map flooded vegetation from synthetic aperture radar (SAR) imagery is introduced. The 

approach is based on fuzzy logic which enables to deal with the ambiguity of SAR data and to integrate multiple ancillary data 

containing topographical information, simple hydraulic considerations and land cover information. This allows the exclusion of 

image elements with a backscatter value similar to flooded vegetation, to significantly reduce misclassification errors. The flooded 

vegetation mapping procedure is tested on a flood event that occurred in Germany over parts of the Saale catchment on January 2011 

using a time series of high resolution TerraSAR-X data covering the time interval from 2009 to 2015. The results show that the 

analysis of multi-temporal X-band data combined with ancillary data using a fuzzy logic-based approach permits the detection of 

flooded vegetation areas. 
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1. INTRODUCTION 

Flood is one of the most widespread and frequently occurring 

natural disasters causing high social and economic impacts 

worldwide. Therefore, as much information as possible on the 

characteristics of inundation event needs to be instantaneously 

accessible for crisis support management and humanitarian 

relief activities. Also for strategic planning of inundation 

mitigation and possible prevention of damage, a stable 

fundament for decision making is required. 

Synthetic Aperture Radar (SAR) is an effective, well established 

tool for monitoring and mapping inundations from space. 

Contrary to optical sensors, SAR technology is capable of 

supplying large-scale flood crisis information, regardless of 

daylight or weather conditions. Furthermore, the revisit time has 

been shortened by satellite constellations, such as COSMO-

SkyMed, allowing high temporal coverage up to 1 day and 

therefore frequently delivers SAR data for operational use. The 

characteristics of microwaves permit a differentiation between 

water and non-water areas. Smooth, open water surface acts as a 

specular reflector, which reflects the radar energy away from the 

sensor, generally producing dark pixels with low backscatter 

values in comparison to non-water areas mostly having high 

backscatter values (Martinis et al. 2009). Besides open water 

surfaces, also the flooding underneath vegetation canopy can be 

derived. This is possible due to the capability of microwaves to 

penetrate the vegetation canopy, producing multiple bounce or 

double bounce effects caused by the signal interaction between 

the flat water surface and lower parts of the vegetation (e.g., 

branches and trunks) (Townsend 2001; Schlaffer et al. 2015). In 

comparison to normal water level conditions, this leads to an 

increased backscatter values. The aforementioned advantages of 

SAR sensors in the detection of inundation areas have lead to an 

intensive effort to develop suitable algorithms for flood 

derivation from SAR imagery during the last decade. 

Few investigations considering the mapping of water bodies 

underneath vegetation by means of SAR data can be found in 

the literature. Most of this methods aim to detect flooded 

vegetation based on thresholds empirically derived and applied 

to SAR data. However, to reduce the subjectiveness in this kind 

of process an automatic determination of a suitable threshold 

value was attempted (Martinis & Twele 2010; Pulvirenti et al. 

2011; Schlaffer et al 2015). 

It is common to use only single temporal images to derive the 

threshold between flooded and non-flooded vegetation. 

However, these approaches have deficiencies, because they do 

not incorporate changes over time. To detect these changes, two 

or more SAR images have to be taken into account. Pre-event 

data have to be acquired during dry conditions, representing the 

same area as the scene acquired during the inundation event. 

The change image is created by subtracting the pixel backscatter 

values in the flood image from the pixel backscatter values in a 

reference scene (Schumann et al. 2009) when amplitude 

information is used. Change detection methods were often used 

to derive flooded areas (Giustarini et al. 2013; Martinis et al. 

2009; Nico et al. 2000). An increase in backscatter values, 

which can appear very bright in a SAR image in comparison to 

the surrounding area, may represent the key component for the 

detection of flooded vegetated and forested areas (Horritt et al. 

2010). This increase might be caused by the double bounce 

effect, a phenomena, which can occur when the water 

underneath vegetation acts as specular reflector. The backscatter 

representation of flooded vegetation in a SAR image can vary, 

because the aforementioned interactions can be complex. These 

changes depend on a number of different parameters, like the 

density of the vegetation canopy in relation to the penetrability 
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of different wavelength (e.g. L-band, C-band, or X-Band). The 

height of the plant, the orientation of the leafs and the level of 

floodwater are other relevant parameters (Pulvirenti et al. 2011). 

These variables can strongly influence the backscatter values 

and may superimpose the double bounce effect through another 

scattering mechanism. Nevertheless, many studies have shown 

that SAR data is suitable for the classification of flooded 

vegetation independent of the wavelength. The potential of L-

Band is mentioned by Richards et al. (1987). For the C-band 

data various studies (Hess 2003; Townsend 2001) presented a 

successful identification of flooded vegetation. Few 

investigations have shown a potential for the extraction of 

flooded vegetation using X-band data (Martinis, & Rieke 2015; 

Voormansik et al. 2014). 

In comparison to flooded open water areas, there is low research 

on the semi-automatic detection of water bodies underneath 

vegetation. However, the disregard of flooded vegetation 

frequently leads to an underestimation of the extent of an 

inundation. The choice of the threshold values based on SAR 

data is also critical, because of their dependence on system 

parameters, (frequency band, polarization and observation 

angle), as well as on environmental parameters of the examined 

area, (canopy type, vegetation structure and density seasonality 

and vitality of the vegetation, and topographical information)  

(Pulvirenti et al. 2011). To deal with this ambiguity of the 

radars signature for flooded areas beneath vegetation a semi-

automatic approach using a fuzzy logic classification algorithm 

is developed. Fuzzy logic is already successfully used in other 

studies focusing on the detection of inundation based on SAR 

data (Pierdicca et al. 2008; Pulvirenti et al. 2011; Martinis 2015 

Twele et al (accepted)). The application of a fuzzy logic-based 

approach allows the combination of SAR backscatter 

information with ancillary information, such as land cover, 

topographic considerations and contextual information. This 

results in an improvement of the reliability of the detection of 

flooded vegetation.  

The potential multi-temporal single-pol X-Band data for 

derivation of flooded vegetation was already demonstrated by 

Martinis, & Rieke (2015) and Voormansik et al. (2014). In this 

study, a semi-automatic method for derivation of flooded 

vegetation using multi-temporal single polarized TerraSAR-X 

data is presented. The approach is based on fuzzy logic which 

enables to deal with the ambiguity of SAR data and to integrate 

ancillary data containing topographical information, simple 

hydraulic considerations and land cover information. In this 

paper the suitability of the designed algorithm for the derivation 

of flooded vegetation is analyzed. 

 

2. DATA SET 

2.1 SAR Data 

The SAR data applied in this study relates to a flood event at 

the river Saale between January 9 and 29, 2011, located near the 

city Halle (Saxony-Anhalt, Germany). Overall, 46 TerraSAR-X 

scenes were acquired between December 17, 2009 and July 3, 

2015, containing a scene of the inundation event taken on 

January 17, 2011. The available time series provides basic 

information about the seasonal behavior for the vegetation 

areas. Fig. 1 shows the study area in two TerraSAR-X images 

(January 17, 2011) during the flood event and a pre-event image 

(November 01, 2010) under non-flooded conditions. The visual 

inspection of Fig. 1 (left and center panel) allows the clear 

detection of the black areas with small backscatter values in 

both images, which indicate open water areas. The inundation 

areas can also be identified as dark regions, however appearing 

 
 

Figure 1: TerraSAR-X image of the study area acquired under non-flood conditions (26 December 2011, © DLR 2014) (left) 

and as comparison TerraSAR-X image acquired during the flood event (17 January 2011, © DLR 2014) (center). The 

changes in the inundation image can be clearly seen. Selected auxiliary information and derived validation areas for flooded 

vegetation are shown in the right panel. 
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Figure 2. Standard S (left panel) and Z (right panel) fuzzy 

membership functions. For the S-function, the values smaller 

than x1 have the membership degree equal to 0, while the 

values higher than x2 have the membership degree equal to 1. 

For the Z-function, the opposite is the case. 

 only in the image under flooded conditions (center panel). In 

addition to the permanent water bodies, the image under 

flooded conditions (center panel) comprises also flooded areas 

during the inundation event. The flooded vegetation areas (see 

Fig. 1, center panel) can be assumed along river banks and 

inside water bodies due to the brighter backscatter than 

surrounding areas. However they cannot unambiguously be 

identified.  

The TerraSAR-X data was ordered as an EEC (Enhanced 

Ellipsoid Corrected) product. It should be noted that the data is 

horizontally polarized (HH), which is the best polarization to 

distinguish flooded areas (Pulvirenti et al. 2011). In the pre-

processing step TerraSAR-X intensity data has been radiometric 

calibrated and speckle removal was performed. The calibration 

is conducted by the calculation of the backscattering coefficient 

(sigma naught) σ0 for each pixel derived from digital numbers 

(DNs), taking into account the local incident angle influence. 

For noise removal and speckle reduction an adaptive filter 

(median filter of kernel size 3 x 3) for single-channel detected 

radar images is applied, which is successfully used for speckle 

reduction of TerraSAR-X images for flood detection purposes 

(Martinis et al. 2015). 

  

2.2 Auxiliary data 

For the exclusion of pixels, which are definitely not 

representing vegetation area, several auxiliary data sets are 

used. A land cover map (Digital Landscape Models 1:25.000) 

was provided by the Federal Agency for Cartography and 

Geodesy (2016) containing layers with permanent water bodies, 

urban areas and vegetation classes. The update for the land 

cover map is performed during the five-year utilization period, 

whereby the state for data-topicality is two years in relation to 

the download time on January 2015. Flooded open water areas 

were provided by a fully automated TerraSAR-X based flood 

service for reliable delimitation to other land cover areas 

(Martinis et al. 2013). This service can be activated for 

emergency response in case of a flood event (Martinis et al. 

2015) and is based on an unsupervised thresholding approach 

using TerraSAR-X data, suitable for rapid mapping of 

inundated areas (Martinis et al. 2009). The described method is 

valid only for open water surfaces, which behave in the same 

way as a specular reflector and reflect almost all radiation away 

from the sensor. Fig. 1 (right panel) shows the resulting product 

of this algorithm containing the inundation extent for open 

water areas derived from TerraSAR-X image acquired during 

the flood event on January 17, 2011. 

In addition to the used SAR data, simple hydraulic 

considerations were taken into account by integrating HAND 

(Height Above Nearest Drainage) and slope layer in the 

classification process. The HAND model represents the 

normalized topography according to the local relative heights 

located along the drainage network and is calculated almost for 

the whole globe. Furthermore, HAND index has 30 m 

resolution and is based on SRTM-DEM and drainage direction 

information. Each pixel in the HAND layer is defined as height 

difference between a DEM cell and the nearest cell the drainage 

channel (Nobre et al. 2011). Besides flooded open water areas 

TerraSAR-X Flood Service (TFS) delivers the slope 

information considered in this study. The local steepness of 

terrain was derived from DEM (ASTER Global Digital 

Elevation Model) (METI and NASA 2011) to refine the flooded 

vegetation mask. 

 

2.3 Reference data 

For validation purposes several different data sources were 

manually combined. In general, ground truth data or other types 

of remote sensing data, such as optical images (Schlaffer et al. 

2015) or GPS (Hess 2003), are used to validate the 

classification results. In case of flooded vegetation this data is 

considerably limited. On the one hand, there is no flooded 

vegetation ground truth data for the study area available. On the 

other hand, the derivation of the reference data from optical 

data for flooded vegetation is restricted. In this case flooded 

vegetation can be just assumed by visual interpretation in 

comparison to SAR data. Thereby, the validation data for this 

investigation has derived from several sources, which include 

(1) digitalized open water areas (ground truth data for inundated 

zones), (2) DEM with the spatial resolution of 1 m, (3) 

aforementioned digital ortho photos (CIR images) provided by 

the State Agency for flood protection and water management, 

Saxony-Anhalt and (4) vegetation areas provided by land cover 

map. A visual aggregation as/into overlap layer and a manual 

interpretation of this data enables the generation of the 

validation layer for flooded vegetation areas. The complete 

validation mask is shown in Fig. 1 (right panel). 

 

3. METHODOLOGY 

In the first part of this section, the fuzzy logic approach for the 

derivation of flooded vegetation considering SAR data and 

ancillary information is presented. In the following sections the 

entire algorithm process chain is described and depicted using a 

schematic diagram. Furthermore, there is a detailed explanation 

of the fuzzy sets construction based on radar backscatter 

information and auxiliary data. Finally, the application of an 

exclusion approach taking into account further additional 

information, such as land cover map, is declared. 

  

3.1 The fuzzy approach 

Over the past few years fuzzy logic has been applied to enhance 

flood mapping algorithms. Pierdicca et al. (2008) were the first 

to use the fuzzy logic theory for the detection of open water 

inundation zones, urban and flooded vegetated areas based on 

pixel intensity of SAR data and standard membership functions. 

For the quantification of uncertainty in the labeling of each 

element in flood probability masks the fuzzy logic approach was 

applied by Martinis and Twele (2010). Furthermore, an object-

based fuzzy logic method for derivation of inundation areas was 

demonstrated in Pulvirenti et al. (2011) and Pulvirenti et al. 

(2013), where a theoretical electromagnetic scattering model 

was used to tune the algorithm. Beside open water areas water 

bodies beneath vegetation and auxiliary data, such as 

topographic information, simple hydrological considerations 
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were also considered in the study by the implementation of 

fuzzy logic theory. Martinis et al. 2015 described the integration 

of SAR backscatter information and different globally available 

auxiliary data by fuzzy logic-based algorithm used for post-

classification refinement.  

Due to aforementioned successfully performed investigations by 

applying the fuzzy logic-based approach for flood detection the 

fuzzy logic is a promising method for the extraction of flooded 

vegetation. Especially in the case of using SAR data fuzzy logic 

is a potential tool to derive flood beneath the vegetation, which 

enables to handle the ambiguities of the radar measurements. 

Furthermore, the method allows an integration and combination 

of different source of data, taking into account their 

uncertainties. In order to obtain reliable results for flooded 

vegetation a fuzzy set was built up including five elements: 

absolute backscatter (σ0), change detection backscatter (Δσ0), 

height value represented by Height Above Nearest Drainage 

Index (h), slope information (s) and the distance to water bodies 

(w). To integrate the aforementioned information standard S 

and Z membership functions were applied (Pal, Rosenfeld 

1988) as shown in Fig. 2, where the parameter x1 and x2 define 

minimum and maximum fuzzy thresholds. 

 

3.2 Algorithm description 

The structure and the single elements of the designed algorithm 

are shown in Fig. 3. The input data is depicted as red boxes. 

The operations automatically performed by the algorithm are 

presented by blue elements, while the output layers containing 

the results are represented by green elements in the diagram. 

As input the algorithm requires SAR data, HAND, slope and 

land cover information. Depending on the data basis it is 

possible to omit the auxiliary information, whereas without 

SAR information the application of the algorithm is not 

possible. If only one SAR image, acquired during the flood 

event, is available the fuzzy set parameter cannot be 

automatically derived. For this purpose training data have to be 

created. For this study more than one SAR observation was 

applied containing images acquired during the flood conditions 

(image-1) and under non-flood conditions (image-2) (see Sect. 

3.3). The last one was produced merging several images (non-

flooded condition) to a layer stack containing seasonal 

information of vegetation. It must be considered that, the data 

used as input in this study (SAR, HAND, Slope, land cover 

map, optical data) has to be in the same cartographic coordinate 

system with the same pixel spacing and identical dimensions 

(e.g. the same number of columns and rows). The output of the 

algorithm is a flooded vegetation mask represented by a raster 

image having the same aforementioned attributes as the input 

data.  

After importing the data the exclusion layers are applied (see 

Fig. 3). The exclusion layers contain land cover information, 

such as permanent open water areas and urban regions (see 

Sect. 3.5). Furthermore, the open flood surfaces mask allows 

eliminating pixels having the same or similar radar reflection 

characteristics as flooded vegetation, therefore avoiding a false 

classification. The next step of the algorithm is to combine the 

fuzzy sets into one set, called here probability layer (see Fig. 3). 

The fuzzy sets are unified by calculating the average of the 

membership degree for each pixel. If a single fuzzy pixel has a 

membership degree of zero, the membership degree in the 

unified fuzzy set is also set to zero. In this way the elements of 

fuzzy sets possessing the probability of zero are also excluded. 

In order to obtain a classification mask with flooded and non-

flooded vegetation areas, each pixel from the probability layer is 

transferred by a defuzzification step. Pixels having a 

membership degree larger than a defined threshold value are 

assigned to the flooded vegetation class. All pixels with a 

membership degree smaller than the threshold value are added 

to the non-flooded vegetation class. The defuzzification process 

converts membership degrees into a crisp number (Cox 1994). 

To find an appropriate threshold value for the defuzzification 

step the histogram of the probability has to be analyzed. 

However, there is a challenging task, because of the irregular 

distribution of the histogram values and the absence of any 

pattern in it. For the understanding of the dynamics of previous 

steps of fuzzy sets, in this study a fixed threshold value of 0.5 is 

applied to avoid ambiguities by the defuzzification threshold. 

Consequently, the defuzzification step allows transforming each 

pixel with a membership degree into a discrete number enabling 

the production of flooded vegetation mask (see Fig. 3). 

 

3.3 The backscatter values based fuzzy sets 

Usually the choice of the threshold values of a fuzzy set (x1 and 

x2) based on SAR data for flooded vegetation is a critical 

aspect, because these thresholds depend on system parameters 

(frequency band, polarization and observation angle), as well as 

on environmental parameters of the study area (season/vitality 

of vegetation and topography) (Pulvirenti et al. 2011). To find 

suitable threshold values, the first attempt was performed by 

using a single image, which only considers the absolute 

backscatter values. The backscatter values are provided using 

TerraSAR-X data under the flood conditions on January 17, 

2011. The implementation of the absolute backscatter values is 

performed by the standard S function. The low degree of 

membership (parameter x1) is represented by the real number 0 

(no membership) and assigned by the backscatter mean value 

extracted from reference data. This enables to avoid an 

overestimation of flooded vegetation areas. The maximum 

membership degree with the real number 1 (parameter x2) is 

defined by the double standard deviation, including 95.5 % of 

backscatter values for the same reference data. Note that the use 

of a single image enables considering only elements having 

high backscatter values according to the following assumption: 

The higher the backscatter value the higher the probability to 

get classified as flooded vegetation. Due to the large overlap 

between histogram values of vegetation and flooded vegetation, 

within single image, the separation of these two areas by mean 

of automatic approach is a difficult task. 

In order to adopt an automatic approach change detection 

method is applied, where the changes between two images can 

be analyzed. In this process a difference between image 

acquired during a flood event and image acquired under non-

flooded conditions (a pre-event scene or a post-event scene) is 

Figure 3. Schematic algorithm structure 

and its single elements 
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 x1(σ
0) x2(σ

0) x1(Δσ0) x2(Δσ0) x1(h) x2(h) x1(s) x2(s) x1(w) x2(w) 

Total flooded vegetation 0 2.85 -6.6 -0.90 0 15 0 15 1 0 

Flooded deciduous forest 0 1.56 -4.68 0.08 0 15 0 15 1 0 

flooded high agriculture areas 0 3.52 -5.16 0.96 0 15 0 15 1 0 

flooded high agriculture areas 0 1.23 -10.15 -3.76 0 15 0 15 1 0 

Table 1. Threshold values of fuzzy logic based algorithm 

performed. The aforementioned inclusion of scenes allows 

automatically calculation of the fuzzy thresholds by the lowest 

and highest difference of backscatter values. For further 

investigations 45 non-flooded condition TerraSAR-X scenes 

were merged into a layer stack, which represents a new non-

flood image. This step allows considering also the seasonal 

component, because of the availability of TerraSAR images 

more than for one time of year (Schlaffer et al. 2015).  

The basis of the second fuzzy set is formed by backscatter 

values, which implies the change detection image. For this 

purpose the standard S function is applied, where the parameter 

x1 is assigned by no changes in the change detection image. The 

parameter x2 is represented by the highest difference of the 

change detection scene, where max (backscatter value (flood) - 

backscatter values (non-flood)). This difference considers the 

increase of backscatter values potentially caused by double 

bounce effect considering flooded forested areas and vegetated 

agriculture regions. To avoid false classification for flooded 

vegetation areas, objects producing similar increase of 

backscatter values, such as urban areas are excluded in a later 

step (see Section 3.5). 

 

3.4 The fuzzy sets based on ancillary data 

The fuzzy approach does not only enable to deal with the 

ambiguity of the radar signature, however also allows to 

implement an additional source of data and thereby to improve 

the reliability of the results. The idea is based on assumption 

that in case of river overflows, the flood probability for a pixel 

is large if it close to the river, if the slope is low and if the 

certain altitude of the area is not exceeded. In each of these 

cases the pixels have a large degree of membership to the set of 

flooded vegetation areas. Thereby, false alarms in regions far 

away from open water bodies and in hilly or mountainous 

terrain are avoided. For the integration of this information the 

following fuzzy sets are build up: digital elevation represented 

by Height Above Nearest Drainage Index (h), slope information 

(s) and the distance to water bodies (w). As a third element in a 

fuzzy system the Height Above Nearest Drainage Index 

(HAND) layer is integrated by using the Z membership 

function. Integration of HAND helps to reduce flooded 

vegetation look-alikes, caused by similar backscatter values that 

are lying too high above the nearest drainage to be flooded. In 

order to include appropriate threshold values for the HAND 

fuzzy set the study of Twele et al. (submitted) was used, where 

the derivation of thresholds was carried through a series of 

empirical tests of different hydrological and topographical 

settings based on over 400 TerraSAR-X and Sentinel-1 scenes. 

For the definition of non-flooded prone areas the threshold of 

>= 15 m was chosen. The critical aspect about the derivation of 

those thresholds was the possibility to select them too high and 

may cause an overestimation of flooded vegetation area. In case 

of selecting a too low threshold an underestimation of the flood 

surface could occur (Twele et al. 2016). To build up the fuzzy 

set for HAND the following parameters are integrated: x1 = 0 m, 

x2 = 15 m. Therefore, zero values represent a high probability 

for flooded vegetation, whereas high values stand for low 

probability. Each value above the upper fuzzy threshold is 

excluded from the fuzzy system, because of the assumption that 

no flooded vegetation exist above this border. As applied in 

Martinis et al. (2015) topographic slope information derived 

from globally available digital elevation data is integrated as a 

third element in the fuzzy system by using the Z membership 

function. To eliminate look-alikes in steep area the parameters 

x1 and x2 are used as 0° and = 15°. The first one represents high 

probability to get classified as flooded vegetation, because of 

absence of slope. The opposite occurs: The steeper the terrain 

the lower is the possibility of flooded vegetation. All pixels 

lying above the second parameter are excluded.  

For the calculation of the distance to open water areas a 

morphological operator, based on the distance calculation in 

pixel, is used. The implementation of distance in a fuzzy set is 

performed by standard Z membership function. In this case, the 

lower the number of pixels, the smaller the distance to open 

water areas, and the higher is the probability for a pixel to get 

classified as flooded vegetation.  

 

3.5 Exclusion approach 

Prior analysis has shown that several existing objects can cause 

same or similar backscatter values like flooded vegetation 

according to the double bounce effect (Kandus et al. 2014). Due 

to the multiple reflections an increase in backscatter values is a 

consequence, which let appear the objects also brighter than the 

surrounding terrain in radar imagery. Such an effect can occur 

in urban areas, where vertical objects and streets build corner 

reflectors, as well as ploughed rows in agriculture areas. Both 

produce a maximum reflection when rows or streets are 

vertically orientated to the radar look direction. Also, 

roughened water surface caused by wind activities, 

anthropogenic objects on the water, such as ships or oil and gas 

development platforms can cause high backscatter values like 

flooded vegetation. Soil high moisture conditions are further 

feature that may cause an overestimation of flooded vegetation 

(Martinis et al. 2015). In particularly the latter case represents a 

significant challenge for delimitation of flooded vegetation in 

Accuracy entities total vegetation deciduous forest  low agriculture high agriculture 

PA Flooded 66.4 % 73.9 % 39.5 % 63.8 % 

UA Flooded 19.4 % 60.0 % 26.4 %  7.6 % 

PA Remaining 77.5 % 98.1 % 97.8 % 83.2 % 

UA Remaining 96.6 % 99.0 % 98.8 % 99.1 % 

OA 76.7 % 97.1 % 96.6 % 82.8 % 

Table 2. Accuracy assessment results for flooded vegetation classes for a scene acquired on January 17, 2011during the flood 

event at river 'Saale' in Germany (OA = Overall Accuracy, PA = Producer Accuracy, UA = User Accuracy) 
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case of single-polarized radar data. To differentiate between 

flooded vegetation and aforementioned objects having similar 

backscatter values like flooded vegetation additional 

information is used. For the exclusion of the aforementioned 

influencing factors a land cover map (Digital Basic Landscape 

Model) are used to take into account information about 

permanent water bodies (rivers, lakes, reservoirs, etc.) and 

urban areas. In addition a classification layer of inundated water 

zones, a product of TerraSAR-X Flood Service (TFS) (Martinis 

et al. 2015) was used for the exclusion of pixels with low 

backscatter values (open water zones). Thereby, the influencing 

factors, such as roughened water surfaces caused by wind or 

human-made objects on water are excluded, because those are 

usually located inside the water body areas. Objects from the 

urban areas are also considered by the land cover map. The 

described layers are integrated in the algorithm process chain 

for elimination of pixels having the similar backscatter value as 

flooded vegetation. Therefore, the exclusion of these elements is 

indispensable.  

  

4. RESULTS AND DISCUSSION 

In this section, the results produced by the application of the 

developed algorithm and its effectiveness are described and 

visualized for the introduced study area. The algorithm is based 

on fuzzy logic combining SAR backscatter values with auxiliary 

data (see Section 3.1). The results for flooded vegetation 

classification are illustrated in the Fig. 4. The left panel shows 

flooded vegetation divided in three classes (flooded deciduous 

forest, flooded high agriculture, flooded high agriculture). Each 

class was derived by applying land cover information. The 

fourth class describes the total flooded vegetation. Note that the 

state for data-topicality is two years in relation to the download 

time in January 2015. In comparison to the acquisition time of 

the SAR scene at flooded event on January 17, 2011 the applied 

features may differ and affect the accuracy of the results. Fig. 5 

shows a detailed depiction of the total vegetation classification 

with overestimated and underestimated areas. 

The threshold values (parameter x1 and x2) used to build four 

fuzzy sets for the designed algorithm and considering absolute 

SAR backscatter (σ0) change detected SAR backscatter (Δσ0), 

HAND (h) slope (s) as well as distance to water bodies (w) are 

listed in Table 1. In addition to the total flooded vegetation the 

SAR backscatter threshold values for the three aforementioned 

flooded vegetation classes were derived by using the change 

detection approach (see Section 3.3). The efficiency of the 

results was assessed using a manually derived validation mask 

(see Section 2.3) containing total flooded vegetation (see Fig. 1, 

right panel) and three more vegetation classes (Flooded 

deciduous forest, flooded high agriculture, flooded high 

agriculture). Table 2 shows the classification accuracy (Overall 

Accuracy = OA, Producer Accuracy = PA, User Accuracy = 

UA) for each class in the current study area (catchment area 

'Saale' in Germany). The UA indicates the probability that a 

pixel classified by the model as flooded matches a class in 

reality (validation data), while PA relates to the probability that 

validation data is correctly mapped. The OA value for total 

flooded vegetation is 76.7 %, whereby in each class the OA is 

located between 82.8 % and 97.1 %. For each class the fuzzy 

sets threshold values are individually derived. These results in 

an enhancement of the OA per class in comparison to the total 

vegetations OA (see Table 2). The flooded deciduous forest and 

flooded low agriculture classes results show a similar significant 

high OA of 97.1 % and 96.6 %. In comparison to that the OA of 

flooded agriculture is 82.8 %. This reduction is attributable to a 

low UA value (7.9 %) of flooded high agriculture. The reason 

for this value being low is explained hereafter. The general 

assumption to derive flooded vegetation is that it can be 

classified by an increase in the backscatter values of radar signal 

caused by the double bounce effect. In case of agriculture areas, 

especially corn or other high crop types, the phenological 

changes (plant height, orientation or dense of the leaves, etc.) 

can influence the double bounce effect (Hess 2003; Pierdicca et 

al. 2008). In case of low plant height and high water level a 

reduced double bounce effect can occur, entailing lower 

backscatter values (Pulvirenti et al. 2011). This is one of the 

critical parts for the classifications of flooded vegetation, where 

underestimation can occur. It is also worth mentioning the low 

UA value of 26.4 % for the flooded low agriculture class. In this 

case the same effect as explained before may occur and cause 

low backscatter values, not detectable by the designed 

algorithm. In contrast to that, flooded deciduous forest UA 

achieves 73.9 %. This can be explained by the more constant 

structure of the tree (e.g., trunk or branches) and leaf-off 

conditions of deciduous forest (winter period) in the acquired 

scene during the flood event. Thereby, the penetration of the 

vegetation canopy by radar signal and its interaction between 

flat water surface and the lower parts of trees causes double 

bounce effects and increased backscatter to the SAR sensor. 

This effect intensively occurs in forest areas and consequently 

enables enhanced extraction of flooded vegetation in 

comparison to agricultural regions.  

The results of the designed algorithm show potential for the 

extraction of flooded vegetation. However, some shortcomings 

could be identified. In the following the ideas for improvements 

are discussed. The accuracy values (see Table 2) indicate some 

errors in the extraction of flooded vegetation. Especially the 

deviation of the UA in the agricultural class results in an 

Figure 4. Results of flooded vegetation classification (three 

classes) produced by designed algorithm based on fuzzy logic 

approach for the Saale inundation event (17 January 2011). 

The red box represents an extent with detailed illustration the 

flooded vegetation (see Figure 5). 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B7-371-2016

 
376



 

overestimation of flooded vegetation areas. This can be caused 

by bare soil, either in case of ploughed rows in agricultural 

areas or in case of high soil moisture content, both producing 

bright backscatter values (Kandus et al. 2014; Pulvirenti et al. 

2011). To avoid falsely classified pixels for flooded agricultural 

areas, bare soil should be excluded. For the separation between 

bare soil and vegetation optical data can be used. Therefore the 

presence of vegetation is derivable by the calculation of the 

Normalized Difference Vegetation Index (NDVI) (Chuvieco & 

Huete 2010). This product could be used as mask for the 

extraction of bare soil and be applied as an exclusion layer.  

A further challenge in the algorithm is the combination the 

fuzzy sets. Currently, the fuzzy sets are unified by calculating 

the average of the membership degree for each pixel. This can 

lead to overestimation of flooded vegetation, when the pixels 

membership degree derived from the SAR data has a low value 

and simultaneously the degree calculated using topographical 

information (HAND or slope) has a high value for the same 

pixel. For mountainous or hilly regions the described 

combination could lead to suitable results. Consequently, this 

condition has to be taken into account by applying stronger 

weighting factor to the backscatter values from SAR data 

containing the information about the presence of vegetation. To 

accomplish this, an appropriate combination of used fuzzy sets 

has to be found. The idea is to unite the backscatter layer and 

the topographic information in dependence of their fuzzy 

probability values. If the membership degree of backscatter 

values is greater than the membership degree of the topography, 

only the membership degree of the backscatter values is taken 

into account. Otherwise, the average of the membership degrees 

for both layers is calculated. This more flexible approach 

considers the topographical characteristics within the current 

area of interest and at the same time the information about the 

vegetation is stronger weighted. Further refinement of the 

designed algorithm can be achieved by the integration of further 

conditions considering the heights of open flooded water areas 

and flooded vegetation areas. For this process the following 

information is needed: (i) digital elevation model (ii) inundated 

open water area, provided by TerraSAR-X Flood Service (iii) 

flooded vegetation areas, extracted from the designed 

algorithms. First, the three layers have to be combined. 

Thereafter, a condition comparing the heights between the open 

inundated pixels and flooded vegetations pixel can be 

established. If the height of the examined flooded vegetation 

pixel is lower or equal to the height of the nearest flooded open 

water pixel, the flooded vegetation is confirmed. Otherwise the 

pixel classified as flooded vegetation is assigned to the non-

flooded vegetation class. The integration of this refinement step 

could result in an improvement in the classification of flooded 

vegetation. 

 

5. CONCLUSION AND OUTLOOK 

In this study the feasibility for the derivation of flooded 

vegetation by means of high resolution, SAR amplitude data, 

acquired between December 17, 2009 and July 3, 2015, located 

at catchment area of the river ‘Saale’ (Germany) provided by 

TerraSAR-X and ancillary data, being topographic information, 

simple hydraulic considerations, flooded open water areas, land 

cover map is demonstrated. The combination of this available 

data is enabled by a fuzzy logic-based approach. Furthermore 

this method allows dealing with SAR data ambiguity.  

The use of change detection in this algorithm enables an 

automatic extraction of flooded vegetation from SAR data 

distinguishing between different backscatter values during the 

flood event, in comparison to non flooded conditions. In the 

latter a merge of multiple images acquired also under non 

flooded condition accounts for seasonal changes. The inclusion 

of priory information allows an integration of properties 

characteristic for the examined area, such as topographical 

information for accurate extraction of flooded vegetation. 

Exclusion masks were applied to eliminate pixels having similar 

backscatter values as flooded vegetation. Thereby avoiding 

falsely classified pixels in areas without vegetation, such as 

permanent water regions, flooded open water zones and urban 

areas.  

The approach provides promising results with overall accuracies 

for total vegetation, flooded deciduous forest, flooded low 

agriculture and high agriculture classes of 76.7%, 97.1%, 96.6% 

and 82.8% for the investigated area confirm the effectiveness of 

the proposed algorithm. Nevertheless, there are still 

shortcomings especially concerning agricultural areas regarding 

its seasonal changes and phenological stages requiring further 

analysis for an enhanced extraction of flooded vegetation.  

At the present status single-polarized X-band SAR data 

containing the amplitude information is used to derive flooded 

vegetation. Future work will focus on the the Sentinel-1 satellite 

mission, operated by the European Space Agency (ESA) in the 

frame of the European Union Copernicus Programme, which 

operates in C-Band and enables high temporal and spatial 

resolution. It is expected, that the higher penetration of 

vegetation canopy by C-Band enhances the double bounce 

effect due to the increase of radiation interacting between the 

water surface and the lower part of the vegetation layer. 

Consequently, water underneath vegetation could be detected 

more accurately. Sentinel-1 provides dual-polarized data (VV, 

VH) allowing the application of  polarimetry (White et al. 2015) 

and temporal coherence (Nico et al. 2000, Pulvirenti et al. 

2016). These methods are going to be used for the extraction of 

flooded vegetation based on the designed algorithm. 

Furthermore the combination of these methods and the methods 

presented in this paper, using the amplitude of the single 

polarized data, is going to be analyzed. Also the algorithm will 

be extended for the usage of different derivation approaches 

depending on the available data (single image analysis, change 

detection analysis, time series analysis). Consequently different 

data basis can be flexibly addressed, in order to provide reliable 

classification results. 
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Figure 5. A detailed depiction of total vegetation 

classification with overestimated and underestimated areas 
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