A KERNEL METHOD BASED ON TOPIC MODEL FOR VERY HIGH SPATIAL RESOLUTION (VHSR) REMOTE SENSING IMAGE CLASSIFICATION
Keywords: VHSR remote sensing image, Classification, Support vector machine (SVM), Composite kernel, Latent Dirichlet allocation (LDA), Structure, Spatial, Spectral
Abstract. A kernel-based method for very high spatial resolution remote sensing image classification is proposed in this article. The new kernel method is based on spectral-spatial information and structure information as well, which is acquired from topic model, Latent Dirichlet Allocation model. The final kernel function is defined as K = u1Kspec + u2Kspat + u3Kstru, in which Kspec, Kspat, Kstru are radial basis function (RBF) and u1 + u2 + u3 = 1. In the experiment, comparison with three other kernel methods, including the spectral-based, the spectral- and spatial-based and the spectral- and structure-based method, is provided for a panchromatic QuickBird image of a suburban area with a size of 900 × 900 pixels and spatial resolution of 0.6 m. The result shows that the overall accuracy of the spectral- and structure-based kernel method is 80 %, which is higher than the spectral-based kernel method, as well as the spectral- and spatial-based which accuracy respectively is 67 % and 74 %. What's more, the accuracy of the proposed composite kernel method that jointly uses the spectral, spatial, and structure information is highest among the four methods which is increased to 83 %. On the other hand, the result of the experiment also verifies the validity of the expression of structure information about the remote sensing image.